GIS-Based Expert Systems Model for Predicting Habitat Suitability of Blackside Dace

Benjamin L. Blandford
University of Kentucky, benjamin.blandford@uky.edu

John Ripy
University of Kentucky, jripy@uky.edu

Ted H. Grossardt
University of Kentucky, tedgrossardt@gmail.com

Ryan Evans
Kentucky State Nature Preserves

Sara Hines
Kentucky State Nature Preserves

Click here to let us know how access to this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/ktc_present

🔗 Part of the [Civil and Environmental Engineering Commons](https://uknowledge.uky.edu/civ-environ-eng), [Geographic Information Sciences Commons](https://uknowledge.uky.edu/gis), and the [Physical and Environmental Geography Commons](https://uknowledge.uky.edu/env-geo)

Repository Citation

Blandford, Benjamin L.; Ripy, John; Grossardt, Ted H.; Evans, Ryan; and Hines, Sara, "GIS-Based Expert Systems Model for Predicting Habitat Suitability of Blackside Dace" (2013). *Kentucky Transportation Center Presentations*. 2.

https://uknowledge.uky.edu/ktc_present/2

This Presentation is brought to you for free and open access by the Transportation at UKnowledge. It has been accepted for inclusion in Kentucky Transportation Center Presentations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
GIS-Based Expert Systems Model For Predicting Habitat Suitability Of Blackside Dace
Benjamin Blandford, John Ripy, Ted Grossardt – University of Kentucky, Kentucky Transportation Center
Ryan Evans, Sara Hines – Kentucky State Nature Preserves

Abstract
This study presents a GIS-based predictive habitat suitability model for the blackside dace, a federally-listed threatened species of the Upper Cumberland River basin in southeastern Kentucky. The model is a rules-based system which incorporates expert knowledge about habitat preferences for the species. The five habitat factors identified by experts and included in this model are stream gradient, canopy coverage, riparian vegetation type, riparian zone width, and stream order. Using GIS, the five habitat parameters were parameterized and combined across the entire stream network. Combinations were evaluated by blackside dace experts in terms of habitat suitability. The resulting model was tested against known blackside dace occurrences using locational modeling statistics. This analysis demonstrates success at identifying stream areas of both high and low likelihood of occurrences. Model results could be of particular usefulness to transportation planners in identifying sensitive areas in the landscape that may impact transportation planning.

Habitat Parameters

<table>
<thead>
<tr>
<th>Habitat Factor</th>
<th>(Low)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gradient (stream level)</td>
<td>>6%</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td><2%</td>
</tr>
<tr>
<td>Canopy (percent coverage)</td>
<td>0% – 50%</td>
<td>50 – 70%</td>
<td>70 – 90%</td>
<td>>90%</td>
<td></td>
</tr>
<tr>
<td>Riparian Vegetation</td>
<td>Cultivated, Developed, Barren</td>
<td>Grass, Herbaceous, Pasture (hay)</td>
<td>Shrubs, Scrub</td>
<td>Forested</td>
<td></td>
</tr>
<tr>
<td>Riparian Zone Width</td>
<td><6 meter</td>
<td>6-12 meter</td>
<td>12-18 meter</td>
<td>>18 meter</td>
<td></td>
</tr>
<tr>
<td>Stream Order (Strahler)</td>
<td>6 – 7</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

GIS Layers
A single stream raster was created containing data for habitat factors conducive to predicting Blackside Dace presence along stream segments
- Gradient
- Canopy
- Riparian Width
- Stream Order
- Land Cover

Expert Systems Modeling

\[S = \sum Wi Xi \]

Where:
- \(S \) = surface of total probability score
- \(W \) = influence or weight factor of the ith factor
- \(X \) = Criteria score for the ith parameter

Model Results
Analyzed using locational modeling statistics (Kvamme 2006)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Suitability</th>
<th>M (Cells in model)</th>
<th>S (Dace occurrences)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Low</td>
<td>176,789</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>Below Average</td>
<td>138,361</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>Above Average</td>
<td>164,272</td>
<td>52</td>
</tr>
<tr>
<td>4</td>
<td>High</td>
<td>141,428</td>
<td>145</td>
</tr>
</tbody>
</table>

Where:
- \(P(M) \) = Base rate or chance probability that a model will indicate a site; proportion of study region mapped to M
- \(P(S/M) \) or \(P(S/M') \) = Model improvement ratio; indicates how many times more likely an occurrence is in M versus M'

Expert Systems Modeling

\[S = \sum Wi Xi \]

Where:
- \(S \) = surface of total probability score
- \(W \) = influence or weight factor of the ith factor
- \(X \) = Criteria score for the ith parameter