University of Kentucky UKnowledge

Toxicology and Cancer Biology Presentations

Toxicology and Cancer Biology

5-28-2014

Antagonistic Effects of MYC and Hypoxia in Channeling Glucose and Glutamine into *De Novo* Nucleotide Biosynthesis

Teresa W-M Fan University of Kentucky, teresa.fan@uky.edu

Anne Le Johns Hopkins University

Zachary Stine University of Pennsylvania

Ye Yang University of Kentucky, ye.yang@uky.edu

Karen Zeller Johns Hopkins University

See next page for additional authors Follow this and additional works at: https://uknowledge.uky.edu/toxicology_present

Part of the Medical Toxicology Commons, and the Oncology Commons Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation

Fan, Teresa W-M; Le, Anne; Stine, Zachary; Yang, Ye; Zeller, Karen; Zhou, Weiqiang; Ji, Hongkai; Higashi, Richard M.; Dang, Chi; and Lane, Andrew N., "Antagonistic Effects of MYC and Hypoxia in Channeling Glucose and Glutamine into *De Novo* Nucleotide Biosynthesis" (2014). *Toxicology and Cancer Biology Presentations*. 1.

https://uknowledge.uky.edu/toxicology_present/1

This Presentation is brought to you for free and open access by the Toxicology and Cancer Biology at UKnowledge. It has been accepted for inclusion in Toxicology and Cancer Biology Presentations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Authors

Teresa W-M Fan, Anne Le, Zachary Stine, Ye Yang, Karen Zeller, Weiqiang Zhou, Hongkai Ji, Richard M. Higashi, Chi Dang, and Andrew N. Lane

This presentation is available at UKnowledge: https://uknowledge.uky.edu/toxicology_present/1

ORAL PRESENTATION

Open Access

Antagonistic effects of MYC and hypoxia in channeling glucose and glutamine into *de novo* nucleotide biosynthesis

Teresa Fan¹, Anne Le², Zachary Stine³, Ye Yang¹, Karen Zeller⁴, Weiqiang Zhou⁵, Hongkai Ji⁵, Richard Higashi¹, Chi Dang³, Andrew Lane^{1*}

From Metabolism, Diet and Disease 2014: Cancer and metabolism Washington DC, USA. 28-30 May 2014

Background

Cell proliferation requires up regulation of nucleotide biosynthesis for making new DNA and RNA to support protein bio-synthesis. MYC is a major transcription factor that regulates metabolic processes essential for cell division, and is overexpressed in many cancers. The nutrient sources and integration of the metabolic pathways for nucleotide biosynthesis that enable MYC-dependent cell division are poorly defined. Using Stable Isotope Resolved Metabolomics (SIRM) we have determined the fate of atoms from ${}^{13}C_6$ -glucose, ${}^{13}C_5$, ${}^{15}N_2$ -glutamine, or ${}^{2}H$ -glycine into nucleotides under varied conditions of MYC expression in the *MYC*-inducible P493-6 B-lymphocyte [2] and several lung cell lines.

Materials and methods

P493-6 cells, A549, PC9 and HPLD1 cells were grown in the presence of $[U^{-13}C]$ -glucose, $[U^{-13}C, {}^{15}N]$ -Gln or $[{}^{2}H_{2}]$ -Gly for one cell division. P493-6 cells, which have an inducible MYC gene were grown under four sets of conditions, namely MYC On/Off under 21% or 1% oxygen. Media samples were taken at timed intervals, and the cells were harvested, and extracted. Isotopomer and isotopologue distributions were measured in the free nucleotides and in metabolites that characterize the related pathways of glycolysis, PPP, Krebs cycle, serine, glutathione and nucleobase biosynthetic pathways. In parallel, gene expression data and MYC promoter occupancies were interrogated.

Full list of author information is available at the end of the article

Results

MYC increased incorporation of ¹³C from glucose and glutamine into newly synthesized glycine and aspartate, which are channeled into nucleotides. MYC suppression in lung adenocarcinoma PC9 and A549 cells induced opposite effects on carbon flow into nucleotides. Exogenous ²H-Glycine was preferentially incorporated into glutathione both in transformed cells and primary lung HPLD1 cells, whereas glucose-derived ¹³C Gly was incorporated into purines. Although hypoxia enhances glycolysis and maintains ribose synthesis in P493 cells, it antagonizes channeling toward nucleobase synthesis and reduces MYC-induced proliferation. MYC increased coordinately expression of the relevant metabolic genes associated directly and indirectly with nucleotide biosynthesis, which correlates with cell proliferation and cell cycle distribution data.

Conclusions

These results reveal the coupling of bioenergetics and nutrient availability to cell proliferation through regulation of metabolic channeling in de novo nucleotide biosynthesis. MYC coordinately regulates genes for nucleotide biosynthesis as well as the associated pathways for serine and glycine synthesis, which feed into the purine pathway. MYC enhances channeling of glucose-derived Gly into purines and Gln-derived Asp into pyrimidines.

Authors' details

¹Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky, Lexington, KY, USA. ²Department of Pathology and Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA. ³Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA. ⁴Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD 21231, USA. ⁵Department of Biostatistics,

© 2014 Fan et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http:// creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

¹Graduate Center for Toxicology and Markey Cancer Center, University of Kentucky, Lexington, KY, USA

Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21231, USA.

Published: 28 May 2014

doi:10.1186/2049-3002-2-S1-O10 Cite this article as: Fan *et al*: Antagonistic effects of MYC and hypoxia in channeling glucose and glutamine into *de novo* nucleotide biosynthesis. *Cancer & Metabolism* 2014 2(Suppl 1):O10.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit