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[57] ABSTRACT 

A method is described for utilizing discrete orthogonal basis 
to restore signal system. such as radio or sound waves and/or 
image system such as photographs or medical images that 
become distorted while being acquired. transmitted and/or 
received. The signal or image systems are of the linear type 
and may be represented by the equation [B] [o]=[i] wherein 
[o] is an original signal or image. [i] is a degraded signal or 
image and [B] is a system transfer function matrix. The 
method involves estimating a signal-to-noise ratio for a 
restored signal or image. Next. is the selecting of a set of 
orthogonal basis set functions to provide a stable inverse 
solution based upon the estimated signal-to-noise ratio. This 
is followed by removing time and/or spatially varying 
distortions in the restored system and obtaining an appro 
priate inverse solution vector. 

17 Claims, 7 Drawing Sheets 
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METHOD OF DISCRETE ORTHOGONAL 
BASIS RESTORATION 

This is a continuation-in-part of US. patent application 
Ser. No. 08/337592. ?led on Nov. 10. 1994. entitled 
“Method of Discrete Orthogonal Basis Restoration". now 
abandoned. 

TECHNICAL FIELD 

The present invention relates generally to the ?eld of 
signal and image restoration and. more particularly to a 
method of restoring a signal and/or image degraded by time 
and/or spatially varying transfer functions. 

BACKGROUND OF THE INVENTION 

It is commonplace for signals. such as radio or sound 
waves and images such as photographs or medical images to 
become distorted while being acquired. transmitted and/or 
received. This phenomenon occurs in various types of radar. 
sonar. optic. imaging and electronic systems. 
As an example. blurring of a photographic image may 

result from camera and/or object motion at the time of 
acquisition or may even be produced by the nature of the 
photographic equipment (e.g. “?sh-eye” lens). In medical 
imaging. the type of equipment used and the way the images 
are acquired can have remarkable effects on the level of 
distortion or blurring present in the ?nal images that are 
interpreted by physicians. 

It should further be appreciated that the characteristics of 
the distorting process may change with time during the 
acquisition of a signal or may vary with location over 
different areas of an image. These time and/or spatially 
varying distortions in a signal and/0r image must be 
removed to restore a signal and/or image to its undistorted 
form and enhance clarity. 

In practical application there are imperfections in the 
signal or image acquisition process that make it impossible 
for any method to perfectly recover the original signal or 
image. Special mathematical techniques may. however. be 
utilized to closely estimate what the signal or image was 
before it was degraded. The time and/or spatially-varying 
nature of some systems makes it particularly di?icult to 
perform a fully accurate restoration. Still. when properly 
applied such techniques may be utilized to substantially 
improve the quality of a signal or image so that it more 
closely approximates the true or undistorted original signal 
or image. 

In order to further understand this process it must be 
appreciated that signals or images degraded by a linear 
system may be cast in the operator notation [B] [o]=[i]; 
where [o] is the original signal or image. [i] is the degraded 
signal or image. and [B] is the system transfer function 
matrix. Signal or image restoration is the determination of an 
approximation [0'] to the original signal [0]. given a priori 
knowledge of the transfer function matrix [B] and the 
forward solution [i]. 
The most straightforward means of determining the 

inverse solution is by application of the transfer function 
matrix inverse to the forward solution. that is. [B]-1 [i]=[o']. 
However. determining [0'] by this approach frequently rep 
resents an ill-posed problem as the inverse of the transfer 
function may not exist (singular matrix) or [B]_1 may be 
near-singular. In either case. the inverse solution cannot be 
detennined. Further. even if [B] is invertible. [B]'1 will 
frequently be ill-conditioned. meaning that small perturba 
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2 
tions in [i] will lead to large perturbations in [0'] when the 
inverse solution is computed. This leads to unacceptable 
results. This is because all practical systems have inherent 
uncertainty in the measurement of [i]. as well as added noise. 
and accordingly. adequate estimation of the inverse solution 
[0'] is not possible through application of an ill-conditioned 
transfer function inverse. 
To date. many methods have been developed to solve 

inverse problems arising in image processing. optics. 
geophysics. astronomy. spectroscopy. and other engineering 
and scienti?c disciplines. The existence of multiple solu 
tions is primarily due to the fact that no single prior art 
method provides the best estimate of inverse solution in all 
practical applications. In fact. most prior art methods have 
only very speci?c. limited applications within specialized 
technical ?elds. 

As [B] [o]=[i] constitutes a linear system. solution by 
linear methods is an intuitively attractive approach. 
However. while the solution may be attempted by linear 
transform methods. such as Fourier transforms. the ill 
conditioned nature is not circumvented by these techniques. 
Furthermore transform techniques are not directly appli 
cable when the transfer function is shift-variant. 

Application of transform methods to shift-variant systems 
have been limited to those cases where the signal or image 
can be sectioned into regions over which the system may be 
considered to be stationary. The inverse solutions for these 
regions are computed by transform techniques. and then 
spliced back together to form the overall solution. Similar 
sectioning into assumed stationary regions with inversion by 
the maximum a posteriori method has also been proposed. 
This sectioning and reassembly approach (“mosaicing”) is. 
however. highly dependant on the validity of the stationary 
assumption. the method of reassembly. and on sampling of 
the forward solution and these considerations all adversely 
effect restoration results. 

Various non-transform methods of linear inverse solution 
have also been developed. These include Weiner ?ltering. 
constrained Weiner ?ltering. maximum entropy. and pseudo 
inversion techniques. These methods are usually applicable 
to the shift-variant case and they address the ill-conditioned 
nature of the problem. One drawback of such methods is. 
however. that they tend to not perform well in the presence 
of low signal-to-noise ratio (SNR) or on systems with 
moderate to severely degrading transfer functions. Thus they 
fail when they are most needed. These linear methods also 
do not provide super-resolution capability. and the linear 
iterative methods (eg pseudo-inversion. van Clittert’s 
method. maximum entropy) do not have well de?ned ter 
mination points and can have very high memory and com 
putational demands if a large number of iterations are 
performed. Thus. hardware requirements and processing 
times are disadvantageously increased. 
The shortcomings of existing linear techniques has 

spawned great interest in non-linear approaches. The non 
linear approaches are based on various regularization tech 
niques that incorporate a priori knowledge of various param 
eters to yield an inverse solution that stabilizes and 
constrains the inverse solution. The parameter variables 
(hyperpararneters) may include constraints on the form of 
the solution (such as non-negativity) goodness of ?t 
parameters. statistical parameters. and assumptions of the 
character of added noise. Non-linear methods are usually 
applicable to shift-variant systems and may have super 
resolution properties. The performance of these approaches 
is highly dependent on proper choice of the hyper-parameters 
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needed for the particular method. Furthermore. these 
approaches are usually iterative with poorly de?ned criteria 
for termination. For systems with well de?ned hyperparam 
eters and termination criteria. and when the computational 
burden is not an obstacle. these are usually the preferred 
method of inverse solution. However. when the a priori 
knowledge of the system is inadequate. or when optimal 
termination of the iterative process is problematic. a linear 
method of solution is likely to produce better restoration 
results. 

Another linear method of interest provides deconvolution 
for stationary systems based on the properties of the system 
adjoint operator. Referred to as deconvolution by the method 
of orthogonal polynomials (Stritzke IEEE Trans Med Imag 
ing vol. 9. 1990. pp. 11-23). the crux of this method is the 
inner-product property of adjoint operator on vectors. The 
method requires a discrete orthogonal basis set. The original 
author. however. failed to de?ne the origins of instability or 
the criteria for insuring a stable solution. Accordingly. the 
scope of practical applications of this approach is very 
limited. 
From the above it should be appreciated that a need exists 

for a more versatile and e?iective method of signal and 
image restoration suited for a wide range of applications in 
various ?elds. 

SUMMARY OF THE INVENTION 

Accordingly. it is a primary object of the present invention 
to provide an e?icient and dependable method for signal 
and/or image restoration adapted for a number of speci?c 
applications crossing a broad number of technical ?elds. 

Another object of the invention is to provide an improved 
method for quickly restoring a signal and/or image system 
degraded by time and/or spatially varying transfer functions. 
Such a system reduces processing time without comprising 
the quality of the ?nal or restored image. 

Yet another object of the invention is to provide a discrete 
orthogonal basis method for quickly restoring a signal or 
image to an undistorted form. Advantageously. the method 
utilizes a mathematical processing technique requiring rela 
tively small computer memory capacity such as found in a 
personal computer. so as to allow ready application by 
individuals in many. diifen'ng ?elds utilizing readily avail 
able computer hardware. Further. the method also provides 
uncompromising speed of operation and very e?iective 
results. 
A still furthm' object of this invention is to provide a 

discrete orthogonal basis restoration method particularly 
suited to reconstruct and restore nuclear medicine SPECI‘ 
images. 

Additional objects. advantages and other novel features of 
the invention will be set forth in part in the description that 
follows and in part will become apparent to those skilled in 
the art upon examination of the following or may be learned 
with the practice of the invention. The objects and advan 
tages of the invention may be realized and obtained by 
means of the instrumentalities and combinations particularly 
pointed out in the appended claims. 
To achieve the foregoing and other objects. and in accor 

dance with the purposes of the present invention as 
described herein. an improved method is provided wherein 
discrete orthogonal basis is utilized to restore a signal and/or 
image system that is degraded by time and/or spatially 
varying transfer functions. Advantageously. the present 
method represents a relatively simple inverse solution that 
quickly and e?iciently restores the system to an undistorted 
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4 
form. Accordingly. a clearer and more focused signal or 
image system results. 
The method includes the step of estimating a SNR for a 

restored system. Additionally. there is the step of selecting of 
a set of orthogonal basis set functions pm to provide a stable 
inverse solution based upon the estimated forward solution 
SNR. 

More speci?cally. the estimated SNR of the restored 
system is provided by applying a given forward solution 
SNR and selected set of orthogonal basis set functions pmk 
to a realistic simulation model of the system. The set of 
orthogonal basis set functions pmk may be any orthogonal 
basis that spans the forward and inverse solution vector 
spaces. Such basis set functions include but are not limited 
to a group consisting of Hartley. Walsh. Haar. Legendre. 
Jacobi. Chebyshev. Gegenbauer. Hermite and Laguerre 
functions. 

Next is the step of removing the time and/or spatially 
varying distortions in the restored system by obtaining an 
inverse solution vector 0,: for a one dimensional restoration 
wherein: 

where [Bin is the transpose-complex conjugate of the 
matrix B and pm is an M member orthogonal basis set and 
a are the standard Gram-Schmidt orthogonalization coel? 
cients; 

I” 

dug: ‘2211mm. 0:: 1,2,3 . . . M 
1: 

Alternatively. the inverse solution vector Opk for a two 
dimensional system with separable spatially variant PSF the 
inverse solution may be obtained by successive row-column 
operations: 

wherein: 

M IU 

Gel a. w] 
p =1,z3, . . .JU. 

More speci?cally describing the invention. the estimating 
of the signal-to-noise ratio SNRPM, is provided by the 
formula 
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wherein lOm‘el2 is the signal power in the original 
(undegraded) signal or image. loimmP the inverse solu 
tion noise power due to the approximate nature of the 
inverse solution and lOnoml2 is the noise power in the 
inverse solution power due to added noise in the forward 
solution. 

Advantageously. the present method functions to de?ne 
the origins of instability and behavior in the presence of 
noise. By applying the method to time-varying systems and 
using a technique for a priori determination of the SNR 
inverse solution. it is possible to insure stability and optimal 
selection of the basis set. Further. the method of inverse 
solution and SNR estimation may be successfully extended 
to the restoration of two-dimensional images degraded by 
spatially variant point spread functions. 
The discovery of the origins of instability along with the 

development of an approach for selection of the optimal 
basis set to maximize inverse solution SNR. makes the 
present method a viable linear approach to inverse solution. 
Advantageously. the method is applicable to both stationary 
and shift-variant systems. is non-iterative. and is computa 
tionally e?icient. Thus. the speed of processing and the size 
of the computer necessary to complete that processing are 
both reduced Further. it should be appreciated that the only 
a priori information required to estimate the SNR of the 
inverse solution is an estimate of the forward solution noise 
characteristics and estimate of the inverse solution noise due 
to a limited basis set. Of course. in some cases the type of 
instrumentation or acquisition parameters may guide the 
optimal basis set selection (e.g. Nuclear Medicine SPECI‘ 
imaging with reconstruction from projections). 
As the present method is advantageously applicable to 

both stationary and shift-variant linear systems in one or 
more dimensions. potential applications for the present 
method include medical imaging (e.g. emission 
tomographic. MRI. ultrasound). image processing (lens 
deblurring. motion artifacts). optics and spectroscopy (light 
and NMR). geophysics. radar/sonar. and general electronics 
and electrical engineering problems. Thus. the method is 
extremely versatile. having application in broad ranging 
technical ?elds. 

Still other objects of the present invention will become 
apparent to those skilled in this art from the following 
description wherein there is shown and described a preferred 
embodiment of this invention. simply by way of illustration 
of one of the modes best suited to carry out the invention. As 
it will be realized. the invention is capable of other different 
embodiments and its several details are capable of modi? 
cation in various. obvious aspects all without departing from 
the invention. Accordingly. the drawings and descriptions 
will be regarded as illustrative in nature and not as restric 
tive. 

BRIEF DESCRIPTION OF THE DRAWING 

The accompanying drawing incorporated in and forming 
a part of the speci?cation. illustrates several aspects of the 
present invention and together with the description serves to 
explain the principles of the invention. In the drawing: 

FIG. 1 graphically shows the original signal (a) is the sum 
of three unity amplitude sinusoids (f,=3 cycles/21:. ¢1=0.1 
radian; f2=7 cycles/2n. q>2=1.0 radian; f3=l0 cycles/21:. 
¢3=0.6 radian). The forward solution (b) results when the 
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6 
time-varying decaying exponential system described by 
transfer function h,”l acts on the original signal (see equation 
in Example 1. page 20). Pseudorandom zero-mean noise is 
added to produce forward solutions with SNR of 20 dB (c). 
and 10 dB (e). The inverse solutions obtained by the method 
using a Hartley basis set from 0-10 cycles/21c had SNRMWm, 
of 19.26 dB ((d). solid line) for the 20 dB forward solution. 
and SNRinvem=lO33 (113 ((f). solid line) for the 10 dB 
forward solution. The broken line in (d) and (f) is the 
original signal. 

FIG. 2 is a plot of SNRfomm, vs. SNRPM, (equation (13)) 
for the system. The solid line represents the predicted 
relationship between forward and inverse solution SNR for 
the method using a Hartley basis set over 0-10 cycles/21:. 
The broken line is for a Hartley basis set extending over 
0-14 cycles/21:. The 0-14 cycles/2n basis set provides 
higher SNR of the inverse solution for high SNRfamm, due 
to superior basis representation of the original signal. With 
lower SNR forward. the broader basis set has greater noise 
recovery than the more restricted basis set. causing inferior 
SNRPM for the inverse solution. 

FIG. 3 is a photograph of an original image of a four 
quadrant checkerboard with square sizes of four. ?ve. six 
and seven pixels; 

FIG. 4 is a photograph of the forward solution showing 
severe distortion following degradation by a system with 
gaussian separable spatially variant point spread function 
(SSVPSF) that varied radially in width (center FWHM=6 
pixels. corner FWHM=3 pixels) and amplitude (center: 
0.151. corner=0.075). and addition of noise to achieve 
SNR=20 dB". 

FIG. 5 photographically shows the restored image fol 
lowing application of the present method to achieve reso 
lution of all image elements with good contrast recovery; 

FIG. 6 photographically demonstrates the added noise in 
the restored image when the original image is processed in 
accordance with the present method from a noiseless for 
ward solution; and 

FIG. 7 is a two dimensional representation of the Gram 
Schrnidt orthogonalization process in the presence of noise. 

FIG. 8 is a ?owchart showing the methodology of the 
present invention. 

Reference will now be made in detail to the present 
prefmred embodiment of the invention. an example of which 
is illustrated in the accompanying drawing. 

DETAILED DESCRIPTION OF THE 
INVENTION 

The method of the present invention for using discrete 
orthogonal basis to restore a signal and/or image system 
created by time and/or spatially varying transfer functions 
will now be described in detail. The method may be applied 
to restore a signal or image system in a wide variety of 
technical ?elds. Stability of the inverse solution may be 
achieved if the characteristics of the noise in the forward 
solution may be estimated. For time-varying linear systems 
having a region of basis function support approximately 
congruent to the support region of the transfer function. and 
for which there is su?icient a priori knowledge of the 
system. the present method provides an el‘?cient and noise 
tolerant approach to achieve inverse solution. 
As previously described. the method of the present inven 

tion may be utilized to obtain an inverse solution vector for 
either one or two dimensional restorations. For purposes of 
presentation. m=l.2.3. . . . . M is the index for the vector sets 
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with M members. The row and column vectors are desig 
nated by lowercase letters. and square matrices by uppercase 
letters. The system matrix transfer function is denoted by B. 

Given the linear operation 

[B] lvl=lil (1) 

the purpose of this invention is to recover the length IU 
vector [0]. given the forward solution vector [i] and a prion‘ 
knowledge of the forward operator [B]. The IUXIU matrix B 
is constructed using the time (or spatially) varying system 
transfer function hb, so that the forward solution ik is de?ned 
by 

[U (2) 
u = Z hm" 

n=l 

k = 1,2,3, . . . ,IU. 

Recovery of the inverse solution requires two orthogonal 
function sets related to the adjoint PSF operator. The con 
struction of these function sets (equations (4—6b)) requires a 
set of M orthogonal basis set functions pm. of length IU. 
The Hartley basis set. de?ned by 

is the preferred basis for real~valued systems and will be 
utilized to illustrate the present method. It should be 
appreciated. however. that any orthogonal basis that spans 
the forward and inverse solution vector spaces may be 
utilized. These include for example. Hartley. Walsh. Haar. 
Legendre. Jacobi. Chebyshev. Gegenbauer. Hermite and 
Laguerre functions. 
As can be appreciated in viewing FIG. 8. the method 

begins with the application of the adjoint of the forward 
operator to each member of the basis set 

IbLFIBIT'LPI... (4) 

where B1“ is the transpose-complex conjugate of the 
matrix B. 
The Gram-Schmidt orthogonalization procedure followed 

by normalization may be used to construct an orthonormal 
function set cmk from bmk. De?ning a set of constants 1m. (5). 
where the constants a are the Gram-Schmidt orthogonaliza 
tion constants. cmk may be written as a linear combination of 
b,”c (6a). A second orthogonal function set dmk can then be 
constructed as a linear combination of the basis set functions 
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-continued 

d,,,,,=i§'11,.p.m=1,2,3. ..M (6b) 

Recovery of the inverse solution begins with the unit opera 
tor for orthonormal functions (7). Reference to (6a) and (4) 
yields equation (0). The property of adjoint operators on 
?nite-dimension inner product space allows transition to (9) 
and equation (1) leads to (10). Equation (10) is the opera 
tional equation for the inverse solution vector for a one 
dimensional restoration utilizing the present method. 

(3) "Fae-hi tel at") M 

. (10) 0k=ECD§[2d,-?g] m it 

Of course. this inverse solution 0k. like all method of 
ill-posed problem solution. is an approximation of the true 
solution. In the noiseless case. the quality of the inverse 
solution depends primarily on the equality of the represen 
tation of the true signal afforded by the chosen ?nite set of 
basis functions pm,‘ where rn=1.2.3 . . . M is the index for the 

chosen orthogonal basis set with M members of length k 
=l.2.3 . . . IU. The recovered vector 0k may be expressed as 

a sum of the inverse solutions from the noiseless forward 
solution and from added noise components (see equation 
11). 

(11) was»ltdemmrlawlwml 
In the Fourier domain. the noise component term in (11) may 
be expressed by 

s(0.......)= i c...- [ 1m - zinal'm] (12) 

i=1,2,3,...,N 

which allows an approximation of the inverse solution noise 
power to be made if the characteristics of the additive noise 
are known. The predicted SNR of the inverse solution may 
be estimated by 

IO F 13 
SNRM = 10 log "" ( ) 

lon?'nllgm + IOMF 

where lOmwl2 is the signal power in the original 
(undegraded) signal or image. tom‘ l2 is the inverse 
solution noise power due to the approximate nature of the 
inverse solution. and tom-"l2 is the noise power in the 
inverse solution power due to added noise in the forward 
solution. 

For a given system. an a prion‘ estimate of the inverse 
solution SNR can be made for various values of SNRTOMM, 
using equations (12) and (13). Noise power in the inverse 
solution due to added noise may be estimated by assigning 
values to 

[limbs] 
(12) based on assumptions of the character and magnitude of 
added noise. Simulau'on studies with well modeled noiseless 
signals allow estimation of intrinsic noise. lO,t,,,,1-,,_,,,_.l2 in the 
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inverse solution. With an estimate of the original signal 
power. the SNRPM for the inverse solution may be com 
puted using equation (13). 
The following example is presented for purposes of 

further illustrating the present invention. but it is not to be 
considered as limited thereto. 

EXAMPLE 1 

An exponentially decaying transfer function with linearly 
time-varying amplitude and time constant was chosen for 
purposes of demonstration. The behavior of the time 
varying transfer function hkn is de?ned by 

0.5-n 
N 

The input function (Fig 1(a)) is a summation of three unity 
amplitude sinusoids of arbitrarily chosen frequency and 
phase (f1=3 cycles/21!. ¢1=0.1 radian; f2=7 cycles/2n. ¢2=1.0 
radian; f3=l0 cycles/2n. q>,=0.6 radian). Zero-mean pseudo 
random noise was added to the forward solution (FIG. 1(b)) 
to achieve SNRs (sNR?mnF 10 logwl?mamlozmdmg) 
of 10.0 and 20.0 dB (FIG. 1 (c) and (e)). The method was 
performed using the Hartley basis set (equation 3) extending 
from 0 to 10 cycles/21:. The inverse solutions show good 
recovery of the original input function. with inverse solution 
SNRs (SNR.,,.,,,,=10 log(o'z,mlozmvmd We» of 19.26 
dB (FIG. 1 (d)) for the 20 dB forward solution, and 10.33 dB 
for the 10 dB forward solution (FIG. 1 (f)). 

It should also be appreciated that using an assumption of 
zero-mean white noise. and a predetermined value of 

IOMMMCF. a plot of SNRPM vs. SNRIOMM (see FIG. 2) 
may be constructed for the system described for Hartley 
basis function bandwidths of 10 and 14 cycles/2n. For the 
0-10 cycles/21: Hartley basis set. the SNRPM, values of 
11.39 dB and 17.91 dB (for the 10 dB and 20 dB forward 
solutions respectively) correspond reasonably well with the 
experimental SNRinvme values of 10.33 dB and 19.26 dB. 
FIG. 2 illustrates that increasing the recovery bandwidth 
from 10 to 14 cycles/211: results in improved SNRPM when 
the SNRJbMM, is high. due to the improvement in represen 
tation of the inverse solution alforded by a more complete 
basis set. However. with lower SNR?Wad. the effects of 
increased noise recovery accompanying expansion of the 
basis set offsets this advantage and results in lowering the 
SNRPM of the inverse solution. This method of SNRim, 
estimation can be performed using training sets of large 
numbers of simulated signals and noise levels to determine 
the best selection of basis set for a given application. 

The forward solution Iv,‘ for two-dimensional separable 
spatially variant point spread function (SSV'PSF) systems 
may be obtained by successive application of column and 
row degradation operators to the original image 0”. Obtain 
ing the inverse solution for the SSVPSF system by the 
present method follows the general approach for matrix 
operators on separable systems. For each row p=l.2. . . . . IU. 

the blurring matrix across the columns. IBIP. is constructed. 
allowing calculation of the corresponding orthogonal sets 
cpmk and dpmk (6). Successive application of the present 
operational equation (10) to all of the rows yields the IUXIU 
intermediary matrix Jpk. which has been corrected for the 
blurring across columns. 
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M [U (14) I": "216ml: mil dpmlpx] 
p= 1,2,3....,1u. 

The present method process is then repeated on each 
column of the intermediary matrix I k to remove the blurring 
across rows. For each column. the appropriate blurring 
matrix Bk is used to determine the c and (1kmp orthogonal 
sets needed for the inverse solution. The resultant matrix opk 
is the desired two dimensional inverse solution. 

1:: 1,2,3, ...JU. 

Of course. the above equations (14) and (15) are 2-D 
restoration equations strictly for the “separable. spatially 
varying point spread function case. Jpk is the result of 
performing l-D DOBR on all the rows and OM is the result 
of performing l-D DOBR on all the columns of Jpk. 

It should. also. be appreciated that limitation of the basis 
set bandwidth is required for stability of the inverse solution 
in the presence of noise. Noise in the restored image may be 
due to added noise included in the recovery method. or may 
result from imperfections in the representation of the image 
by a limited basis set. The inverse solution for a noisy input 
is the sum of the output of the method applied separately to 
signal and noise components. For the two-dimensional sepa 
rable case. the noise power present in the inverse solution is 
the noise recovered by successive row and column 
operations. 

lNoiselim, = (16) 

where Cm. and Dmi are the Fourier transforms of cm and dm,c 
respectively. and Np,- is the frequency domain representation 
of the added noise in each row vector. The frequency domain 
index ireferences the discrete frequencies following an IU 
point FFT. If the frequency domain characteristics of added 
noise in the forward solution are known. the recovered noise 
power in the inverse solution may be estimated using 
equation (16). 

Noise in the inverse solution due to limited basis set 
representation may be signi?cant. particularly if the original 
image contains high contrast edges. The intrinsic restoration 
noise for a selected basis set may be estimated by perform 
ing the present method on a simulated noiseless forward 
solution. and determining the error (intrinsic noise) between 
the restored image and the original image. The total noise in 
the inverse solution is the sum of this intrinsic noise and the 
recovered added noise. The predicted SNR of the restored 
image is 

10m“!2 

lom?w + Wm“? 

Simulations can be conducted for a given imaging system 
using different basis set bandwidths at anticipated forward 
solution SNRs. The predicted values of the inverse solution 
SNRs may be used to select the basis set bandwidth which 

(17) 
SNRPM = 10 log 
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is likely to provide the best restoration. Large numbers of 
simulations with training sets of images and noise levels 
appropriate to the application can be used to determine the 
optimal basis set for a particular application. 
The following example is presented for purposes of 

further illustrating the present invention. but it is not to be 
considered as limited thereto. 

EXAMPLE 2 

A 128x 128 pixel four quadrant checkerboard pattern with 
quadrant check sizes of 4.5.6.and 7 pixels (see photographic 
FIG. 3) was chosen for illustration of the present method in 
restoring a SSVPSF system. The light squares were assigned 
a value of 1.0 and the dark squares 0.3. The multiple 
high-contrast discontinuities in this image were designed to 
be particularly challenging for a restoration method using a 
bandlimited basis set. The spatially varying gaussian trans 
fer function had exponentially-radially varying FWHM of 6 
pixels in the image center and FWHM of 3 pixels at the 
image corners. The PSF located at the center of the image 
space was assigned an amplitude so that the center PSF was 
lossless. PSF amplitude declined radially in exponential 
fashion so that the PSF amplitude in the comers was half of 
the center PSF amplitude. 
Based on the methods described above. the Hartley basis 

set utilized was restricted to +/— 18 cycles/2n to assure a 
stable restoration for an anticipated forward solution SNR of 
20 dB. Zero-mean pseudorandom noise was added to the 
forward solution to achieve a SNR of 20 dB (see photo 
graphic FIG. 4). The restored image (see photographic FIG. 
5) from this noisy forward solution showed good contrast 
recovery with resolution of all image elements. Due to the 
presence of method recovered noise the subjective quality is 
inferior to the noiseless restoration shown in photographic 
FIG. 6. which is subject only to intrinsic noise. but is a 
dramatic improvement from the degraded image shown in 
photographic FIG. 4. 
The alternative embodiment described extends directly to 

two or more dimensions provided that it is cast in “stacked 
lexicographic” format e.g. A 2>Q image is acted on by a 
degrading operator to yield a forward solution 2X2 image; 

1 2 A 

:9 
3 4 D 

in stacked lexicographic notation this may be cast as the one 
dimensional problem 

4 x 4 

operator 
l 
2 
3 
4 

This is a common approach in image processing to reduce 
multidimensional problems to l-D problems. 
As should be appreciated. the above described method for 

discrete orthogonal basis restoration (DOBR) is a time 
domain approach. In an alternative embodiment of the 
present invention. discrete orthogonal basis restoration is 
presented as a frequency domain approach for the estimation 
of the inverse solution vector for linear systems de?ned by 
the matrix operation 

Where [B] is an NxN non-singular transfer function matrix 
and [o] and [i] are length N column and row vectors. In this 
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12 
alternative embodiment. upper case letters denote frequency 
domain variables while lower case letters denote time 
domain variables. For vector sets with two subscripts. such 
as Cmk. the ?rst denotes the set position and the second the 
discrete time or frequency index. 
The normalized Hartley basis set is preferred for this 

alternative approach of discrete orthogonal basis restoration. 
The Fourier representation of a Hartley basis vector of 
frequency f,‘ cycles/2n is non zero only at the i- f“ discrete 
frequencies. All positive frequency Hartley basis vectors 
have identical complex amplitude 

WW 
2 ’ 2 

in their non-zero positive frequency bin. and the complex 
conjugate of this value in the negative frequency bin. 
Negative frequency Hartley basis vectors are the complex 
conjugates of the positive frequency spectrum. These rela 
tionships facilitate rapid computation and efficient storage of 
the basis set. The members of the frequency domain basis 
set. PM. are ordered such that the DC component is assigned 
index m=l. even values of the basis set index In correspond 
to positive Hartley frequency f=l2 and odd values of m 
correspond to the f=-(m—l)/2 Hartley frequency. For a 
selected DOBR bandlimit of 0-fm cycles/21!. there are 
M=(2-fmax)+l basis and vectors. so that the composite basis 
set spectrum is non-zero for m=1. . . . . (fm+l) and 

(N—M+1). . . . . N. The relative compactness of the frequency 
domain representation of the basis set is instrumental in the 
development of an e?icient frequency domain approach. 
The initial step in the time-domain approach is the appli 

cation of the adjoint (complex conjugate transpose) of the 
transfer function [B] to each member of the orthogonal basis 
set PM to yield the vector set bmk For the time varying case. 
the M frequency domain row vectors And‘ may be deter 
mined by [F]T*[P]m=[A]m. where the NXN matrix [F]T*= 
[DFI‘][B}T*[IDFT]. and [DFI‘] and [lDFI‘] are the discrete 
and inverse discrete Fourier transform matrices. Using the 
properties [F]=[[F]T*]T* and [DFI‘]=k[1DFI‘]T*. it follows 
that [F]—[DFI‘] [BllIDFI‘] . and noted that the spectrum of the 
forward solution is given by 

E n.0,, = 1;. (18) 

For non-singular [B] the vector set Am,c is linearly 
independent. but usually not orthogonal. Gram-Schmidt 
orthogonalization can be performed on the frequency 
domain vector set Amk to yield an orthogonal complex set 
Cmk. Regrouping the complex Gram-Schmidt coefficients 
ami 

1; C...“- (19> 
‘_ k=1 "‘ 

am" y CMC' 
k=1 ""‘ 

i= 1. . . . ,m - 1 

m = l, . . . ,M, 

into a set of constants ‘t de?ned by 

m: 1.0 (an) 

12!.’ Caro‘ k=1 "“ 
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-continued 

m = l 

1.0 "H (21) 
1“: N j‘za‘l any!” 

kg Guiana 

z = l, . ,m — l 

m = i, . ,M 

allows the orthonormal vector set Cm to be expressed as a 
superposition of prior Aik by 

c,..= E W. <22) 
1:]. 

A second complex vector set Dmk is obtained by applying the 
same operation to the orthogonal basis set Pm. 

D...= % my. (23) 
i=1 

The vector sets Cmk and Dm]c de?ne the characteristics of the 
system [B] for frequency domain DOBR. 

In the frequency domain. the completeness relationship 
[24] for orthonormal vectors may be written as: 

M N 
2 cm]; 2 Onion 
m=i n=1 

Transferring the complex conjugation to On. substituting 
(22) and using the relationship [F]T*[P]m=[A]m. yields 

1 (25) 
l 

which by the property of adjoint operators on inner product 
spaces [25] is equivalent to 

‘11:1 "'"N k=1 i=1 "" ‘*n=1 "‘ 

Reference to (18) and (23) yields the frequency domain 
DOBR operational equation 

1g 1 N * (25) 
O"_m=1 a"? 121D”, ' 

0k is the spectral estimate of the inverse solution. The time 
domain inverse solution 0k may be obtained by inverse FFI' 
of O . 

Thke steps where major computational diiferences exist 
between the time and frequency domain approaches involve 
summations that may be limited to regions of time or 
frequency domain support. In the frequency domain 
approach the range of summation is restricted to the M 
discrete frequencies where the composite basis set spectrum 
in non-zero. The frequency domain DOBR approach saves 
(N-M) multiplications and additions for each of the many 
inner products required by the approach. The reduction in 
the number of computations is at the expense of substituting 
complex for real operations. This is not particularly disad 
vantageous for additions. as current generation micropro 
cessors perform complex and real additions with an equiva 
lent number of clock cycles. Complex multiplications are 
more time consuming than real multiplications. but for 
practical DOBR applications the reduction in computations 
offsets the increased processor time. 
The initial step in the frequency domain approach is the 

determination of Am. When [B] is time varying. A", may be 
estimated by [DFI‘][B]T*[IDFT][P],,,. but this is less e?i 
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14 
cient than calculating the time domain [b],,,=[B]T*[p],,,. and 
subsequently performing an N point FFT on each vector 
[b],,,. Using this approach. an additional M(Nlog2N) com 
plex additions and M(N/2log2N) complex multiplications 
are required for the frequency domain approach. Determin 
ing Cm,‘ by Gram-Schmidt orthogonalization requires cal 
culation of NC=(M2—M)/2 coe?icients. for which the com 
putational advantage of the frequency domain approach is 
2NC(N—N) multiplications and additions. Performing the 
linear combinations of vectors weighted by these coef? 
cients yields computational savings of NC(N—M) multipli 
cations and (N-M) (M+NC—-1) additions for the ?equency 
domain approach. Normalization of the Cmkhas savings of 
M(N—M) multiplications compared to the time-domain 
approach. The sparsity of the vectors Pmk. which are non 
zero at only two discrete frequencies for m>l. and at one 
frequency (DC) for m=1. allow rapid frequency domain 
computation of the set Dmk. The computational advantage of 
the frequency domain approach is (M+NC)(N—2) additions 
and multiplications for the determination of Dmk. 

Practical situations usually involve applying the DOBR 
operational equation for a stationary system [B] to multiple 
forward solutions. The vector sets Cmk and Dmk. de?ne the 
DOBR inverse system for [B]. and may be computed. stored. 
and recalled for each implementation of the operational 
equation. Storage requirements are 2M2 complex numbers 
for the frequency domain approach and 2(MN) real numbers 
for the time-domain approach. so that a reduction in storage 
requirements is realized when M<Nl2. The total operational 
equation computational advantage for the frequency domain 
approach is 2M(N—M) multiplications and additions. which 
is reduced by Nlog2N additions and N/21og2N multiplica 
tions if the FFl" of ik to yield Ik is required. If the spectral 
estimate of the inverse solution is desired. the approach may 
be terminated at this point. Obtaining the time-domain 
solution by inverse FPT of 0,‘. requires an additional 
NlogzN complex additions N/2log2N complex 
multiplications. and N real multiplications. 
An additional advantage of the frequency domain 

approach is that it is more robust when there are significant 
perturbations in [B]. Errors in transfer function estimation 
are normally transmitted to the hm]t and ultimately have 
adverse eifects on the inverse solution [21]. In the frequency 
domain approach. the noise components in [B] transmitted 
to Am,c lying outside of the DOBR bandwidth are not 
included in the calculations of Cmk. and therefore are not 
propagated to the ?nal solution. The inverse solution 
obtained from the frequency domain approach may be 
expected to be of higher quality than would be obtained from 
the time domain approach. especially when large errors in 
the estimation of [B] are present. 

EXAMPLE 3 

Consider an application with a time duration signal of 
N=128 samples and a DOBR basis set bandwidth of 0-10 
cycles/Ztt. requiring M=21 Hartley basis vectors. For a 
previously de?ned stationary system. DOBR is performed 
by executing the operational equation (27) with stored 
values of C"lJk and Dmk. The time domain operational equa 
tion requires 5376 real multiplications and 5334 real addi 
tions. The frequency domain operational equation. including 
the FF!‘ of ik and lFFT of 0k. requires 1778 complex 
multiplications. 1736 complex additions. and 128 real 
multiplications. a reduction by a factor of 2.9 in the number 
of operational equation computations. 

Dynamic systems. and initial applications of the fre 
quency domain approach require computation of Cmk and 
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Dmk and achieve all of the computational savings described 
above. Despite the computational debt established by (M+2) 
N-point FFT’s. signi?cant computational savings are real 
ized by the frequency domain approach. For the example 
case of N=l28 and M=21. the net savings are 82542 
additions and 92825 multiplications. This reduces the num 
ber of operations performed after computation of the vector 
set bmk by a factor of 3.9 when compared to the time-domain 
approach. The computation of bmk common to both the time 
and frequency domain approach. is very computationally 
demanding. requiring MN2 multiplications and M(N2—N) 
additions. 

It should be clear that DOBR is a robust method of inverse 
solution for time-varying or time-invariant linear systems 
expressed as a square matrix operator. The frequency 
domain approach exploits the compactness of frequency 
domain support exhibited by the DOBR vector sets to reduce 
the range of most summations from the N points of the 
time-domain signal to the M complex values of the fre 
quency domain DOBR bandwidth. Frequency domain 
DOBR is used to greatest advantage when system station 
arity allows repeated implementations of the operational 
equation with predetermined vector sets Cmk and Dmk. but 
also offers improvements in computational e?iciency when 
the entire approach must be executed The frequency domain 
DOBR approach signi?cantly reduces the storage require 
ments and the number of arithmetic computations for 
DOBR. as well as lessening the deleterious effects of trans 
fer function perturbations of the inverse solution. 

Whether the original or alternative embodiment of dis 
crete orthogonal basis restoration is utilized. it has been 
found that the present method possesses advantages over 
other prior art methods when there is noise in the system 
transfer function [B]. More speci?cally. the present discrete 
orthogonal basis restoration method may be utilized to 
assess the elfects that observed noise in the transfer function 
and the forward solution have on the error in the inverse 
solution estimate. It is assumed that there is no transmission 
of noise by the system and that the observed noise in the 
forward solution and transfer function are mutually inde 
pendent. 

In the presence of perturbations. the linear system [B][o] 
=li}. becomes 

where [N] is additive transfer function noise. [i,.,] is 
additive forward solution noise. and [o'] is the estimated 
inverse solution for the pertln'bed system. 

For the system perturbed only by noise in the forward 
solution [B][o]=[i]+[iN]. the DOBR inverse solution is the 
supm'position of DOBR solutions for the signal and noise 
components. which in the frequency domain is 

0-1;! 1 NP , M 1N? * (29) 
k_m=1CMW r2110”! """'""*+ mz=l (‘"777 1021B”! N" 

where NP is the number of discrete frequencies used in 
frequency domain DOBR. 
The signal to noise ratio of the inverse solution in the 

presence of forward solution noise may be estimated by 

IO”? 
WI,‘ "hm- ? + WMF 

where lOwel2 is the true inverse solun'on power. lNinm-mic 
is intrinsic noise resulting from error in estimation of the 
inverse solution with a limited basis set. and IN” 2 is the 
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DOBR inverse solution of the forward solution noise com 
ponent (right hand term in (11)). 

Unlike forward solution noise. transfer function pertur 
bations change the characteristics of the vector sets cm and 
dmk. which de?ne the behavior of the DOBR operational 
equation. Application of the perturbed transfer function 
[B+N] to each member of the basis set pm. yields 

As was the case with forward solution noise. it is bene? 
cial to analyze the effects of transfer function noise in the 
frequency domain. For the time invariant (convolution) case 
the calculation of Am reduces to the point by point multi 
plication of the Fourier transform of the transfer function 
and Pm. When [B] is a time-varying system. the spectral 
estimation of Am is considerably more complex. In the 
noiseless case. the spectra Am may be represented by A,,,: 
[DFI‘][B]T*[H)FT][P],,, where [DPT] and [IDFI‘] are the 
NPXNP discrete Fourier transform and inverse discrete 
Fourier transform matrices. and [P],,, is the lXNP column 
vector frequency domain representation of the mth basis 
function [8]. In the presence of transfer function noise. A’,,, 
may be estimated by: 

The resultant noise in A'”l is therefore the superposition of 
Am and AM... 

The worst-case scenario will be considered in evaluating 
the propagation of noise in the frequency domain Gram 
Schmidt orthogonalizan'on process. Maximal noise trans 
mission occurs when each ANm is orthogonal to C _1 (FIG. 
7). and therefore has complete projection onto the vector 
C'm. The Gram-Schmidt coe?icients involving the inner 
products of AM,I and prior C," are zero by virtue of 
orthogonality. greatly simplifying the computational pro 
cess. Each C',,, is then formed from Am+ANm minus the 
projections of A"I on prior C',,,. 

C" “A” r31 "CAP 

Each C‘,,, is subsequently normalized. which preserves the 
relative noise contribution to C‘,,,. but depending on the 
ampli?cation properties of the transfer function [B]. the 
normalization may either increase or decrease the magnitude 
of noise transmitted to C‘,,,. For the worst case scenario the 
total transmitted noise to C," is 

|N¢|=AN|+ If --"i'”'— (38) 
m=2 "Cl-all’ 

The frequency domain Gram-Schmidt orthogonalization 
constants 

can be regrouped and normalized into the set of constants 
om. so that each C," is expressed as a linear combination of 
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A',- (39). The D'm is then calculated using the same set of 
constants on“. (40). 

The frequency domain operational equation in the presence 
of transfer function noise is 

M 41 
at: Z ( ) 

m=1 

The vector set D',,, is constructed to be compatible with the 
set C”, and does not contribute additional noise to the 
inverse solution. The worst case inverse solution SNR due to 
transfer function perturbations may be estimated by 

IOWP 
+ Wei: 

In practice. transfer function perturbations do not ful?ll 
the worst case orthogonality criteria. and the separation of 
signal and noise components in the Gram-Schmidt process 
becomes an unwieldy and impractical approach for SNRim, 
estimation. The practical consequences of perturbations are 
their impact on basis set selection. and the quality of inverse 
solution obtained. A satisfactory method for addressing both 
of these parameters is to perform simulation studies on a 
large training set with representative signals and noise at 
different DOBR basis set band widths to determine the 
optimal basis set for the given application. 

In order to still further explain the present invention, 
attached hereto as Appendixes A-C are source code listings 
for completing. respectively. time domain DOBR for shift 
invariant functions (deconvolution) (Appendix A); time 
domain DOBR for general time-varying transfer functions 
(Appendix B); and frequency domain DOBR (Appendix C). 

(42) 
SNRim = 10 log 
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In summary. the method of the present invention is 

equally applicable and extends to both one dimensional and 
two dimensional signal and image systems. The chief advan 
tage of the present method compared to other SSVPSF 
restoration techniques are that preprocessing. matrix 
inversion. multiple iterations. or assumptions of local PSF 
variance are not required. As a result, processing times and 
computer power required for processing are both substan 
tially reduced 
The primary limitation of the present method is that the 

basis function support of the inverse solution must be nearly 
congruent to the region of basis support of the transfer 
function to avoid an unstable inverse solution. Provided that 
a realistic simulation model exists. however. estimation of 
the restored image SNR may be made for a given forward 
solution SNR and chosen basis set. This allows a priori 
determination of the optimal basis set for a given application 
and provides an estimate of the anticipated quality of the 
restored image. 
The foregoing description of a preferred embodiment of 

the invention has been presented for purposes of illustration 
and description. It is not intended to be exhaustive or to limit 
the invention to the precise form disclosed. Obvious modi 
?cations or variations are possible in light of the above 
teachings. The embodiment was chosen and described to 
provide the best illustration of the principles of the invention 
and its practical application to thereby enable one of ordi 
nary skill in the art to utilize the invention in various 
embodiments and with various modifications as are suited to 
the particular use contemplated. All such modi?cations and 
variations are within the scope of the invention as deter 
mined by the appended clairns when interpreted in accor 
dance with the breadth to which they are fairly. legally and 
equitably entitled 
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APPENDIX A 

harpat . for 

. .performs discrete orthogonal basis restoration for invariant 

. .systems 

using Hartley basis set 
. . .cal1s:mat hart inprod 

: : : : : :variables: : z . . . . . . . : : : : : 

izz is the maximum number of basis functions 
in is the length of the fwd soln vector (ri) and inv. soln 
vector (h) 
the basis set is determined and placed in poly 
the basis set used for the inv soln is ordered transferred 
to rleg 
gau is the matrix formulation of the transfer function 
vector 9, 

and gt is it’ s transpose. Note that gau and gt are cast 
for 

row*square matrix=row vector fwd soln 
The gram-Schmidt coef are stored in matrix a 
The tau coef are in tau 
The vector sets b, c,d with m members correspond to the 
literature 

descriptions. f (m) are <d(m) , i> and are intermediate 
step 
the inverse soln is h 
npol is the number of basis vectors used 
the array cnorm holds the normalization factors for each 

member of the vector set c 

implicit integer(i-o) 
parameter<izz=65, iu=128,twopi=6 . 283185) 

common/cl/delt,rip 
common/cZ/rpl (iu) ,rp2 (iu) 
common/c4/poly(0:izz, iu) 
common/cS/iz 
common/c6/gau(iu) ,gt (iu, iu) 
common/c6a/g(iu, ( (2*iu) —1) ) 
common/cll/rphas 
real b(izz, iu) ,c (izz, iu) ,d(izz, iu) 
real a(izz, izz) , tau(izz, izz) 
real r1eg(0:izz, iu) 
real f (izz) .h(iu) ,cnonn(izz) 

real ri (iu) ,sumc (iu) 
integer ifini 
integer npol 

character*13 pre 
character*4 suf3,suf2 
character*10 filen, fileg, flh, taunm,obas 
character*30 taunmx,obasx 
character*30 filex, filegx, filein, fileh 
character*2 ntrial 
character*1 cxans, cyans 



C... 

812 

815 
820 

43 
433 
933 

964 

5,761,346 
21 22 

. . ..compute Hartley Basis Set 
iz=64 

write(6,*) '%%%%%°1calling hart%%%’s%% ' 
call hart 

normalization of basis 

do 820 m=0,iz 
do 512 kkk=l, iu 

rpl (kkk) =poly(m,kkk) 
rp2 (kkk) =poly(m, kkk) 

call inprod 
do 815 kkk=1,iu 

po1y(m,kkk) = (po1y(m, kkk) I / (sqrt (rip) ) 
continue 
continue 

‘read in the ideal image and the PSF 
write (6, *) ' input name for header file xxxxxx.xxx 
read(5,933)flh 
fi1eh=pre//flh 
open(25,file=fileh,status=’new') 

write (6, *) ' input filename of PSP xxxxxx.xxx ' 
read(5, 933) fileg 
filegx=pre//fileg 
igau=0 
open(20,file=filegx,status='o1d' ) 

read(20, *,end=433] gau (i) 
igau=igau+1 
continue 
close (20) 
format (alO) 
write (6 , *) ' input trial number for this input in ' 
read (5, 964)ntrial 

format (a2) 
write (6, *) ’ input filename of fwd soln xxxxxx.xxx ' 
read(5, 933) filen 

set the restoration bandwidth 
write (6, *) ’ high freq c/o ’ 
read(5, *) ifini 

npol= (2*ifini) +1 

c! ! ! i i 1 ! l l l 1 ! [build the selected orthogonal set! ! ! I. ! l ! ! 
c. . .always include the dc component 

24 
do 24 ii=1, iu 
rleg(1,ii) =poly(0, ii) 

I 



5,761,346 

iptr=0 
do 25 j=1,ifini 

iptr=iptr+2 
jind=(j*2)-1 

do 22 ii=l,iu 
rleg(iptr,ii)=poly(jind,ii) 

rleg(iptr+1,ii)=poly(jind+1,ii) 
22 continue 
25 continue 

write(6,*)'$$$$$$$ orthonomal setup done $$$$$$$' 
c@@@@@@@@@@@@@@@@@@@ 
Ciiiii:I212:ZI:11:31:1ZZZZlIIiZIZZiZZiiZIZiZ{IZIIZIZIZ 

c..compensate for extra loop trip and truncate to odd # 

figau=float(igau) 
fig2=figau/2. 
ifig2=igau/2 
fif=float(ifig2) 
if(fig2.eq.fif)then 

igau=igau-1 
endif 

c...ca1l mat to cast the convolution operator in matrix form 
c... note that this is in row vector format 

call mat(igau) 

c>>>>>>>>>calc b(k) using matrix 
approach>>>>>>>>>>>>>>>>>>>>>>>>>> 

write(6,*)’ . . . . ..ca1culating b(k) . . . . ..' 

c*****use transpose matrix 
iz=(2*ifini)+l 
do 10 k=l,iz 

do 9 ic=1,iu 
sum=0. 
do 8 ir=l,iu 

sum=sum+(rleg(k,ir)*gt(ir,ic)) 
8 continue 

b(k,ic)=sum 
9 continue 
10 continue 
C>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> 
c??????????calc C(k)S???????????????????????????????????? 

write(6,*)‘++++++calculating c(k)++++++' 
do 21 kkk=1,iu 

21 c(1,kkk)=b(1,kkk] 
do 23 m=1,iz 

23 a(m,m)=1. 
c . . . . ..calculate Gram-Schmidt coefficients 

do 50 m=2,iz 
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