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[571 ABSTRACT

A method is described for utilizing discrete orthogonal basis
to restore signal system, such as radio or sound waves and/or
image system such as photographs or medical images that
become distorted while being acquired, transmitted and/or
received. The signal or image systems are of the linear type
and may be represented by the equation [B] [o]=l[i] wherein
[o] is an original signal or image, [i] is a degraded signal or
image and [B] is a system transfer function matrix. The
method involves estimating a signal-to-noise ratio for a
restored signal or image. Next, is the selecting of a set of
orthogonal basis set functions to provide a stable inverse
solution based upon the estimated signal-to-noise ratio. This
is followed by removing time and/or spatially varying
distortions in the restored system and obtaining an appro-
priate inverse solution vector.

17 Claims, 7 Drawing Sheets
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METHOD OF DISCRETE ORTHOGONAL
BASIS RESTORATION

This is a continuation-in-part of U.S. patent application
Ser. No. 08/337.592. filed on Nov. 10. 1994, entitled
“Method of Discrete Orthogonal Basis Restoration”. now
abandoned.

TECHNICAL FIELD

The present invention relates generally to the field of
signal and image restoration and, more particularly to a
method of restoring a signal and/or image degraded by time
and/or spatially varying transfer functions.

BACKGROUND OF THE INVENTION

It is commonplace for signals, such as radio or sound
waves and images such as photographs or medical images to
become distorted while being acquired, transmitted and/or
received. This phenomenon occurs in various types of radar,
sonar, optic, imaging and electronic systems.

As an example, blurring of a photographic image may
result from camera andfor object motion at the time of
acquisition or may even be produced by the nature of the
photographic equipment (e.g. “fish-eye” lens). In medical
imaging, the type of equipment used and the way the images
are acquired can have remarkable effects on the level of
distortion or blurring present in the final images that are
interpreted by physicians.

It should further be appreciated that the characteristics of
the distorting process may change with time during the
acquisition of a signal or may vary with location over
different areas of an image. These time and/or spatially
varying distortions in a signal and/or image must be
removed to restore a signal and/or image to its undistorted
form and enhance clarity.

In practical application there are imperfections in the
signal or image acquisition process that make it impossible
for any method to perfectly recover the original signal or
image. Special mathematical techniques may, however, be
utilized to closely estimate what the signal or image was
before it was degraded. The time and/or spatially-varying
nature of some systems makes it particularly difficult to
perform a fully accurate restoration. Still, when properly
applied such techniques may be utilized to substantially
improve the quality of a signal or image so that it more
closely approximates the true or undistorted original signal
or image.

In order to further understand this process it must be
appreciated that signals or images degraded by a linear
system may be cast in the operator notation [B] [o]=[i];
where [o] is the original signal or image, [i] is the degraded
signal or image, and [B] is the system transfer function
matrix. Signal or image restoration is the determination of an
approximation [o'] to the original signal [o]. given a priori
knowledge of the transfer function matrix [B] and the
forward solution [i].

The most straightforward means of determining the
inverse solution is by application of the transfer function
matrix inverse to the forward solution, that is, [B]™* {i]=[0'].
However, determining [o'] by this approach frequently rep-
resents an ill-posed problem as the inverse of the transfer
function may not exist (singular matrix) or {BJ~' may be
near-singular. In either case, the inverse solution cannot be
determined. Further, even if [B] is invertible, [B]™! will
frequently be ill-conditioned. meaning that small perturba-
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2

tions in [i] will lead to large perturbations in [o'] when the
inverse solution is computed. This leads to unacceptable
results. This is because all practical systems have inherent
uncertainty in the measurement of [i], as well as added noise,
and accordingly, adequate estimation of the inverse solution
[0'] is not possible through application of an ill-conditioned
transfer function inverse.

To date, many methods have been developed to solve
inverse problems arising in image processing. optics,
geophysics, astronomy, spectroscopy. and other engineering
and scientific disciplines. The existence of multiple solu-
tions is primarily due to the fact that no single prior art
method provides the best estimate of inverse solution in all
practical applications. In fact, most prior art methods have
only very specific, limited applications within specialized
technical fields.

As [B] [o]=[i] constitutes a linear system, solution by
linear methods is an intuitively attractive approach.
However, while the solution may be attempted by linear
transform methods. such as Fourier transforms, the ill-
conditioned nature is not circumvented by these techniques.
Furthermore transform techniques are not directly appli-
cable when the transfer function is shift-variant.

Application of transform methods to shift-variant systems
have been limited to those cases where the signal or image
can be sectioned into regions over which the system may be
considered to be stationary. The inverse solutions for these
regions are computed by transform techniques. and then
spliced back together to form the overall solution. Similar
sectioning into assumed stationary regions with inversion by
the maximum a posteriori method has also been proposed.
This sectioning and reassembly approach (“mosaicing”) is,
however, highly dependant on the validity of the stationary
assumption, the method of reassembly, and on sampling of
the forward solution and these considerations all adversely
effect restoration results.

Various non-transform methods of linear inverse solution
have also been developed. These include Weiner filtering,
constrained Weiner filtering, maximum entropy, and pseudo-
inversion techniques. These methods are usually applicable
to the shift-variant case and they address the ill-conditioned
nature of the problem. One drawback of such methods is,
however, that they tend to not perform well in the presence
of low signal-to-noise ratio (SNR) or on systems with
moderate to severely degrading transfer functions. Thus they
fail when they are most needed. These linear methods also
do not provide super-resolution capability, and the linear
iterative methods (e.g. pseudo-inversion, van Clittert's
method, maximum entropy) do not have well defined ter-
mination points and can have very high memory and com-
putational demands if a large number of iterations are
performed. Thus, hardware requirements and processing
times are disadvantageously increased.

The shortcomings of existing linear techmiques has
spawned great interest in non-linear approaches. The non-
linear approaches are based on various regularization tech-
niques that incorporate a priori knowledge of various param-
eters to yield an inverse solution that stabilizes and
constrains the inverse solution. The parameter variables
(hyperparameters) may include constraints on the form of
the solution (such as non-negativity) goodness of fit
parameters, statistical parameters, and assumptions of the
character of added noise. Non-linear methods are usually
applicable to shift-variant systems and may have super-
resolution properties. The performance of these approaches
is highly dependent on proper choice of the hyperparameters
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needed for the particular method. Furthermore, these
approaches are usually iterative with poorly defined criteria
for termination. For systems with well defined hyperparam-
eters and termination criteria. and when the computational
burden is not an obstacle, these are usually the preferred
method of inverse solution. However, when the a priori
knowledge of the system is inadequate, or when optimal
termination of the iterative process is problematic, a linear
method of solution is likely to produce better restoration
results.

Another linear method of interest provides deconvolution
for stationary systems based on the properties of the system
adjoint operator. Referred to as deconvolution by the method
of orthogonal polynomials (Stritzke IEEE Trans Med Imag-
ing vol. 9, 1990, pp. 11-23), the crux of this method is the
inner-product property of adjoint operator on vectors. The
method requires a discrete orthogonal basis set. The original
author, however, failed to define the origins of instability or
the criteria for insuring a stable solution. Accordingly, the
scope of practical applications of this approach is very
limited.

From the above it should be appreciated that a need exists
for a more versatile and effective method of signal and
image restoration suited for a wide range of applications in
various fields.

SUMMARY OF THE INVENTION

Accordingly. it is a primary object of the present invention
to provide an efficient and dependable method for signal
and/or image restoration adapted for a number of specific
applications crossing a broad number of technical fields.

Ancther object of the invention is to provide an improved
method for quickly restoring a signal and/or image system
degraded by time and/or spatially varying transfer functions.
Such a system reduces processing time without comprising
the quality of the final or restored image.

Yet another object of the invention is to provide a discrete
orthogonal basis method for quickly restoring a signal or
image to an undistorted form. Advantageously, the method
utilizes a mathematical processing technique requiring rela-
tively small computer memory capacity such as found in a
personal computer, so as to allow ready application by
individuals in many. differing fields utilizing readily avail-
able computer hardware. Further. the method also provides
uncompromising speed of operation and very effective
results.

A still further object of this invention is to provide a
discrete orthogonal basis restoration method particularly
suited to reconstruct and restore nuclear medicine SPECT
images.

Additional objects, advantages and other novel features of
the invention will be set forth in part in the description that
follows and in part will become apparent to those skilled in
the art upon examination of the following or may be learned
with the practice of the invention. The objects and advan-
tages of the invention may be realized and obtained by
means of the instrumentalities and combinations particularly
pointed out in the appended claims.

To achieve the foregoing and other objects, and in accor-
dance with the purposes of the presemt invention as
described herein, an improved method is provided wherein
discrete orthogonal basis is utilized to restore a signal and/or
image system that is degraded by time and/or spatially
varying transfer functions. Advantageously, the present
method represents a relatively simple inverse solution that
quickly and efficiently restores the system to an undistorted
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4

form. Accordingly, a clearer and more focused signal or
image system results.

The method includes the step of estimating a SNR for a
restored system. Additionally, there is the step of selecting of
a set of orthogonal basis set functions p,,, to provide a stable
inverse solution based upon the estimated forward solution
SNR.

More specifically, the estimated SNR of the restored
system is provided by applying a given forward solution
SNR and selected set of orthogonal basis set functions p,,.
to a realistic simulation model of the system. The set of
orthogonal basis set functions p,,, may be any orthogonal
basis that spans the forward and inverse solution vector
spaces. Such basis set functions include but are not limited
to a group consisting of Hartley, Walsh, Haar. Legendre,
Jacobi, Chebyshev, Gegenbauer, Hermite and Laguerre
functions.

Next is the step of removing the time and/or spatially
varying distortions in the restored system by obtaining an
inverse solution vector o, for a one dimensional restoration
wherein:

=Z Y duid;
[+ L+
(3 MI nlklhl

wherein:
18] =1B1"*[7]...

where [B]7* is the transpose-complex conjugate of the
matrix B and p,, is an M member orthogonal basis set and
a are the standard Gram-Schmidt orthogonalization coeffi-
cients;

10 m-1 -
L awGimziri=1,....m-1

T = — )
\| %CMCM =

m
o= L Toubixs
i=1

m
d,,.g= ‘21 ToiPik. M= 1,2,3 oM
=

Alternatively, the inverse solution vector O, for a two
dimensional system with separable spatially variant PSF the
inverse solution may be obtained by successive row-column
operations:

¥ oo ¥ do
o“_nFICKWFI g P
x=123,...,I0

wherein:

M w
e | &y e
p=123,...00

More specifically describing the invention. the estimating
of the signal-to-noise ratic SNR,,., is provided by the
formula
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SNRpred = 10 log
1OnoiselZy + WOintrimsic

wherein 10,,1° is the signal power in the original
(undegraded) signal or image, 10, ../ the inverse solu-
tion noise power due to the approximate nature of the
inverse solution and 10,,;,/° is the noise power in the
inverse solution power due to added noise in the forward
solution.

Advantageously, the present method functions to define
the origins of instability and behavior in the presence of
noise. By applying the method to time-varying systems and
using a technique for a priori determination of the SNR
inverse solution, it is possible to insure stability and optimal
selection of the basis set. Further, the method of inverse
solution and SNR estimation may be successfully extended
to the restoration of two-dimensional images degraded by
spatially variant point spread functions.

The discovery of the origins of instability along with the
development of an approach for selection of the optimal
basis set to maximize inverse solution SNR, makes the
present method a viable linear approach to inverse solution.
Advantageously, the method is applicable to both stationary
and shift-variant systems, is non-iterative, and is computa-
tionally efficient. Thus, the speed of processing and the size
of the computer necessary to complete that processing are
both reduced. Further. it should be appreciated that the only
a priori information required to estimate the SNR of the
inverse solution is an estimate of the forward solution noise
characteristics and estimate of the inverse solution noise due
to a limited basis set. Of course, in some cases the type of
instrumentation or acquisition parameters may guide the
optimal basis set selection (e.g. Nuclear Medicine SPECT
imaging with reconstruction from projections).

As the present method is advantageously applicable to
both stationary and shift-variant linear systems in one or
more dimensions, potential applications for the present
method include medical imaging (e.g. emission
tomographic. MRI, ultrasound), image processing (lens
deblurring, motion artifacts). optics and spectroscopy (light
and NMR). geophysics, radar/sonar, and general electronics
and electrical engineering problems. Thus, the method is
extremely versatile, having application in broad ranging
technical fields.

Still other objects of the present invention will become
apparent to those skilled in this art from the following
description wherein there is shown and described a preferred
embodiment of this invention, simply by way of illustration
of one of the modes best suited to carry out the invention. As
it will be realized. the invention is capable of other different
embodiments and its several details are capable of modifi-
cation in various, obvious aspects all without departing from
the invention. Accordingly, the drawings and descriptions
will be regarded as illustrative in nature and not as restric-
tive.

BRIEF DESCRIPTION OF THE DRAWING

The accompanying drawing incorporated in and forming
a part of the specification, illustrates several aspects of the
present invention and together with the description serves to
explain the principles of the invention. In the drawing:

FIG. 1 graphically shows the original signal (a) is the sum
of three unity amplitude sinusoids (f,=3 cycles/2n, ¢,=0.1
radian; £,=7 cycles/2m. ¢,=1.0 radian; f;=10 cycles/2m.
¢,=0.6 radian). The forward solution (b) results when the
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time-varying decaying exponential system described by
transfer function h,,, acts on the original signal (see equation
in Example 1, page 20). Pseudorandom zero-mean noise is
added to produce forward solutions with SNR of 20 dB (c).
and 10 dB (e). The inverse solutions obtained by the method
using a Hartley basis set from 0-10 cycles/2ithad SNR,,,....,.
of 19.26 dB ((d), solid line) for the 20 dB forward solution,
and SNR,,,.,..~10.33 dB ((f). solid line) for the 10 dB
forward solution. The broken line in (d) and (f) is the
original signal.

FIG. 2 is a plot of SNR, g VS. SNR,,,.; (equation (13))
for the system. The solid line represents the predicted
relationship between forward and inverse solution SNR for
the method using a Hartley basis set over 0-10 cycles/2m.
The broken line is for a Hartley basis set extending over
0-14 cycles/2n. The 0-14 cycles/2n basis set provides
higher SNR of the inverse solution for high SNR,,,,, ., due
to superior basis representation of the original signal. With
lower SNR forward. the broader basis set has greater noise
recovery than the more restricted basis set, causing inferior
SNR,,., for the inverse solution.

FIG. 3 is a photograph of an original image of a four
quadrant checkerboard with square sizes of four, five, six
and seven pixels;

FIG. 4 is a photograph of the forward solution showing
severe distortion following degradation by a system with
gaussian separable spatially variant point spread function
(SSVPSF) that varied radially in width (center FWHM=6
pixels, corner FWHM=3 pixels) and amplitude (center=
0.151, corner=0.075). and addition of noise to achieve
SNR=20 dB;

FIG. 5 photographically shows the restored image fol-
lowing application of the present method to achieve reso-
lution of all image elements with good contrast recovery;

FIG. 6 photographically demonstrates the added noise in
the restored image when the original image is processed in
accordance with the present method from a noiseless for-
ward solution; and

FIG. 7 is a two dimensional representation of the Gram-
Schmidt orthogonalization process in the presence of noise.

FIG. 8 is a flowchart showing the methodology of the
present invention.

Reference will now be made in detail to the present
preferred embodiment of the invention, an example of which
is illustrated in the accompanying drawing.

DETAILED DESCRIPTION OF THE
INVENTION

The method of the present invention for using discrete
orthogonal basis to restore a signal and/or image system
created by time and/or spatially varying transfer functions
will now be described in detail. The method may be applied
to restore a signal or image system in a wide variety of
technical fields. Stability of the inverse solution may be
achieved if the characteristics of the noise in the forward
solution may be estimated. For time-varying linear systems
having a region of basis function support approximately
congruent to the support region of the transfer function, and
for which there is sufficient a priori knowledge of the
system, the present method provides an efficient and noise
tolerant approach to achieve inverse solution.

As previously described. the method of the present inven-
tion may be utilized to obtain an inverse solution vector for
either one or two dimensional restorations. For purposes of
presentation, m=1,2.3, ..., M is the index for the vector sets
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with M members. The row and column vectors are desig-
nated by lowercase letters. and square matrices by uppercase
letters. The system matrix transfer function is denoted by B.

Given the linear operation

(8] lel=li} ®

the purpose of this invention is to recover the length TU
vector [o]. given the forward solution vector [i] and a priori
knowledge of the forward operator [B]. The TUXIU matrix B
is constructed using the time (or spatially) varying system
transfer function h,, so that the forward solution i, is defined
by

i) @
ix= I Iugon
n=1

k=123,...JU

Recovery of the inverse solution requires two orthogonal
function sets related to the adjoint PSF operator. The con-
struction of these function sets (equations (4—6b)) requires a
set of M orthogonal basis set functions p,,. of length IU.
The Hartley basis set, defined by

pus=sin 2HE Lk o M1 3
,,(mm:sin(_M”;lL),,cos(_ﬂﬂ;T-lL)
k=123,...J0

m=135,... M-1

is the preferred basis for real-valued systems and will be
utilized to illustrate the present method. It should be
appreciated, however, that any orthogonal basis that spans
the forward and inverse solution vector spaces may be
utilized. These include for example, Hartley, Walsh, Haar,
Legendre, Jacobi, Chebyshev, Gegenbauer, Hermite and
Laguerre functions.

As can be appreciated in viewing FIG. 8. the method
begins with the application of the adjoint of the forward
operator to each member of the basis set

[BL=(B1"*(pl., @
where [B]7* is the transpose-complex conjugate of the
matrix B.

The Gram-Schmidt orthogonalization procedure followed
by normalization may be used to construct an orthonormal
function set c,,,, from b,,,,. Defining a set of constants 1, (5),
where the constants a are the Gram-Schmidt orthogonaliza-
tion constants, c,,, may be written as a linear combination of
b, (6a). A second orthogonal function set d,,, can then be
constructed as a linear combination of the basis set functions

P Using the same set of constants 1,,; (6b).
Omi (5a)
Ti=——— m=1
\I %lecmt
1 5b
z,.-=——‘-9——’f'£l amftim i i=1,. . m—1 #®)
\] Zomem T
k
Cok = '£ ‘[,,.'ba (63)
=1
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-continued
= i'i’l Tapam=123. ..M (6b)
Recovery of the inverse solution begins with the unit opera-
tor for orthonormal functions (7). Reference to (6a) and (4)
yields equation (O). The property of adjoint operators on
finite-dimension inner product space allows transition to (9)
and equation (1) leads to (10). Equation (10) is the opera-
tional equation for the inverse solution vector for a one
dimensional restoration utilizing the present method.

or=ZL c,,.g[Zc,,,p,.] ™
m n

@®

(1) )]

og:Ec,.g[Z{ It| Z

m n i k

ak'—'Eth[z{ Z.‘tnw(z(ﬂhﬂn) }]
m k i n

©

. (10)
0k=2 C,,g[):d,,,klg]
m k
Of course, this inverse solution o,, like all method of
ill-posed problem solution, is an approximation of the true
solution. In the noiseless case, the quality of the inverse
solution depends primarily on the equality of the represen-
tation of the true signal afforded by the chosen finite set of
basis functions p,,, where m=1.2.3 . . . M is the index for the
chosen orthogonal basis set with M members of length k
=1,2.3 ... IU. The recovered vector o, may be expressed as
a sum of the inverse solutions from the noiseless forward
solution and from added noise components (see equation
11).

11
szxcm&[ZJmkIfonmvi,‘]“'z cu[Zdem,] an
m k m k

In the Fourier domain, the noise component term in (11) may
be expressed by

3(Omise)= Z Coi [ UN - % Dol ] a2

i=123,... N

which allows an approximation of the inverse solution noise
power to be made if the characteristics of the additive noise
are known. The predicted SNR of the inverse solution may
be estimated by

10 e

|0,.“',,|‘;m + |Om,*.,-p

(13)
SNRpeq = 10 fog

where 10,,,.? is the signal power in the original
(undegraded) signal or image, 10, il is the inverse
solution noise power due to the approximate nature of the
inverse solution, and 10,1 is the noise power in the
inverse solution power due to added noise in the forward
solution.

For a given system. an a priori estimate of the inverse
solution SNR can be made for various values of SNR,,.,,4
using equations (12) and (13). Noise power in the inverse
solution due to added noise may be estimated by assigning
values to

I*md-n‘
(12) based on assumptions of the character and magnitude of
added noise. Simulation studies with well modeled noiseless
signals allow estimation of intrinsic noise. |0,y in the
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inverse solution. With an estimate of the original signal
power, the SNR,,,,, for the inverse solution may be com-
puted using equation (13).

The following example is presented for purposes of
further illustrating the present invention, but it is not to be
considered as limited thereto.

EXAMPLE 1

An exponentially decaying transfer function with linearly
time-varying amplitude and time constant was chosen for
purposes of demonstration. The behavior of the time-
varying transfer function h,, is defined by

b
) P
0.5-n )e pre
N

hh=(0.5+T 60

The input function (Fig 1(a)) is a summation of three unity
amplitude sinusoids of arbitrarily chosen frequency and
phase (f,=3 cycles/2n. $,=0.1 radian; f,=7 cycles/2x. ¢,=1.0
radian; £,=10 cycles/2n. ¢,=0.6 radian). Zero-mean pseudo-
random noise was added to the forward solution (FIG. 1(b))
to achieve SNRS (SNRy, 5= 10108(0% 1,2 O e noise))
of 10.0 and 20.0 dB (FIG. 1 (c) and (¢)). The method was
performed using the Hartley basis set (equation 3) extending
from 0 to 10 cycles/2n. The inverse solutions show good
recovery of the original input function, with inverse solution
SNRS (SNR,,,0rse=10 10807 0. /07 mvovered noise)) Of 19.26
dB (FIG. 1 (d)) for the 20 dB forward solution, and 10.33 dB
for the 10 dB forward solution (FIG. 1 (f)).

It should also be appreciated that using an assumption of
zero-mean white noise, and a predetermined value of
10;nsrinsicl’+ @ plot of SNR .y V5. SNRg g (s6€ FIG. 2)
may be constructed for the system described for Hartley
basis function bandwidths of 10 and 14 cycles/2n. For the
0-10 cycles/2n Hartley basis set, the SNR,,., values of
11.39 dB and 17.91 dB (for the 10 dB and 20 dB forward
solutions respectively) correspond reasonably well with the
experimental SNR,,,, ... values of 10.33 dB and 19.26 dB.
FIG. 2 illustrates that increasing the recovery bandwidth
from 10 to 14 cycles/2n results in improved SNR,,,., when
the SNRg, .57 is high. due to the improvement in represen-
tation of the inverse solution afforded by a more complete
basis set. However, with lower SNRy,,.,,..,. the effects of
increased noise recovery accompanying expansion of the
basis set offsets this advantage and results in lowering the
SNR,,,.; of the inverse solution. This method of SNR,,,
estimation can be performed using training sets of large
numbers of simulated signals and noise levels to determine
the best selection of basis set for a given application.

The forward solution I,, for two-dimensional separable
spatially variant point spread function (SSVPSF) systems
may be obtained by successive application of column and
row degradation operators to the original image O,,;. Obtain-
ing the inverse solution for the SSVPSF system by the
present method follows the general approach for matrix
operators on separable systems. For eachrow p=1.2,... .1U,
the blurring matrix across the columns, [B],,, is constructed,
allowing calculation of the corresponding orthogonal sets
Comi and o, (6). Successive application of the present
operational equation (10) to all of the rows yields the TUXIU
intermediary matrix I,.. which has been corrected for the
blurring across columns,
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M w (14)
Tpe= L1 o [ 1 T ""]

p=123,... dU

The present method process is then repeated on each
column of the intermediary matrix J , to remove the blurring
across rows. For each colurnn, tﬁe appropriate blurring
matrix B, is used to determine the c,,,, and d,,,, orthogonal
sets needed for the inverse solution. The resultant matrix o,
is the desired two dimensional inverse solution,

114
z

M g (15)
o= g S p=1 Sl

x=123,...JU.

Of course. the above equations (14) and (15) are 2-D
restoration equations strictly for the “separable. spatially
varying point spread function case. J, is the result of
performing 1-D DOBR on all the rows and o,,, is the result
of performing 1-D DOBR on all the columns of J,.

It should, also, be appreciated that limitation of the basis
set bandwidth is required for stability of the inverse solution
in the presence of noise. Noise in the restored image may be
due to added noise included in the recovery method, or may
result from imperfections in the representation of the image
by a limited basis set. The inverse solution for a noisy input
is the sum of the output of the method applied separately to
signal and noise components. For the two-dimensional sepa-
rable case, the noise power present in the inverse solution is
the noise recovered by successive row and column
operations,

Noisel,,, = (16)

}ﬁl%(w-g%-{ :z:llc,,w[wu.%D,mN*,;] } I
P=04142, ... HM - 1V2

p=123,...0U

X=123,...0U,

where C,,,; and D,; are the Fourier transforms of ¢, and d,,,,
respectively, and N, is the frequency domain representation
of the added noise in each row vector. The frequency domain
index i references the discrete frequencies following an TU
point FFT. If the frequency domain characteristics of added
noise in the forward solution are known, the recovered noise
power in the inverse solution may be estimated using
equation (16).

Noise in the inverse solution due to limited basis set
representation may be significant, particularly if the original
image contains high contrast edges. The intrinsic restoration
noise for a selected basis set may be estimated by perform-
ing the present method on a simulated noiseless forward
solution, and determining the error (intrinsic noise) between
the restored image and the original image. The total noise in
the inverse solution is the sum of this intrinsic noise and the
recovered added noise. The predicted SNR of the restored
image is

1O rue?
1Onoisely + 1OintringicP
Simulations can be conducted for a given imaging system
using different basis set bandwidths at anticipated forward

solution SNRs. The predicted values of the inverse solution
SNRs may be used to select the basis set bandwidth which

a7

SNRprea = 10 Iog
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is likely to provide the best restoration. Large numbers of
simulations with training sets of images and noise levels
appropriate to the application can be used to determine the
optimal basis set for a particular application.

The following example is presented for purposes of
further illustrating the present invention. but it is not to be
considered as limited thereto.

EXAMPLE 2

A 128x128 pixel four quadrant checkerboard pattern with
quadrant check sizes of 4.5.6,and 7 pixels (see photographic
FIG. 3) was chosen for illustration of the present method in
restoring a SSVPSF system. The light squares were assigned
a value of 1.0 and the dark squares 0.3. The multiple
high-contrast discontinuities in this image were designed to
be particularly challenging for a restoration method using a
bandlimited basis set. The spatially varying gaussian trans-
fer function had exponentially-radially varying FWHM of 6
pixels in the image center and FWHM of 3 pixels at the
image corners. The PSF located at the center of the image
space was assigned an amplitude so that the center PSF was
lossless. PSF amplitude declined radially in exponential
fashion so that the PSF amplitude in the corners was half of
the center PSF amplitude.

Based on the methods described above, the Hartley basis
set utilized was restricted to +/— 18 cycles/2n to assure a
stable restoration for an anticipated forward solution SNR of
20 dB. Zero-mean pseudorandom noise was added to the
forward solution to achieve a SNR of 20 dB (see photo-
graphic FIG. 4). The restored image (see photographic FIG.
5) from this noisy forward solution showed good contrast
recovery with resolution of all image elements. Due to the
presence of method recovered noise the subjective quality is
inferior to the noiseless restoration shown in photographic
FIG. 6, which is subject only to intrinsic noise, but is a
dramatic improvement from the degraded image shown in
photographic FIG. 4.

The alternative embodiment described extends directly to
two or more dimensions provided that it is cast in *“stacked
lexicographic” format e.g. A 2x2 image is acted on by a

degrading operator to yield a forward solution 2x2 image;
1|2 A
=
3|4 D

in stacked lexicographic notation this may be cast as the one
dimensional problem

W
TAaw»

This is a common approach in image processing to reduce
multidimensional problems to 1-D problems.

As should be appreciated, the above described method for
discrete orthogonal basis restoration (DOBR) is a time-
domain approach. In an alternative embodiment of the
present invention, discrete orthogonal basis restoration is
presented as a frequency domain approach for the estimation
of the inverse solution vector for lincar systems defined by
the matrix operation

(B} [o}=li]

where [B] is an NxN non-singular transfer function matrix
and [o] and [i] are length N column and row vectors. In this
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alternative embodiment, upper case letters denote frequency
domain variables while lower case letters denote time-
domain variables. For vector sets with two subscripts, such
as C,,. the first denotes the set position and the second the
discrete time or frequency index.

The normalized Hartley basis set is preferred for this
alternative approach of discrete orthogonal basis restoration.
The Fourier representation of a Hartley basis vector of
frequency f, cycles/2rt is non zero only at the * f, discrete
frequencies. All positive frequency Hartley basis vectors
have identical complex amplitude

Nv _Nw

2 2

in their non-zero positive frequency bin, and the complex
conjugate of this value in the negative frequency bin.
Negative frequency Hartley basis vectors are the complex
conjugates of the positive frequency spectrum. These rela-
tionships facilitate rapid computation and efficient storage of
the basis set. The members of the frequency domain basis
set, P, are ordered such that the DC component is assigned
index m=1, even values of the basis set index m correspond
to positive Hartley frequency f=/2 and odd values of m
comrespond to the f=-(m-1)/2 Hartley frequency. For a
selected DOBR bandlimit of 0-f,,,, cycles/2n., there are
M=(2.fmax)+1 basis and vectors, so that the composite basis
set specttum is non-zero for m=1, . . . , (f,,.+1) and
(N-M+1),....N. Therelative compactness of the frequency
domain representation of the basis set is instrumental in the
development of an efficient frequency domain approach.
The initial step in the time-domain approach is the appli-
cation of the adjoint (complex conjugate transpose) of the
transfer function [B] to each member of the orthogonal basis
set P, to yield the vector set b, For the time varying case,
the M frequency domain row vectors A, may be deter-
mined by [F]™*[P]_=[A],,. where the NxN matrix [F]™*=
[DFT1[B1™*[IDFT]. and [DFT] and [IDFT] are the discrete
and inverse discrete Fourier transform matrices. Using the
properties [F]=[[F]7*]”* and [DFT}=k[IDFT]%*, it follows
that [F]-[DFT][B}[IDFT], and noted that the spectrum of the
forward solution is given by
I FiuOp =1 (18)
For non-singular [B] the vector set A, is linearly
independent, but usually not orthogonal. Gram-Schmidt
orthogonalization can be performed on the frequency
domain vector set A, to yield an orthogonal complex set

C,.. Regrouping the complex Gram-Schmidt coefficients
Ay
¥ o @
= Nl
- g CrC*
=Rt
i=1,...,m—-1
m=1,... .M,

into a set of constants T defined by

1.0 (20)

Tmi =

C,
2 ek C*
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m=1i
1.0 @n

Twi=—g———— I amTGi

T CuCros !

k=1
i=1...m—-1
m=1,... M

allows the orthonormal vector set C,, to be expressed as a
superposition of prior A;, by

m
Cok = ,21 Tmidit @2
i=

A second complex vector set D, is obtained by applying the
same operation to the orthogonal basis set P,

m
D= I tniPa 23
=1

The vector sets C,,, and D, define the characteristics of the
system [B] for frequency domain DOBR.

In the frequency domain, the completeness relationship
[24] for orthonormal vectors may be written as:

24
Oy = _IIV'

M N

Z Cumk T CloOn.
m=1 n=1
Transferring the complex conjugation to O,. substituting
(22) and using the relationship [F]™*[P],=[Al,,. yields

1 (25)

=¥ cul ¥ 7. ¥ o
4= O g £y E RO

which by the property of adjoint operators on inner product

spaces [25] is equivalent to

(26)

o-¥cut ¥ ¥
k_mzl N i

N
TP T FinO%.
&1 &y mFa T, PO

Reference to (18) and (23) yields the frequency domain
DOBR operational equation

y 1 N . (25)
T
O, is the spectral estimate of the inverse solution. The time
domain inverse solution O, may be obtained by inverse FFT
of O.

Thke steps where major computational differences exist
between the time and frequency domain approaches involve
summations that may be limited to regions of time or
frequency domain support. In the frequency domain
approach the range of summation is restricted to the M
discrete frequencies where the composite basis set spectrum
in non-zero. The frequency domain DOBR approach saves
(N—-M) multiplications and additions for each of the many
inner products required by the approach. The reduction in
the number of computations is at the expense of substituting
complex for real operations. This is not particularly disad-
vantageous for additions, as current generation micropro-
cessors perform complex and real additions with an equiva-
lent number of clock cycles. Complex multiplications are
more time consuming than real multiplications, but for
practical DOBR applications the reduction in computations
offsets the increased processor time.

The initial step in the frequency domain approach is the
determination of A,,,. When [B] is time varying, A,, may be
estimated by [DFT][B]"*[IDFT][P],,. but this is less effi-
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cient than calculating the time domain [b],,,=[B]T* Ipl,.. and
subsequently performing an N point FFT on each vector
[bl,,.. Using this approach, an additional M(Nlog,N) com-
plex additions and M(N/2log,N) complex multiplications
are required for the frequency domain approach. Determin-
ing C,, by Gram-Schmidt orthogonalization requires cal-
culation of NC=(M>-M)/2 coefficients. for which the com-
putational advantage of the frequency domain approach is
2NC(N-N) multiplications and additions. Performing the
linear combinations of vectors weighted by these coeffi-
cients yields computational savings of NC(N-M) multipli-
cations and (N-M) (M+NC-1) additions for the frequency
domain approach. Normalization of the C,,has savings of
M(N-M) multiplications compared to the time-domain
approach. The sparsity of the vectors P, ;, which are non-
zero at only two discrete frequencies for m>1, and at one
frequency (DC) for m=1, allow rapid frequency domain
computation of the set D,,. The computational advantage of
the frequency domain approach is (M+NC)(N-2) additions
and multiplications for the determination of D,;.

Practical situations usually involve applying the DOBR
operational equation for a stationary system [B] to multiple
forward solutions. The vector sets C,,, and D_,, define the
DOBR inverse system for [B]. and may be computed. stored.
and recalled for each implementation of the operational
equation. Storage requirements are 2M? complex numbers
for the frequency domain approach and 2(MN) real numbers
for the time-domain approach, so that a reduction in storage
requirements is realized when M<N/2. The total operational
equation computational advantage for the frequency domain
approach is ZM(N-M) multiplications and additions, which
is reduced by Nlog,N additions and N/2log,N multiplica-
tions if the FFT of i, to yield I, is required. If the spectral
estimate of the inverse solution is desired, the approach may
be terminated at this point. Obtaining the time-domain
solution by inverse FFT of O,, requires an additional
Nlog,N complex additions N/2log,N complex
multiplications, and N real multiplications.

An additional advantage of the frequency domain
approach is that it is more robust when there are significant
perturbations in [B]. Errors in transfer function estimation
are normally transmitted to the b,, and ultimately have
adverse effects on the inverse solution [21]. In the frequency
domain approach, the noise components in [B] transmitted
to A, lying outside of the DOBR bandwidth are not
included in the calculations of C,,. and therefore are not
propagated to the final solution. The inverse solution
obtained from the frequency domain approach may be
expected to be of higher quality than would be obtained from
the time domain approach. especially when large errors in
the estimation of [B] are present.

EXAMPLE 3

Consider an application with a time duration signal of
N=128 samples and a DOBR basis set bandwidth of 0-10-
cycles/2r. requiring M=21 Hartley basis vectors. For a
previously defined stationary system. DOBR is performed
by executing the operational equation (27) with stored
values of C_, and D,,,. The time domain operational equa-
tion requires 5376 real multiplications and 5334 real addi-
tions. The frequency domain operational equation. including
the FFT of i, and IFFT of O,, requires 1778 complex
multiplications, 1736 complex additions, and 128 real
multiplications, a reduction by a factor of 2.9 in the number
of operational equation computations.

Dynamic systems, and initial applications of the fre-
quency domain approach require computation of C,_, and
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D, and achieve all of the computational savings described
above. Despite the computational debt established by (M+2)
N-point FFT’s, significant computational savings are real-
ized by the frequency domain approach. For the example
case of N=128 and M=21, the net savings are 82542
additions and 92825 multiplications. This reduces the num-
ber of operations performed after computation of the vector
set b, by a factor of 3.9 when compared to the time-domain
approach. The computation of b,,,, common to both the time
and frequency domain approach, is very computationally
demanding. requiring MN? multiplications and M(N*-N)
additions.

It should be clear that DOBR is a robust method of inverse
solution for time-varying or time-invariant linear systems
expressed as a square matrix operator. The frequency
domain approach exploits the compactness of frequency
domain support exhibited by the DOBR vector sets to reduce
the range of most summations from the N points of the
time-domain signal to the M complex values of the fre-
quency domain DOBR bandwidth. Frequency domain
DOBR is used to greatest advantage when system station-
arity allows repeated implementations of the operational
equation with predetermined vector sets C,,, and D, but
also offers improvements in computational efficiency when
the entire approach must be executed. The frequency domain
DOBR approach significantly reduces the storage require-
ments and the number of arithmetic computations for
DOBR, as well as lessening the deleterious effects of trans-
fer function perturbations of the inverse solution.

Whether the original or alternative embodiment of dis-
crete orthogonal basis restoration is utilized, it has been
found that the present method possesses advantages over
other prior art methods when there is noise in the system
transfer function [B]. More specifically, the present discrete
orthogonal basis restoration method may be utilized to
assess the effects that observed noise in the transfer function
and the forward solution have on the error in the inverse
solution estimate. It is assumed that there is no transmission
of noise by the system and that the observed noise in the
forward solution and transfer function are mutually inde-
pendent.

In the presence of perturbations, the linear system [B][o]
=|i], becomes

(B+N[o=ilHin), (28)

where [N] is additive transfer function noise, [iy] is
additive forward solution noise, and [0'] is the estimated
inverse solution for the perturbed system.

For the system perturbed only by noise in the forward
solution [B][o]=[il4+[iy]. the DOBR inverse solution is the
superposition of DOBR solutions for the signal and noise
components, which in the frequency domain is

o Y NP M L NP (29
T il R -l
where NP is the number of discrete frequencies used in
frequency domain DOBR.

The signal to noise ratio of the inverse solution in the
presence of forward solution noise may be estimated by

10mueP
WinringicP + INpud®
where 10,,,,.I° is the true inverse solution power. N, insicl

is intrinsic noise resulting from error in estimation of the
inverse solution with a limited basis set, and INj, 2 is the

(30)
SNRinverse = 10 log
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DOBR inverse solution of the forward solution noise com-
ponent (right hand term in (11)).

Unlike forward solution noise. transfer function pertur-
bations change the characteristics of the vector sets c,,, and
d,.. which define the behavior of the DOBR operational
equation. Application of the perturbed transfer function
[B+N] to each member of the basis set p,,. yields

[B+N(plm={blmH o= D ] @

As was the case with forward solution noise, it is benefi-
cial to analyze the effects of transfer function noise in the
frequency domain. For the time invariant (convolution) case
the calculation of A, reduces to the point by point multi-
plication of the Fourier transform of the transfer function
and P,,. When [B] is a time-varying system. the spectral
estimation of A, is considerably more complex. In the
noiseless case, the spectra A, may be represented by A =
[DFI‘][B]T*[H)F['][P],,, where [DFT] and {IDFT] are the
NPxNP discrete Fourier transform and inverse discrete
Fourier transform matrices, and [P],, is the 1XNP column
vector frequency domain representation of the mth basis
function [8]. In the presence of transfer function noise, A’,,
may be estimated by:

A’ =[DFT)[B+N]"*(IDFT}{P],, (32)
A',=[DFT|[B]"*[IDFT}({PL,.+{DFTIN}*{IDFT}[P], (33)
A=A +A pm (34

The resultant noise in A',, is therefore the superposition of
A, and Ay,

The worst-case scenario will be considered in evaluating
the propagation of noise in the frequency domain Gram-
Schmidt orthogonalization process. Maximal noise trans-
mission occurs when each A, is orthogonal to C,,_, (FIG.
7). and therefore has complete projection onto the vector
C',,. The Gram-Schmidt coefficients involving the inner
products of A,,, and prior C',, are zero by virtue of
orthogonality, greaily simplifying the computational pro-
cess. BEach C',, is then formed from A, +A,,, minus the
projections of A, on prior C',.

Ci=A = Ay + Ay (35)
<A%IC > (36)
Ca=Ary+Am -
iC1P
m-1 <A*,IC> (37)

Cndot ™ & "ok
Each C',, is subsequently normalized, which preserves the
relative noise contribution to C,, but depending on the
amplification properties of the transfer function [B], the
normalization may either increase or decrease the magnitude
of noise transmitted to C',,,. For the worst case scenario the
total transmitted noise to C',, is

Wi=Am+ o B 9
m=2 |Cmil?

The frequency domain Gram-Schmidt orthogonalization
constants

_ <CHiA' >

el &

can be regrouped and normalized into the set of constants
0,,,; 50 that each C',, is expressed as a linear combination of
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A'; (39). The D', is then calculated using the same set of
constants ¢,,; (40).

Comi = i:£1 Ak G9
D= I tmiPa 40)
i=1

The frequency domain operational equation in the presence
of transfer function noise is

I%P Do (41)
=

The vector set D', is constructed to be compatible with the
set C',, and does not contribute additional noise to the
inverse solution. The worst case inverse solution SNR due to
transfer function perturbations may be estimated by

M 1
Ok 2 O

10 P
me + WCF

In practice. transfer function perturbations do not fulfill
the worst case orthogonality criteria, and the separation of
signal and noise components in the Gram-Schmidt process
becomes an unwieldy and impractical approach for SNR,,,
estimation. The practical consequences of perturbations are
their impact on basis set selection. and the quality of inverse
solution obtained. A satisfactory method for addressing both
of these parameters is to perform simulation studies on a
large training set with representative signals and noise at
different DOBR basis set band widths to determine the
optimal basis set for the given application.

In order to still further explain the present invention,
attached hereto as Appendixes A—C are source code listings
for completing. respectively, time domain DOBR for shift-
invariant functions (deconvolution) (Appendix A); time
domain DOBR for general time-varying transfer functions
(Appendix B); and frequency domain DOBR (Appendix C).

(42)
SNRim = 10 log
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In summary, the method of the present invention is
equally applicable and extends to both one dimensional and
two dimensional signal and image systems. The chief advan-
tage of the present method compared to other SSVPSF
restoration techniques are that preprocessing. matrix
inversion. multiple iterations, or assumptions of local PSF
variance are not required. As a result, processing times and
computer power required for processing are both substan-
tially reduced.

The primary limitation of the present method is that the
basis function support of the inverse solution must be nearly
congruent to the region of basis support of the transfer
function to avoid an unstable inverse solution. Provided that
a realistic simulation model exists, however, estimation of
the restored image SNR may be made for a given forward
solution SNR and chosen basis set. This allows a priori
determination of the optimal basis set for a given application
and provides an estimate of the anticipated quality of the
restored image.

The foregoing description of a preferred embodiment of
the invention has been presented for purposes of illustration
and description. It is not intended to be exhaustive or to limit
the invention to the precise form disclosed. Obvious modi-
fications or variations are possible in light of the above
teachings. The embodiment was chosen and described to
provide the best illustration of the principles of the invention
and its practical application to thereby enable one of ordi-
nary skill in the art to utilize the invention in various
embodiments and with various modifications as are suited to
the particular use contemplated. All such modifications and
variations are within the scope of the invention as deter-
mined by the appended claims when interpreted in accor-
dance with the breadth to which they are fairly, legally and
equitably entitled.
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APPENDIX A

harpat.for

. .performs discrete orthogonal basis restoration for invariant
. .Systems

using Hartley basis set

...calls:mat hart inprod

izz is the maximum number of basis functions

iu is the length of the fwd soln vector (ri) and inv. soln
vector (h)

the basis set is determined and placed in poly

the basis set used for the inv soln is ordered transferred

to rleg
gau is the matrix formulation of the transfer function
vector g,

and gt is it’s transpose. Note that gau and gt are cast
for

row*square matrix=row vector fwd soln
The gram-schmidt coef are stored in matrix a
The tau coef are in tau
The vector sets b,c,d with m members correspond to the
literature
descriptions. f(m) are <d{m),i> and are intermediate
gtep
the inverse soln is h
npcl is the number of basis vectors used
the array cnorm holds the normalization factors for each
member of the vector set c

0O aN00N000N0000O0

implicit integer(i-o)
parameter(izz=65,1u=128, twopi=6.283185)
common/cl/delt, rip
common/c2/rpl (iu) , rp2 (iu)
common/c4/poly(0:1izz,iu)
common/cS/iz
common/c6 /gau (iu) ,gt (iu, iu)
common/c6a/g{iu, {{2*iu)-1))
common/cll/xrphas
real b{izz,iu),c{izz,iu),d(izz,iu)
real al{izz,izz),taul{izz,izz)
real rleg(0:izz,iu)
real f£(izz),h{iu),cnorm{izz)
real ri{iu),sumc{iu)
integer ifini
integer npol
character*13 pre
character*4 suf3,suf2
character*10 filen,fileg, f1h, taunm,obas
character*30 taunmx,cbasx
character#*30 filex,filegx,filein, fileh
character*2 ntrial
character*l cxans,cyans
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pre='c:\fort\data\’
suf2='.dec’
suf3=’' . hdc’

....compute Hartley Basis Set

iz=64
write (6, *)’'%%%%%¥%calling hart%%%%%% ’
call hart

normalization of basis

do 820 m=0,iz

do 812 kkk=1,iu

rpl (kkk) =poly (m, kkk)

rp2 {kkk) =poly (m, kkk)
call inprod
do 815 kkk=1, iu

poly (m, kkk) = (poly (m, kkk) ) / (sqrt {rip) )
continue
continue

.read in the ideal image and the PSF

write(6,*)’ input name for header file xxxxXxX.xXXx
read (5,933)flh
fileh=pre//flh
open{25,file=fileh, status='new’)
write(6,*)’ input filename of PSF XXXXXX.XXX '
read(5,933) fileg
filegx=pre//fileg
igau=0
open {20, file=filegx, status=‘0ld’)

do 43 i=1,iu

read {20, *,end=433)gau (i)
igau=igau+l

continue

close (20)

format (ai0)

write(6,*)’ input trial number for this input fn ’

read (5, 964)ntrial
format (a2}

write(6,*)’ input filename of fwd soln XXXXXX.xXxX ’

read(5,933)filen

set the restoration bandwidth
write(6,+*)’ high freq c/o *
read(5,*)ifini

npol={(2*ifini})+1

ciltrlitrrititbuild the selected orthogonal set!iliil1]
c...always include the dc component

24

do 24 ii=1,iu
rleg(l,ii)=poly(0,ii)

’
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iptr=0
do 25 j=1,ifini
iptr=iptr+2
jind={j*2)-1
do 22 ii=1,iu
rleg(iptr,ii)=poly(jind,ii)

rleg(iptr+1,ii)=poly(jind+1,ii}
22 continue
25 continue

write(6,*)’$$5$555 orthonomal setup done $3$$8$$$’
CRACRAREREARCERRARREE
C:::::::2:!::::::::Z:l:::::::::::::::::Z::::::I:::::::

¢..compensate for extra loop trip and truncate to odd #

igau=igau-1

figau=float (igau)
figa=figau/2.
ifig2=igau/2
fif=float (ifig2)
if(fig2.eq.fif)then

igau=igau-1

endif
c...call mat to cast the convolution operator in matrix form
¢... note that this is in row vector format

call mat (igau)

c»>>>>>>>>calc b(k) using matrix
approachs>>>»>5>5>555>5555>>>35>>55>555>
write(6,*)’ .. .... calculating b(k)...... 4
c*****ygse transpose matrix
iz=(2*ifini)+1
do 10 k=1,iz
do 9 iec=1,iu
sum=0.
do 8 ir=1,iu
sum=sum+ (rleg(k, ir) *gt (ir, ic))

8 continue
b(k,ic)=sum
9 continue

10 continue
CO>>o0502>503053353 3305533303333 33533 3302330333533 >3533>
write(6,*) ' ++++++calculating c (k) ++++++"’
do 21 kkk=1,iu
21 c¢(1,kkk)=b(1,kkk)
do 23 m=1,iz
23 a{m,m)=1.
[= I calculate Gram-Schmidt coefficients
do S0 m=2,iz
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do 40 j=1,m-1
do 30 kkk=1,iu
rpl (kkk}=c(j, kkk)
30 rp2 (kkk) =rpl (kkk)
call inprod
rnorm=rip

do 29 kkk=1,iu
rpl {kkk)=c (], kkk)
29 rp2 (kkk) =b{m, kkk)
call inprod

a(m,j)=-1.*(rip/rnorm}
40 continue

c....now calculate c(m) by G-8 orthogonalization
do 46 1ii=1,iu
46 sumc (ii}) =0,

do 49 j=1,m-1
do 48 kkk=1,iu
sumc (kkk) =sumc (kkk) + (a{m,j) *c (j, kkk)})
48 continue
49 continue
do 47 kkk=1,iu
c(m, kkk} =b (m, kkk) +sumc (kkk)
47 continue
50 continue

c....normalization

do 720 m=1,iz

do 712 kkk=1,iu

rpl (kkk) =c {m, kkk}

712 rp2 (kkk) =c (m, kkk)

call inprod

cnorm (m) =sqrt (rip)

do 715 kkk=1,iu

c(m, kkk) ={c(m,kkk)) / (sqrt {rip))
715 continue
720 continue

CAAAAAAAAAAAAAAA AAAAAAAAAAAANANANAA

calculate taus
write(6,*)/======calculating tau======-
do 75 k=1,iz
75 tau{k, k) =a{k,k)
do 90 m=2,iz
do 85 i=1,m-1
if (i.ne.m)then
rsum=0.
de 83 j=i,m-1
rsum=rsum+ {(a (m, j) *tau(j, i))
83 continue
tau(m, i) =rsum
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else
endif

85 continue

90 continue

¢ normalize taus by dividing by cnorms
do 94 m=1,iz
do 92 i=1,iz
tau(m,i)=(tau{m, i) /cnorm(m))

92 continue

94 continue

AAAAAAAAAAAAAAAAAAAAAAAAAAANAARNAAINRNAAAAANNARAANSAA N

C

do 110 m=1,iz
do 105 i=1,m
do 100 it=1,iu
d(m,it)=d(m,it) +{tau(m,i)*rleg(i,it}))
100 continue
105 continue

<R N N N N N N NN ]
SRR R N R RN R AR R RN R AR R AN RN AR
filex=pre//'d’//ntrial//filen(5:6)
* //fileg(5:6) //suf2
fileh=pre//ntrial//filen{(5:6)
* //fileg(5:6) //suf3
filein=pre//filen{1:10)}
filegx=pre//fileg(1:10)
[SE - R R S - A B A A S T I B SR IR SR
C::Z::::Z::Z:::22:2::!::::Z:::!:Z::::::::22:::::::2:::::::

open(19,file=filein, status=‘0ld’)
do 32 i=1,iu
read {19, *,end=519)ri (i)

32 continue

519 close(19)

izk=npol
c...clear arrays
do 190 iy=1,izk
190 £(iy)=0.
do 191 iy=1,iu
191 h(iy)=0.
chifHiH#H#H#i#Hdcompute fol#H##SRBHERHHHRESSHSHERE
do 120 m=1,izk
rsum=0.
do 115 i=1,1iu
rsum=rsum+ (4 (m, 1) *ri(i))
115 continue
£ (m) =rsum
write(6,*)m,‘c{m)= *,f{m)
120 continue
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CHERHSHR B R R S S S S

C5588555835558858Scalculate hSSS555555555865853
do 140 i=1,iu
rsum=0.
do 130 m=1,izk
rsum=rsum+ (¢ {m, i) *£ (m))

130 continue
h{i)=rsum
140 continue
CS$$$$$$$$$$$S$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$
open(18,file=£filex, status='new’
do 150 i=1,iu
150 write(le,*)h(i)
close (18)

777 continue
write(6,*)filex

write(25,*) "iu= ', iu

close (25)
clirropered
C>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
C:::::::::this section allows various process vectors and
matrices to
C::::::::: be saved to disk for later analysis

write(6,*)’ write taufile (y/n)? *

read (5, 976) cxans
976 format (al)
if (cxans.eq.’y’)then
write({6,*)’ enter name of taufile '
read(5,977)taunm
977 format (al10)})
taunmx=pre//taunm
open(27,file=taunmx, status=’'new’)
write(6,*)'iz= ', iz
do 833 m=1,iz
do 833 i=1,iz
write(27,*)tau{m,i)
833 continue
close(27)
endif
888 write(6,*)’ save to disk d(m) array ? ‘
read (5,916) cyans
916 format (al)
if(cyans.eq.’y’)then
556 write(6,*)’ # rows= ’,iz
write(6,*)’ input name of otpt file XXXXXX.xXX '
read(5,933) obas
obasx= pre//obas
open (30, file=obasx, status='new’)
do 501 ibas=1,iz




501

503

504

506
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do 501 ku=1,iu

write(30,*)d(ibas, ku)

close (30)

endif

write{6,*)’ save to disk c(m) array ? '
read(5,916) cyans

if (cyans.eq.’y’)then

write{6,*)  input name of otpt file XXXXXX.XXX ‘
read (5, 933) obas

obasx=pre//obas

open {30, file=obasx, status="new’)

do 503 ibas=1,iz

do 503 ku=1,iu

write (30, *) c{ibas, ku)

close (30)

endif

write(6,*)’ save to disk b(m) array ?
read(5,916) cyans

if (cyans.eq.‘y’)then

write(6,*) iz=',iz

write(6,*)’ input name of otpt file XxXXXXX.XXX *
read (5, 933) obas

obasx=pre//obas

open (31, file=cbasx, status='new’)

do 504 ibas=1,i:z

do 504 ku=1,iu

write (31, *)b{ibas, ku)

close (31)

endif

write(6,*)’ save g-T ? '
read(5,916)cyans

if (cyans.eq.’y’)then
write(6,*)’ input name of otpt file xoxx.xxx '
read(5,933)obas

obasx=pre//obas

open (30, file=obasx, status='new’)
do 506 ibas=1,iu

write (30, *) {gt (ibas, ku) , ku=1,iu)
close (30)

endif

Co23353333335>3303>32>235535233333333333335333>5>

stop
end
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APPENDIX B

tvpat. for

.performs discrete orthogonal basis restoration for invariant
.systems

using Hartley basis set
.calls:hart inprod

variables
izz 1is the maximum number of ba51s functions
iu is the length of the fwd soln vector (ri) and inv. soln
vector (h)
the basis set is determined and placed in poly
the basis set used for the inv soln is ordered transferred
to rleg
tvtfm is the imported matrix transfer function
The gram-schmidt coef are stored in matrix a
The tau coef are in tau
The vector sets b,c,d with m members correspond to the
literature
descriptions. f(m) are <d(m),i> and are an
intermediate step
the inverse soln is h
npol is the number of basis vectors used
the array cnorm holds the normalization factors for each
member of the vector set c

implicit integer{i-o)
parameter (izz=65,iu=128, twopi=6.283185)
common/cl/delt, rip
common/c2/rpl (iu) , rp2 (iu)
common/c4/poly(0:izz,iu)
common/cS/iz
common/céa/g (iu, ((2*%iu) -1))
common/cll/rphas
real b(izz,iu),c{izz,iu),d(izz, iu)
real a(izz,izz),taul{izz,izz)
real rleg(0:izz,iu)
real f(izz),h(iu),cnorm{izz)
real ri{iu)},sumec(iu)
real tvtfm(iu,iu)
integer ifini
integer npol
character*13 pre
character*4 suf3,suf2
character*10 filen, fileg,flh, taunm, obas
character*30 taunmx, obasx
character*30 filex,filegx,filein, fileh
character#*2 ntrial
character*l cxans,cyans
pre=’c:\fort\data\’
suf2='. dec’
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suf3=’.hdc’
Chovennnn compute Hartley Basis Set
iz=64
write(6,*) ' %%%%%%calling hart%%$%%%
call hart
c.... normalizaticn of basis

do 820 m=0,iz
doc 812 kkk=1,iu
rpl (kkk) =poly (m, kkk)
812 rp2 (kkk) =poly (m, kkk)
call inprod
do B15 kkk=1,iu
poly (m, kkk) = (poly (m, kkk) ) / {sqrt (rip))
815 continue
820 continue

c....read in the ideal image and the PSF
write(6,*)’ input name for header file xxxXXXX.XxX '
read (5,933)flh
fileh=pre//f1lh
open(25,file=£fileh,status='new’)

933 format (al0)
write(6,*)’ input trial number for this input fn *
read(5,964)ntrial

964 format (a2)
write(6,*})’ input filename of fwd SOln XXXXXX.XXX ‘
read(5,933)filen

c... set the restoration bandwidth
write(6,*)’ high freq c/o
read(5,*)ifini

npol=(2*ifini)+1

c...always include the dc component
do 24 ii=1,iu
24 rleg{l,ii)=poly(0,ii)
iptr=0
do 25 j=1,ifini
iptr=iptr+2
jind={j*2)-1
do 22 ii=1,iu
rleg(iptr,ii)=poly(jind,ii)

rleg(iptr+1,ii)=poly(jind+1,ii)
22 continue
25 continue
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write(6,*) '$55553S$ orthonomal setup done $35$$53s’
[s{clcielaelolelnolaieiolamloooin o]

Cc...import the transfer function matrix

write(6,*)’ input filename of TV transfer fn matrix
XXXXXX. XXX

read (5,933)fileg

filegx=pre//fileg

open{20,file=filegx,status='0ld’)

do 43 i=1,iu
read (20, *,end=433) {(tvtfm(i, j),j=1, iu)
43 continue
423 close(20)

c>>>>>>>>>calc b{k) using matrix
approach>>>>>>>>>>>>>>>>>>>>>>>>>>
write(e,*) .. .... calculating b(k}...... '
Cx*¥*x*kyse transpose matrix
iz=(2*ifini)+1
do 10 k=1,iz
de 9 ic=1,iu
sum=0.
do 8 ir=1,iu
sum=sum+ (rleg (k, ir) *tvtfm(ir, ic))

8 continue
bk, ic)=sum
9 continue

10 continue
COD>BODO32323323300 530533335333 53D 3535335535555 53>333333>
write (6, *) ' ++++++calculating c (k) ++++++"
do 21 kkk=1,iu
21 c{1,kkk)=b{1,kkk)
do 23 m=1,iz
23 a{m,m)=1.
Cuovenn calculate Gram-Schmidt coefficients
do 50 m=2,iz

do 40 j=1,m-1
do 30 kkk=1,iu
rpl (kkk)=c (], kkk)
30 rp2 (kkk) =rpl (kkk)
call inprod
rnocrm=rip

do 29 kkk=1,iu
rpl{kkk)=c(j, kkk)
29 rp2 {kkk) =b (m, kkk)
call inprod
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a({m,j)=-1.*{rip/rnorm)
continue

-now calculate c(m) by G-S orthogonalization
do 46 ii=1,iu
gumc(ii)=0.

do 49 j=1,m-1
do 48 kkk=1,iu
sumc (kkk} =sumc {(kkk) + (a{m, j) *c {j, kkk) )
continue
continue
do 47 kkk=1,iu
c {m, kkk) =b (m, kkk) +sumc (kkk)
continue
continue

..normalization
do 720 m=1,iz
de 712 kkk=1,iu
rpl (kkk) =c (m, kkk)
rp2 (kkk} =c (m, kkk)
call inprod
cnorm(m) =sqrt (rip)
do 715 kkk=1,iu
c(m,kkk) ={c (m, kkk)) / (sqgrt (rip))
continue
continue

A A A ANANANAN AN A AAAAAAAANAANAIAANAA

calculate taus
write(6,*)’======calculating tau======'
do 75 k=1,iz
tau(k,k)=a{k, k)
dc 50 m=2,iz
do 85 i=1l,m-1
if {i.ne.m)then
rsum=_.
do 83 j=i,m-1
rsum=rsum+ (a{m,j) *tau(j,i})
continue
tau(m, i)=rsum
else
endif
continue
continue
normalize taus by dividing by cnorms
do 94 m=1,iz
do 92 i=1,iz
tau(m,i)=(tau(m,i)/cnorm{m})
continue
continue

40
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AAAAAAAAAAAAAAAAAAAANAANAAAAAARNAAANANAAANAAANNAANAA

do 110 m=1,iz
do 105 i=1,m
do 100 it=1,iu
d{m,it)=d{m,it)+(tau{m,i) *rleg(i, it))
100 continue
105 continue
110 continue

S e NN RNy
SRR R R R R R AR RN R AR AR R AN
filex=pre//’d’' //ntrial//filen{5:6)
* //fileg(5:6) //suf2
fileh=pre//ntrial//filen(5:6)
* //fileg(5:6)//suf3
filein=pre//filen(1:10}
filegx=pre//fileg(1:10)
on e R R R R
C::::::::!:::2:::::::::::II::::::Z::2:2::::::2::::::::::::

open(19, file=filein, status='0ld")
do 32 i=1,iu
read (19, *,end=519)ri (i)

32 continue

519 close(19)

izk=npol
c...clear arrays
do 190 iy=1,izk
190 f(iy)=0.
do 191 iy=1,iu
191  hi(iy)=0.
chi# it H#d4#dcompute CoR#RH#EHHESESRHARBHHHSHHHHSY
do 120 m=1,izk
rsum=_.
do 115 i=1,iu
rsum=rsum+ {(d (m, 1) *ri (i))
115 continue
f (m) =rsum
write(6,*}m,'c{m)= ', f{(m}
120 continue

CHESHEH IR R A S R R B R R R

C$355855988558858Scalculate hESS585585558656888
dc 140 i=1,iu
rsum=Q0.
do 130 m=1,izk
rsum=rsum+ (c (m, i) *£ (m))
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130 continue
h{i)=rsum
140 continue
S e85 8555855555885558555555385555555555555548
open(18,file=filex,status='new’)
do 150 i=1,iu
150 write{18,*)h(1i)
close (18)

777 continue

write(6,*)filex

write(25,*)iu= ’,iu

close (25)
CH>355>5335 2323333333333 33>>53 5055505553 >5553>
c:::::::::this section allows various process vectors and
matrices to
C::::::::: be saved to disk for later analysis

write{6,*})’ write taufile (y/n)? '
read (5, 976) cxans
976 format (al)
if({cxans.eq.’y’)then
write(6,*)’ enter name of taufile *
read (5, 977) taunm
977 format (al0)
taunmx=pre//taunm
cpen(27,file=taunmx, status=’new’)
write(6,*) iz= ', ,iz
do 833 m=1,iz
do 833 i=1,iz
write (27, *)tau(m,i)
833 continue
close (27)
endif
888 write(6,*)’ save to disk d(m) array ? *
read(5,916)cyans
916 format (al)
if{cyans.eq.’y")then
556 write(6,*)’ # rows= ‘, iz
write(6,*)’ input name of otpt file xxXXXXX.XXX ‘
read(5,933)cbas
obasx=pre//obas
open (30, file=obasx, status='new’)
do 501 ibas=1,iz
do 501 ku=1,iu
501 write (30, *)d{ibas, ku)
close(30)
endif
write(6,*)’ save to disk c¢(m) array ? ’
read(5,916)cyans




5,761,346

45 46

if (cyans.eqg.'y’)then
write(6,*)’ input name of otpt file xxxxxX.XxXxX '
read ({5, 933)obas
obasx=pre//obas
open{30, file=obasx, status="new’)
do 503 ibas=1,iz
do 503 ku=1,iu
503 write {30, *)c(ibas, ku)
close (30}
endif
write{6,*)’ save to disk b(m) array ? '’
read (5, 916) cyans
if (cyans.eqg.‘y’)then
write{6,*)’iz="',iz
wrxite(6,*)’ input name of otpt file xxxxxx.xxx ’
read (5, 933)cbas
obasx=pre//obas
open (31, file=0basx, status="new’)
do 504 ibas=1,iz
do 504 ku=1,iu
504 write (31, *)b(ibas, ku)
close (31)
endif

Coo>0o3>o53 0303505333333 3 3333535335353 353353335>
stop
end
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APPENDIX C
[e] TVFPAT.FOR
c FREQ DOMAIN DOBR THAT TAKES IDFT FCR TIME DOMAIN INV SOLN
C....as most calculations involve complex operations, default
C....complex variables to begin with "c*

implicit complex(c)

parameter (np=128,12z=128,dcval=11.3137,xval=5.6568,np2=128)

¢....np is the number of time and frequency domain signal points

...izz is the maximum number of basis functions

.deval and xval are used to assign the frequency domain
attributes of the Hartley Basis Set

0nao

complex cbn(izz,np),ccn{izz,np),csumec(np),ctrue (np)
complex cdn(izz,np),cp(izz,np),calizz,izz),ctau({izz,izz)
complex cnorm(izz),cf(izz),ch(np),cfwd(np),cfwdn{np)
real atrue (np2)},arec{np2),xo(np)
.Freg. domain variable names correspond toc those used in
.time domain algorithm
cbn(m,k)--->b{m,k), con{m,k)--->c{m, k),
dn{m,K)--->d(m, k)
the hartley basis is in cp(m,k)
gram-schmidt coef are in array ca, tau in ctau
fwd soln-->cfwd. Freq domain inv soln-->ch,
time domain inv soln-->x0

nnaoanonNonaa

character*10 tfnm, fnm, tnam, onm
character*13 pre
character*30 tfnmx, fnmx, tnamx, onmx

pre="c:\fort\data\"
900 format (a10)

(=T select the DOBR bandwidth
write(é6,*)’ input fmax
read (5, *) ifmax
c¢...and compute the number of Hartley Basis vectors to be used
npol=(2*ifmax)+1

input the filename for the Fourier transforms of the vector
.set b(m,k). These are most easily obtained by dumping the
..vector set b(m,k) computed using time-domain DOBR and doing
..FFT of each member
write(6,*)’ input TV B(m,k) file (xxxxxx.fox)
read (5,900) tfnm
tfnmx=pre//tfnm
c...The FFT of the forward sclution is alsoc needed
write(6,*)’ input FWD soln file (xxxxxx.fcx) ’
read(5,9200) fnm

0000
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fnmx=pre//fnm
open(1l9, file=fnmx, status='0ld’ )
¢...cfpwr computes running sum of fwd soln pwr
cfpwr={0.,0.)
do 3 i=1,np
read (19, *) cfwd (i)
cifpwr=cfpwr+ (cfwd (i) *conjg(cfwd (i)))
3 centinue
close(19)
open (20, file=tfnmx, status='0ld’)
do 6 m=1,npol
do 5 i=1,np
read (20, *)cbn{m,i)
continue
continue
close (20}

[ 8]

c...assign Freq. Domain Hartley basis set P(m,k) based on 128 pt
signal

c....assign dc val
cp(l,1)=(dcval,0.)
C....assign spectra for even-indexed basis

deo 10 i=2,npol
ibinl=(i/2)+1
ibin2=(np+1) -{(i/2)
cp (1, ibinl) =(xval, -xval)
cp{i,ibin2)=(xval, xval)
10 continue
c...and for odd indexed basis
do 15 i=3,npol,?2
ibinl=((i-1)/2)+1
ibin2=(np+1)-((i-1)/2)
cp(i,ibini)=(xval,xval)
cp(i,ibin2)=(xval, -xval)

i5 continue
c...note that this assignment assumed that the basis ordering of
haropd

¢...was: 1l=dc, 2=+1hz,3=-1hz,4=2hz,5=-2hz....
npxx=1ifmax
write(6,*) ' ++++++calculating c(k) ++++++"
cen(l,1l)=cbn(1,1)
do 21 kkk=1,npxx
cen(l, (np2-kkk+1))=cbn(1, (np2-kkk+1))

21 cen (1, (kkk+1))=cbn (1, (kkk+1))
do 23 m=1,npol
23 ca{m,m)={1.,0.)
S calculate ca coef (complex gram-schmidt coef.)

do 50 m=2,npol
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do 40 j=1,m-1

csum2=(0.,0.)
csum2={ccn(j,1) *(conjglcen(3,1))))
do 30 kkk=1,npxx

csum2=csum2+ (cen(j, (np2-kkk+1) ) * (conjg(cen{], (np2-kkk+1)})))
csum2=csum2+ (ccn (j, kkk+1) * (conjg{cen (j, kkk+1))))

30 continue
cnormx=csum2

[ save the normalization factor for each vector

csum2=(0.,0.)

csum2=(ccn{j,1) *conjg(cbn(m,1)))

do 29 kkk=1,npxx
csum2=csumz+ (ccn (j,kkk+1) *conjg{cbn{m, kkk+1}))

csum2=csum2+ (cen{j, (np2-kkk+1)) *conjg (cbn(m, np2-kkk+1)})

29 continue
cip=csum2
ca(m,j)=-1.*{cip/cnormx)
40 continue

do 46 ii=1,np
46 csumc (ii)=(0.,0.)

do 49 j=1,m-1

csumc (1) =csumc (1) + (ca(m,j) *cen (3, 1})

do 48 kkk=1,npxx

csumc (kkk+1) =csumc (kkk+1) + (ca(m, j) *cen (3, kkk+1))

csumc (np2-kkk+1) =csumc (np2-kkk+1}+ {ca(m, ) *ccn (3, (np2-kkk+1) )

48 continue
49 continue
ccn(m,1)=cbn (m, 1) +csumc (1)
do 47 kkk=1,npxx
cen{m, kkk+1)=cbn{m, kkk+1) +csumc (kkk+1)

cen(m, (np2-kkk+1) ) =cbn{m, (np2-kkk+1) } +csumc (np2-kkk+1)
47 continue
50 continue

...........................................................

Cc....now normalize

c...need the final norm
crip=(0.,0.)
crip=crip+ (cen{npol, 1) * {conjg{ccn(npol,1))))
do 712 kkk=1,npxx
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crip=crip+(ccn(npol, kkk+1) * (conjg{cen(npol, kkk+1))})

crip=crip+(ccn(npol, (np2-kkk+1))*{conjg(cen{npol, (np2-kkk+1)))))
712 continue
cnorm{npol}=csqgrt (crip)

do 720 m=1,npol

cenim, 1) ={ccn{m, 1))/ {cnorm{m))

do 715 kkk=1,npxx

cen(m,kkk+1) ={ccn(m,kkk+1)) / {cnorm{m))

cecn (m, (np2-kkk+1) ) =ccn(m, (np2-kkk+1) ) /cnorm(m}
715 continue
720 continue

AAAAANANANAAANANNM AAAAAANAAANANAAANANA

calculate taus
write(6,*)’======calculating tau======'
do 75 k=1,npol
75 ctau{k,k)=cal(k, k)
do 90 m=2,npol
do 85 i=1,m-1
if(i.ne.m)then
crsum={Q0.,0.)
do 83 j=i,m-1
crsum=crsum+ {ca (m, j) *ctau(j, i))

83 continue
ctau(m, i) =crsum
else
endif

85 continue

90 continue

¢ normalize taus by dividing by cnorms
do %4 m=1,npol
do 92 i=1,npol
ctau(m,i)=(ctau(m, i) /cnorm(m})

92 continue

94 continue

ciritrtirvrritlitillcaleculate d{iz,np)titritrrerrtint
write(e,*)’t!!!l1calculating d(iz,np) 1t 1t”

do 110 m=1,npol
do 105 i=1,m
c....test for even or odd and assign index
fi=float (i)
itestl=aint(£i/2.)
itest2=anint(£i/2.)
c...if even
if (itestl.eqg.itest2)then
indl=(i/2)+1
ind2=(np+1)-(i/2)
cdn(m, indl) =cdn (m, ind1)+ (ctau(m, i) *cp (i, indl))
cdn (m, ind2) =cdn {m, ind2) + (ctau(m, i) *cp (i, ind2))
else
indl={(i-1)/2)+1
cdn{m, indl) =cdn(m, indl) +(ctau{m, i) *cp (i, ind1})

4
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if(i.gt.1)then

ind2=(np+1) - {((i-1)/2)

¢dn (m, ind2) =cdn (m, ind2) + (ctau(m, i) *cp(i, ind2))
else

endif

endif
continue
continue
continue

C...this section applies to lab experiments where the true
c...inverse son is known. when unknown, a dummy file can be
c...used and snr values computed may be ignored.

160

115

120

130

140

write(6,*)’ input 128 pt spectrum file of true signal
read (5, 900) tnam
tnamx=pre//tnam
open{21, file=tnamx, status='0ld’)
sigp=0.
do 160 i=1,np
read (21, *) ctrue (i)
atrue (i) =real (ctrue (i) *conjg{ctrue(i)))
sigp=sigp+atrue (i)

continue

do 260 i=1,np

cfwdn (i) =cfwd (i)

do 120 m=1,npol

crsum=(0.,0.)

crsum=crsum+ (cdn(m, 1) *conjg (cfwdn (1) ))

do 115 i=1,npxx
crsum=crsum+ (cdn{m,i+1) *conjg (cfwdn{i+1)}))
crsum=crsum+ (cdn{m, (np2-i+1) )} *conjg{cfwdn (np2-i+1}))

continue
cf (m) =crsum
continue

do 140 i=1,npxx+l
crsum=(0.,0.)

do 130 m=1,npol
crsum=crsum+ (cen{m, i) *cf (m))
continue

ch(i)=crsum

continue

do 141 i=1,npxx
crsum=(0.,0.)

do 131 m=1,npol
crsum=craum+ (ccn{m, (np2-i+1)}) *cf (m))

S
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131 centinue
ch{np2-i+1l)=crsum
141 continue

crsum={0.,0.)
crsum=crsum+ (ch (1) *conjg(ch(1))
arec(l) =real(ch(1l)*conjg(ch(1))
do 150 i=1,npxx
crsum=crsum+ (ch (i+1) *conjg(ch{i+1))}
arec(i+l)=real (ch{i+1) *conjg(ch(i+1)))
crsum=crsum+ (ch (np2-i+1) *conijg{ch(np2-i+1)))
arec(np2-i+l) =real (ch(np2-i+1) *conjg(ch{np2-i+1)))

)
}

150 continue

write(6,*)’ recovered total pwr= ‘,crsum
CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
snse=0.

cfred=ctrue{1)-ch(1)
snse=snse+real (cfred*conijg(cfred))

do 180 i=1,npxx
cfred=ctrue{i+1)-ch{i+1)
snse=gnse+real (cfred*conjg(cfred) )
cfred=ctrue (np2-i+1) -ch(np2-1i+1)
snse=snse+real (cEfred*conjg(cfred))

180 continue
snrout2=10.*alogll (sigp/snse)
write(6,*)’ snr2= ‘', snrout2
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
c...obtain time-domain inverse soln by IDFT
write(6,*)’ perform idft? 1=Y *
read (5, *)iift
if (iift.eqg.l)then

do 248 i=npxx+l,np2-npxx
248 ch{i)=(0.,0.)
call £ft{ch,128,7,1.0)
do 249 li=1,np
249 x0(liY=real(ch{li))
write(6,*) " input outname xXxXXxx.XXx '
read(5,900)onm
onmx=pre//onm
open{27,file=onmx,status='new’)
do 250 li=1,np
write {27, *)xo(1i)
250 continue
close{27)
else
endif
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777 continue

stop
end
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I claim:
1. A method of using discrete orthogonal basis to restore
a signal and/or image system degraded by time and/or
spatially varying transfer functions said system being of
linear type and represented by the equation [B] [o]=li]
wherein [0] is an original signal or image, [i] is a degraded
signal or image and [B] is a system transfer function matrix,
comprising:
estimating in estimating means a signal-to-noise ratio for
a restored system;
selecting in selecting means a set of orthogonal basis set
functions p,,, where m=1.2.3 . . . M is the index for the
chosen orthogonal basis set with M members of length
k=123 ... IU to provide a stable inverse solution
based upon the estimated signal-to-noise ratio; and
removing in removing means time and/or spatially vary-
ing distortions in the restored system by obtaining an
inverse solution vector O, for a one dimensional res-
toration wherein:

E [ ]
O g | iy e

wherein d,, is a vector set created by linear combina-
tions of p,, weighted by 7,,,, a set of constants formed
by linear combinations of a, the standard Gram-
Schmidt orthogonalization coefficients, and wherein:

(1 =EY*(p},,

where [B]™* is the transpose-complex conjugate of the
matrix [B] and [p],, is an M member orthogonal basis

set;
.. . S—
\ {-kacmk
1.0 m=1

Z amimzii=1,...,m-1

Tyt = e :
\ %kacmk =

m
o= L Twibis
=1

m
dmk= X Tpasm=123...M
=1

and an inverse solution vector O, for a two dimen-
sional restoration wherein:

Yo Ya
P e e gy e P

x=123,...,IU

wherein J, is an intermediary matrix of the form:

e ¥ e [ ¥ ]
P L | (2 Do
p=123,...,1U.

2. The method set forth in claim 1, wherein said estimat-
ing of the signal-to-noise ratio of the restored system is
provided by applying a given forward solution signal-to-
noise ratio and selected set of orthogonal basis set functions
P to a realistic simulation model of said system.

3. The method set forth in claim 1, wherein said set of
orthogonal basis set functions p,,, is selected from a group
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consisting of Hartley, Walsh., Haar, Legendre, Jacobi.
Chebyshev, Gegenbauer, Hermite and Laguerre functions.
4. The method set forth in claim 2, wherein said set of
orthogonal basis set functions p,,, is selected from a group
consisting of Hartley. Walsh, Haar, Legendre, Jacobi,
Chebyshev, Gegenbauer, Hermite and Laguerre functions.
5. A method of using discrete orthogonal basis to restore
a signal system degraded by a time varying transfer function,
comprising:
estimating in estimating means a signal-to-noise ratio for
a restored system;
selecting in selecting means a set of orthogonal basis set
functions p,,=1.2,3 . . . M is the index for the chosen
orthogonal basis set with M members of length k=1.2.3
... IU to provide a stable inverse solution based upon
the estimated signal-to-noise ratio; and
removing in removing means time varying distortions in
the restored system by obtaining an inverse solution
vector O, wherein:

o= L ¢ |I}:d |
= ]
k lmk lmkk

wherein d,, is a vector set created by linear combina-
tions of p,,, weighted by 1,,,,. a set of constants formed
by linear combinations of a, the standard Gram-
Schmidt orthogonalization coefficients, and wherein:

[b1=1B]™*(p]

where [B]7* is the transpose-complex conjugate of the
matrix B and p,, is an M member orthogonal basis set;

Gmi
Tmi = m=1
T
% ek
10 m_1

s E amimeii=1,...m-1;
=1
\ 'Ekcmucmk

m
cm= I Twibi;
=1

m
d,,.g= _Z Trilik M = 1,2,3 ..M
=1

6. The method set forth in claim 5 wherein said estimating
of the signal-to-noise ratio SNR,,,,, is provided by:

10 ruc?

SNRyrea =10 log
i IOmg", + |Om~;|2

wherein 10,,,I? is the signal power in the original. unde-
graded signal/image, |0,,,,,:ns:c” is the inverse solution
noise power due to the approximate nature of the
inverse solution and 10,,,.I* is the noise power in the
inverse solution power due to added noise in the
forward solution.

7. The method set forth in claim 6, wherein said set of
orthogonal basis set functions p,,, is selected from a group
consisting of Hartley, Walsh, Haar, Legendre, Jacobi,
Chebyshev, Gegenbauer, Hermite and Laguerre functions.

8. The method set forth in claim 5, wherein said set of
orthogonal basis set functions p,,,, is selected from a group
consisting of Hartley, Walsh, Haar, Legendre, Jacobi.
Chebyshev, Gegenbauer, Hermite and Laguerre functions.
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9. A method of using discrete orthogonal basis to restore
an image system degraded by time and spatially varying
transfer functions. comprising:

estimating in estimating means a signal-to-noise ratio for

a restored system;
selecting in selecting means a set of orthogonal basis set
functions p,,, to provide a stable inverse solution based
upon the estimated signal-to-noise ratio; and
removing in removing means time and spatially varying
distortions in the restored system by obtaining an
inverse solution vector O, wherein:

Orc= B o ¥ ac
= [=

= R L
x=123,....0U

wherein d,, is a vector set created by linear combina-
tions of p,,, weighted by 1,, a set of constants formed
by linear combinations of a. the standard Gram-
Schmidt orthogonalization coefficients. and J,, is an
intermediary matrix of the form:

o= % o[ Z douoe |
= c,

px m=1 Pk x=1 PP
p=123,...,1U

10. The method set forth in claim 9, wherein said esti-
mating of the signal-to-noise ratio SNR,,,,; is provided by
simulating a noiseless forward solution and determining the
intrinsic noise shown as the difference between the restored
image and the original image and further considering recov-
ered added noise.

11. The method set forth in claim 10, wherein said
estimated signal-to-noise ratio SNR,,, is

10rueP
1Onoisellyy + Qinaringic P

SNRpped = 10 log

wherein |0, is the signal power in the original, unde-
graded signalfimage. 10, :.5:" is the inverse solution
noise power due to the approximate nature of the
inverse solution and 10,,,,,|° is the noise power in the
inverse solution power due to added noise in the
forward solution.
12. The method set forth in claim 9, wherein said esti-
mated signal-to-noise ratio SNR,, .., is

100 P
Onotselly, + 1OinrinsicP

SNRprea = 10 log

wherein |0,,,I° is the signal power in the original. unde-
graded signalfimage, 0,,, ... is the inverse solution
noise power due to the approximate nature of the
inverse solution and 10, |* is the noise power in the
inverse solution power due to added noise in the
forward solution.

13. A programmable apparatus, comprising:

means for computing; and

readable memory defining a process for

estimating a signal-to-noise ratio for a restored system;

selecting a set of orthogonal basis set functions P,
m=123 ... M is the index for the chosen orthogonal
basis set with M members of length k=123 ... IU to
provide a stable inverse solution based upon the esti-
mated signal-to-noise ratio; and
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removing time and/or spatially varying distortions in the
restored system by obtaining an inverse solution vector
O, for a one dimensional restoration wherein:

X ¢ I):d
O =
% lmkl lmﬂkl

wherein d,,; is a vector set created by linear combina-
tions of p,,, weighted by 1,,;, a set of constants formed
by linear combinations of a, the standard Gram-
Schmidt orthogonalization coefficients, and

[61..=(B1™ (Pl
where [B]7* is the transpose-complex conjugate of the

matrix [B] and [p],, is an M member orthogonal basis
set;

O
T = ———— m=1
T cmic

\I % CmiCrt
10 m-1

Tpi= e I amTimziiz1,...m- L
=1
\, %cp.acm

m
Comk = L Twabin
=1

m
dmk= by TmiPik; M= 1,2,3 .M
=1

and an inverse solution vector O, for a two dimen-
sional restoration wherein:

0= % . ¥
PR it e gy “hme
K=123,... U

wherein J, is an intermediary matrix of the form:

M w
Gt U R
p=123,....0U.

14. A programmable apparatus, comprising:

means for computing; and

readable memory defining a process for

estimating a signal-to-noise ratio for a restored system;

selecting a set of orthogonal basis set functions p,,, where
m=123 ... M is the index for the chosen orthogonal
basis set with M members of length k=123 ...IUto
provide a stable inverse solution based upon the esti-
mated signal-to-noise ratio; and

removing time varying distortions in the restored system
by obtaining an inverse solution vector o, wherein:

¥ [ ¥ o]
o= 2
km:l” k:lmm

wherein d is a vector set created by linear combinations
of p,.. weighted by 1. a set of constants formed by
linear combinations of a, the standard Gram-Schmidt
orthogonalization coefficients, and:

[81,.=[B1™p],
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where [B]™* is the transpose-complex conjugate of the
matrix [B] and [p],, is an M member orthogonal basis
sef;

m=1
10 "% guimeii=l,...m-1;

\J %Cndcmk =

3

mk =

1t

Tmibix;
1 ks

I

m
d,,.g= .}: TmiPik- T = 1,2,3 oM
=1

15. A programmable apparatus, comprising:
means for comparing; and

readable memory defining a process for estimating means
a signal-to-noise ratio for a restored system;

selecting a set of orthogonal basis set functions p,,; to
provide a stable inverse solution based upon the esti-
mated signal-to-noise ratio; and

removing time and spatially varying distortions in the
restored system by obtaining an inverse solution vector
0, Wherein:

Yo ¥
Op.g-mzl CK""’p:l “mp"P“

k=123... 01U

wherein d,,;, is a vector set created by linear combina-
tions of p,,, weighted by 1,,,.. a set of constants formed
by linear combinations of a. the standard Gram-
Schmidt orthogonalization coefficients. and J is an
intermediary matrix of the form:

M 1y
ey [ e
p=123,... 10U

16. A method of using discrete orthogonal basis to restore
a signal and/or image system degraded by time and/or
spatially varying transfer functions said system being of
linear type and represented by the equation [B] [o]=[i]
wherein [o] and [i] are length N column and row vectors and
[B] is an NxN non-singular transfer function matrix, com-
prising:

estimating in estimating means a signal-to-noise ratio for

a restored system;

selecting in selecting means a set of orthogonal basis set
functions P, where m=1,2.3 . .. M is the index for the
chosen orthogonal basis set with M members of length
k=123 ... N to provide a stable inverse solution based
upon the estimated signal-to-noise ratio; and

removing in removing means time and/or spatially vary-
ing distortions in the restored system by obtaining an
inverse solution vector O, for a one dimensional res-
toration wherein:
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N
z
=

—_

wherein I, is a fourier transform of the forward solution
and O, is a fourier transform of the inverse solution and
a time domain solution may be obtained by

F Oxyos
wherein

[Bl~[F1™*[Pl,
where

[F=[DFT}{B][IDFET]

and [DFT]=discrete fourier transform and [IDFT]=
inverse fourier transform matrices,

gC,,.gA"‘

&1 *
3 Gmi==g

L Cpul*

=1 -
i=1,...m-1
m=1,....M

wherein a is the complex Gram-Schmidt coefficient and
vector sets C and A define the characteristics of the
system [B] for frequency domain discrete orthogonal
basis restoration;

b. T= 10
1}5’ ContC* mk
k=1
m=1i
Tmi =R 10 ME—I i Ui
kEI ConkC* ik
i=1....m—-1
m=1,...,M,

where 71 is a constant formed by linear combinations of
a;

m
. Cor= X Tmifi
=1
and
m
d.D,,._k= ¥ T,,.,',P,'k
=1

m=123 ... M

17. A programmable apparatus, comprising:

means for computing; and

readable memory defining a process for

estimating a signal-to-noise ratio for a restored system;

selecting a set of orthogonal basis set functions P,
m=1.23 ... M is the index for the chosen orthogonal
basis set with M members of length k=123 ... N to
provide a stable inverse solution based upon the esti-
mated signal-to-noise ratio; and
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removing time and/or spatially varying distortions in the
restored system by obtaining an inverse solution vector
O, for a one dimensional restoration wherein:

o= ¥ cul ¥ pur
Tl N gt

wherein I, is a fourier transform of the forward solution
and O, is a fourier transform of the inverse solution and
a time domain solution may be obtained by

F {00,

wherein

(Bl={F1™pL,

where

[FI=[DFT}[ BH{IDFT]

and [DFTl}=discrete fourier transform and [IDFT]|=
inverse fourier transform matrices,
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-continued
m=1... M

wherein a is the complex Gram-Schmidt coefficient and
vector sets C and A define the characteristics of the
system [B] for frequency domain discrete orthogonal
basis restoration;

b. T 1.0

where 7 is a constant formed by liner combinations of
a;

m
C.Cmk = L Twillip
=1

m
d. D,,g: T ‘I:,,.,'P,-g
i=1
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