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Abstract 

State estimation function is essential for effective and timely execution of power system automation 
and control systems, especially in modern active distribution systems where more intermittent 
renewable energy systems are integrated into the grid. Distribution system state estimation faces a lot 
of challenges including lack of monitoring devices and possible incorrect topology information. 
Developing efficient state estimation for distribution systems is thus of great interest. This paper 
presents results on utilizing artificial neural networks for this purpose. 

Artificial neural networks have been used in power distribution system state estimation. However, there 
is a lack of systematic analysis and study of which types of ANNs and what structures including 
parameters are most suitable for state estimation applications. When designing an ANN for a state 
estimator, trial and error approach has been common and there is no systematic method available to 
guide the process. The ultimate goal of the research is to examine the performance of various types of 
ANNs (e.g., Multi-Layer Perceptron (MLPs), Convolutional Neural Networks (CNNs) and Long-Short-
Term-Memory Networks (LSTMs)) with different structures and also provide possible guidance on how 
to choose the different parameters, including model parameters such as number of hidden layers and 
number neurons in a layer, and algorithm parameters such as adjustable learning rate, for desired 
performance metrics. The paper presents preliminary results based on MLPs. IEEE standard 34-bus 
test system is used to illustrate the proposed methods and their effectiveness. 

The paper seeks to contribute to a more systematic approach to neural network and deep learning 
applied to power system state estimation, thus enhancing situational awareness, system resiliency and 
real-time monitoring and control of power distribution systems. Successful state estimation function will 
increase the ability of distribution systems to integrate more renewable energy based generations. 

Keywords—artificial neural networks (ANNs), multilayer perceptron networks (MLPs), convolutional 
neural networks (CNNS), long short-term memory networks (LSTMs), distribution system state 
estimation (DSSE) 

I. INTRODUCTION  

In power systems an essential requirement is that of resiliency. In general, resiliency includes the 
ability of a power system to withstand and recover quickly from events that may be considered low-
frequency, yet high-impact events or adverse conditions.   

Examples of such events or adverse conditions relate to but are not limited to the following: Extreme 
weather, Natural disasters, Man-made outages (physical, cyber, coordinated), Lack of 
Observability,Topology Errors, and False Data Injection Attacks (FDIA). 

State estimation process provides optimal estimate of the true values of bus voltages and angles and 
power flows across the power system [1][2]. The results provide the basis or enhancement for other 
power system applications such as system planning, optimization, fault analysis, protection, and fault 
location [3][4][5][6]. 

This paper focuses on application of artificial neural networks to distribution system state estimation 
(DSSE) and will investigate the ability of such networks to ensure resiliency to any events that may 
compromise data integrity. There are virous types of networks such as Conventional Feed-Forward 
Multi-Layer Perceptron Networks (MLPs) / Deep Neural Networks, Convolutional Neural Networks 
(CNNs), Recurrent Neural Networks (RNNs) / Long Short-Term Memory Networks (LSTMs), and 
Hybrid-Neural Networks Utilizing a Combination of Network Types. Preliminary results based on 
MLPs are presented in this paper. 

II. BACKGROUND 

A. Review of Conventional State Estimation 

State estimation research and application has historically been largely focused on transmission 
systems as opposed to distribution systems.  With increasing developments of the “smart grid”, 
increased utilization of phasor measurement units (PMUs) and improvements in monitoring and 
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communications, Distribution System State Estimation (DSSE) interest and research has greatly 
increased in recent years. 

The inherent challenges of application of “conventional” state estimation techniques to power 
distribution systems based upon weighted least squares is well established in the literature. 

In recent years, “deep learning neural networks” have gained increasing interest in not only being able 
to improve the weighted least squares method, but also in the possibility of being able to address 
what may be considered as “extreme”  or “adverse” conditions such as, but not limited to lack of 
observability, topology errors, false data injection attacks, network outages due to weather or 
malicious attack, and variances in weather that may affect distributed power generation from solar 
and wind sources. 

Conventional state estimation was introduced in 1970 via a series of papers authored by Fred C. 
Shweppe and J. Wildes.  The overall problem, mathematical modeling and general algorithm for state 
estimation, error detection and identification are presented in [1].  

The key assumption of the classical approach presented is that the state estimation vector consisting 
of the voltage magnitude and phase angles at all generation and load buses is static or quasi- static. 
Further assumptions are that the system is balanced, linear and can be accurately approximated via 
an iterative algorithm utilizing weighted least squares as the estimator. While these assumptions are 
reasonable when applied to transmission systems, they may not hold for distribution systems. 

An approximate model and the resulting simplifications in state estimation, bad data detection and 
identification are presented in [2].  This model is based on a DC load flow yielding linear equations 
with the following four basic assumptions: 

 Reactance over resistance of all lines are significantly larger than one 
 Magnitude of voltage ≈ 1 for all buses 
 Angle differences between voltages at two ends of all lines are close to zero 
 Existence of errors in real power measurements 

The resulting approximate model, while enabling potential application to distribution systems is not 
readily applicable to state estimation in general for practical transmission or distribution networks. 
Thus, [7] addresses implementation problems associated with dimensionality, computational 
efficiency, data storage and the time-varying nature of actual power systems. 

The time-variation inherent in power systems is addressed in [8].  This paper is a review of dynamic 
state estimation (DSE) methods as opposed to static state estimation (SSE).  These methods are 
based primarily on Kalman Filtering (KF) techniques, M-estimation, and the Square Root Filter (SRF) 
technique which is an alternative implementation of KF that is numerically more stable. 

Paper [9] discusses the essential role of power system observability to the state estimation problem 
and presents a theoretical basis for an algorithm to determine observability. The authors emphasize 
the requirement that conventional or classical state estimation methods be applied only to systems 
that are observable and thus establish that an observability test be conducted prior to performing 
state estimation. The algorithm presented is based upon a graph theoretical or topological approach.  
Specifically, the algorithm seeks to determine if the Jacobian of the system parameter network h(x) is 
full rank.  If so, the power system network is considered observable.   

The challenges to state estimation due to lack of observability are further discussed in [10].  The 
authors reiterate the essential observability criteria needed in order to perform classic state estimation 
and further surmise that the first step to controllability is observability. 

Again, the challenges imposed by the dynamic nature of power systems and especially that of 
distribution systems with high penetration of distributed energy resources (DERs) is noted as a 
significant barrier to the application of classical state estimation techniques.   

While the authors do recognize the improvements that the placement of smart meters and PMUs have 
made in enhanced situational awareness and greater observability, they also point out that smart 
meters do not offer real-time updates and that the practical implementation of PMUs is and will 
continue to be limited due to their cost. 

In the paper being referenced, robustness refers to the insensitivity of the state estimation algorithm 
to major deviations in a limited number of redundant measurements. Thus, it is clear that the 
challenges of applying classical state estimation methods based upon weighted least squares and 
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similar estimators to distribution systems also extend to determination of system controllability, 
observability and robustness. 

The authors in [11] provide an in depth discussion of the growing threats to modern power system 
resiliency that applies to all aspects of the grid (i.e. generation, transmission, distribution, distributed 
generation, micro-grids, etc.). Investment in the modernization of the power grid must be done so with 
a “No Regrets Strategy”.  This strategy is based upon the cornerstones of resiliency, flexibility and 
connectivity. 

 Resiliency – Resistance to High-Impact, Low Frequency Events 
o Extreme Weather 
o Earthquakes, Tsunamis 
o Man-made Outages (Physical, Cyber, Coordinated) 

 Flexibility – Adaptability to Uncertainties 
o Fuel Prices 
o Power Market Prices/Incentives 
o Variable Generation 
o Consumer Behavior 
o Regulation and Policy 

 Connectivity – Enhanced Interoperability Across Electricity Enterprise 
o Advanced Sensors 
o Mobile Devices 
o Grid Modernization 
o Two-Way Flow 

B. Distribution System State Estimation (DSSE) 

State estimation was first introduced by Fred C. Schweppe and J. Wildes in 1970 for power systems.  
States are defined as the vector of the voltage magnitudes and angles at all network buses [1]. Novel 
approaches on system resource scheduling considering reserve were presented in [3] [4], and 
advanced methods for protection and fault locations for distribution systems were described in [5][6]. 
These techniques can all benefit from improved measurements and topology. 

Essentially, state estimation algorithms provide for a means of eliminating or minimizing measurement 
noises and errors and possible topology errors that would otherwise prevent accurate determination of 
the system state values at all buses. Power system state estimation was initially introduced and applied 
to transmission systems only and then extended to distribution systems, considering substantial 
differences between distribution and transmission systems.    

Among these differences are the radial topology, low X/R ratios, phase imbalances and relative lack of 
measurement devices inherent in distribution systems [2]. With the emergence of the smart grid and 
distributed generation (DG), such as photovoltaic systems, wind turbines, electric vehicle to grid (V2G) 
technology and other forms of power penetration, power flow is now bi-directional as opposed to 
previously being unidirectional.  

Additionally, given the unpredictable nature of renewable energy sources such as solar and wind 
energy as well as the varying real-time utilization of power inherent in distributed networks, updated 
state estimation algorithms is now necessary.   

As mentioned previously, challenges to the application of “conventional” state estimation as applied to 
distribution systems relate directly to the fundamental differences of the two power system types. 

Figure 1 presents an example of both types of power networks and some of the differences that pose a 
challenge to the direct application of conventional state estimation to distribution systems. 
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Figure 1 - Transmission and Distribution System Key Characteristics 

To appreciate the challenges that the emerging smart distribution grid pose to the direct application of 
conventional state estimation, it is essential to first understand the inputs and functional blocks that 
enable state estimation.  Figure 2 provides an overview of the inputs and main functional blocks. 

 

Figure 2 - Functional Block Diagram of State Estimation 

Note that the Network Topology Processing functional block verifies the accuracy of the network 
parameters included as Inputs.  The Observability Analysis functional block establishes that there is 
sufficient data available for the State Estimation Algorithm functional block, and these two blocks may 
be integrated together in some methods. As discussed earlier, the relative lack of metering in 
distribution networks reduces the “observability” of the system.   

The ability to meet this challenge, while being improved through the implementation of “smart meters” 
such as PMUs (phasor measurement units), will continue to be an inherent challenge in distribution 
networks as opposed to transmission networks. The State Estimation Algorithm functional block then 
seeks to determine a unique solution or system state.  Also, critical to the overall state estimation 
functionality and final determination of the system state is the Bad Data Identification and Processing 
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functional block that uses statistical techniques (e.g., Chi-square Test) to identify and filter out “noise” 
which may be related to inaccuracies in measurement meters and/or communication system failures.  

Finally, the Human/Machine Interface functional block relates to the software and hardware utilized to 
visualize and otherwise monitor and control the power system. 

Further challenges beyond lack of metering, are those associated with topology errors and false data 
injection attacks.  The terms and consequences of lack of observability, topology errors and false data 
injection attacks will be explained in later sections of this paper. 

Figure 3 summarizes the key characteristics of the “conventional” state estimator based upon 
weighted least squares. 

 

Figure 3 - State Estimator Overview 

Note that the INPUT are typically measurements of P (Real Power), Q (Reactive Power), I (Current 
Flows), Voltage Magnitudes, and the OUTPUT state variables are typically voltage magnitudes and 
voltage phase angles at all buses.  With these two state variables, it is then possible to determine the 
remaining parameters such as Real and Reactive Power Injections and Current flow. 

Note that one of the buses can be established as the reference bus or slack bus.  Thus, if Bus 1 is 
established as the reference bus, then the phase angle for Bus 1 can be removed from the vector 
representation.  Therefore, if there are n buses in the network, the total number of states is given as 
2n – 1. 

It is important to note that conventional state estimation applies only to overdetermined systems.  
Overdetermined systems are those in which the number of measurements exceeds the number of 
states. This critical and limiting requirement for application of conventional state estimation can be 
summarized in the following criteria: 

 If the number of measurements is m, and the number of states is 2n-1, then in state estimation, m 
> 2n -1 

 If m = 2n -1, the problem reduces to a power flow solution 

Thus, as stated previously, distribution systems with limited measurement devices are inherently not 
overdetermined systems.  For such underdetermined systems that may be either transmission or 
distribution networks lacking sufficient metering, observability is reduced and as indicated in Table 3, 
the state estimation algorithm must rely upon pseudo-measurements.   

C. State Estimation Applied to Smart Distribution Systems 

The authors of [12] provide a survey on state estimation techniques and challenges in so-called 
“smart distribution systems”.  This survey summarizes most of the essential concepts considered to 
this point regarding the following topics: Conventional mathematical formulation based upon an 
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iterative algorithm utilizing weighted least squares or similar estimator, Application of pseudo-
measurements to mitigate lack of sufficient metering to enable system observability, Consideration of 
optimal meter placement given the relatively limited metering, Network topology issues and effects, 
Impacts of renewable penetration, and Cybersecurity concerns. The paper goes further to make a 
distinction between “conventional” state estimation that is considered analytical and deterministic and 
“modern” state estimation that is considered data driven and probabilistic. 

Regarding conventional state estimation, various “robust state estimators” are presented along with 
their pros and cons. For example, Generalized Maximum-likelihood (GM) has pros of Robust against 
bad data and cons of Parameter selection sensitivity.  

Two major categories of data driven approaches are identified as alternatives to conventional state 
estimation based upon the previous list of estimators: Probabilistic and Statistical Approaches that  
employ spatial/temporal correlation and historical probability distributions, used widely for pseudo-
measurement generation and uncertainty assessment, and Learning-Based Approaches / Machine 
learning algorithms that address problem of active/reactive power pseudo-measurement generation 
and uncertainty assessment. 

Related to the recommendations of notable research directions, the paper [13] presents previous 
work in the area of state estimation for real-time monitoring of distribution systems. While the work 
presented is based upon weighted least squares estimation, it shows the close correlation of state 
estimation accuracy to the initial starting point selected and accuracy of the forecasted loads.   

Thus, an important takeaway from the work presented in [12] and [13] collectively is the idea of 
establishing a hybrid process involving classical state estimation algorithms and data-driven 
forecasting. 

The data-driven portions would support the classical state estimation algorithm by providing a better 
starting point than a typical “flat start”, higher probability of convergence, and more accurate pseudo-
measurements than those queried from large historical data repositories. 

The design of an off-line planning method to enable real-time monitoring and control in systems with 
limited observability is considered in [14] through consideration of robust measurement placement for 
distribution system state estimation. This paper proposes a robust measurement placement model to 
maximize estimation accuracy for DSSE over a wide-range of worst case operating conditions.   

The problem is formulated as a mixed-integer semi-definite programming problem (MISDP). The 
authors seek to avoid combinatorial complexity through a convex relaxation, followed by a local 
optimization method. The approach demonstrates that accuracy of DSSE can be enhanced 
significantly by placing a limited number of measurements in optimal locations.  Again, the approach 
taken, can be considered a hybrid approach of classical state estimation with updated probabilistic 
and statistical components that seek to minimize the effect of lack of observability on the weighted 
least squares estimator. 

The paper presented in [15], provides a linear state estimation formulation for smart distribution 
systems.  The authors assume the availability of synchro-phasors which yield direct voltage phasors 
at bus locations.  Line power flows and current magnitudes are then able to be ascertained via the 
direct quantities available. The authors show that availability of direct voltage phasors effectively 
linearizes the h(x) coefficient matrix used in classical state estimation so that the result is a linear, 
non-iterative state estimation solution. Results confirm low computational burden, accommodation of 
meshed networks and avoidance of convergence issues which may occur in dealing with practical 
distribution systems with high r/x ratios. It should be noted, however that to achieve the results, the 
following must be maintained by the synchro phasors: 

 Resolution Requirement: +/- 1 μS which corresponds to 0.0216 degree phase error in a 60 Hz 
system 

 Maximum Allowable Total Vector Error (TVE) : 1.0% when maximum phase error is 0.57 
degrees 

The authors in [16] present a branch-estimation-based state estimation method for radial distribution 
systems. While this approach utilizes many of the conventional or classical state estimation 
techniques, it has the ability to handle most kinds of real-time measurements by decomposing the 
weighted least squares problem into a series of weighted least squares problems such that each sub-
problem deals with single-branch estimation. The establishment of “zones” is an idea, where the 
entire distribution system can be comprised of much simpler single-branches and each zone will then 
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correspond to a weighted least squares sub problem. Ref [16] proposes two main parts: load 
allocation and state estimation. The load allocation portion is considered to be a real-time load 
modeling technique that incorporates use of customer class curves and provides a measure of the 
uncertainty (statistics) in the estimates. The purpose of this portion is to produce pseudo-
measurements with a higher level of accuracy in real-time than historical data that must be retrieved 
from a large data repository. The state estimation portion then utilizes the pseudo-measurements that 
ensure observability and follows a traditional weighted least squares technique that is applied to each 
“zone”. 

The authors propose that a forward/backward sweep scheme based upon this method would allow 
state estimation to be performed accurately for large-scale practical distribution systems while not 
requiring sparse matrix techniques. 

D. Challenges of Applying Conventional State Estimation Utilizing Weighted Least Squares to 
Distribution Systems 

The most common conventional state estimation algorithm is based upon the Weighted Least 
Squares (WLS) algorithm.   

The following list provides some of the characteristics of distribution systems that pose major 
challenges to the direct application of conventional state estimation based upon weighted least 
squares: 

 Radial Topology with bi-directional power flow 
 Lack of adequate quality and quantity of measurement devices resulting in underdetermined 

systems and thus reduced observability 
 Unbalanced Lines and Loads resulting in the need to consider all phases in the state 

estimator algorithm 
 Unpredictability of energy sources injecting power back onto the grid (i.e. intermittent sunlight 

and wind, electric vehicles, etc.). 
 Variability in the timing of power utilization throughout the day 
 Low X/R ratios which do not allow for neglecting resistances  
 Substantial number of nodes, combined with the need to consider all phases, result in the 

need for acquisition, storage and processing of substantial amounts of data 
 Excessive noises resulting from the variety and lack of standardization of communication 

schemes between metering devices and the central control stations 

It should be noted that the limitations listed above are considered “normal conditions” inherent in all 
distribution systems. The addition of “adverse conditions” noted previously further strengthens the 
case for needed research of methods such as artificial neural networks to maintain data integrity of 
distribution system state estimation and thus the overall resiliency of the modern power grid. 

E. Lack of Observability in Distribution Systems 

In the context of this paper, lack of observability will be directly related to the inability to accurately 
measure and store system values (power, voltage magnitude, voltage phase angles and current flow) 
of a distribution system due to lack of measurement devices, failures in devices, communication 
failures and/or malicious attacks that would also fall into the category of False Date Injection Attacks.   

While there are increasing advances in and application of Phasor Management Units (PMUs) and so-
called “smart-meters”, in this paper, there will not be an assumption that these devices are available 
at every bus location of a practical distribution system. 

Thus, distribution system state estimation will be considered to be fundamentally challenged by lack 
of observability. 

F. Topology Errors in Distribution Systems 

In the context of this paper, topology errors will be directly related to errors in determination of system 
state values due to inaccurate determination of system breaker position. More generally, these errors 
could relate to incorrect determination of any device that involves switching or tap positioning. 

The false status of system breakers could result from failures in devices, communication failures 
and/or malicious attacks that would also fall into the category of False Date Injection Attacks.   
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Thus, distribution system state estimation will also be considered to be fundamentally challenged by 
topology errors. 

G. False Data Injection Attacks in Distribution Systems 

In the context of this paper, false data injection attacks will refer to malicious attempts to alter data 
within distribution systems such that the true system state is made inaccurate.  The goal of such 
attacks could be financial, such as controlling aspects of the power market or sabotage to the security 
of the power system resulting in power outages. 

It should be noted that with advances in smart grid metering and reliance on digital communications, 
the susceptibility of the power grid to false data injection attacks will continue to be a growing security 
concern. 

Thus, distribution system state estimation will also be considered to be fundamentally challenged 
(even threatened), by false data injection attacks. 

H. Conventional Feed-Forward Multi-Layer Perceptron Networks (MLPs) 

This type of network is considered the conventional or classical neural network model. Figure 4 shows 
a “perceptron”, the fundamental building block of neural networks. 

 

Figure 4 - Perceptron Building Block of MLP Networks 

Figure 5 depicts the functional blocks of a MLP network model. 
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Figure 5 - Multi-Layer (MLP) Model Functional Representation 

This type of network is considered a reasonable model for regression and classification problems. 
However, it has limited ability to predict or forecast sequence or time-series data as it does not 
maintain and share features between layers.   

This type of neural network is also limited to how “deep” they can be in terms of number of layers that 
would otherwise enable them to solve more complex problems with greater accuracy. 

Even with the noted limitations, this network type has promises to overcome many of the limitations of 
weighted least squares based state estimation. The principal advantage of this network type is the 
promise to accurately learn the mapping of inputs to outputs for a regression problem without the 
requirement of complex and large number of equations that would be necessary to perform non-linear 
regression on large distribution systems. 

I. Convolutional Neural Networks (CNNs) 

This type of network is considered to be an improvement upon the classical MLP architecture in that it 
learns directly from the input data and thus does not require a target dataset during training. Figure 6 
shows the general structure for a CNN model. 
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D. Power Flow Simulation to Establish Previously Unseen Datasets 

The previous steps related to performing a power flow simulation with OpenDSS were repeated with a 
different load profile to establish previously unseen data for validating the various neural network 
types. 

Note that “COAST” will be used in descriptions of datasets that have their origin from the power flow 
simulation of the test distribution system performed with varying loads according to this load profile. 

IV. MULTILAYER PERCEPTRON MODEL (MLP) 

A. Network Model Parameters 

 Number of inputs in visible layer:  56 (Held constant for Trials 1 – 11) 

 Power Monitors:  
o B01_power: 6 features (P and Q values for 3 phases) 
o B03_power: 6 features (P and Q values for 3 phases) 
o B05_power: 6 features (P and Q values for 3 phases) 
o B06_power: 6 features (P and Q values for 3 phases) 
o B07_power: 6 features (P and Q values for 3 phases) 
o B24_power: 6 features (P and Q values for 3 phases) 
o B08_power: 2 features (P and Q values for 1 phase) 
o B15_power: 6 features (P and Q values for 3 phases) 
o B18_power: 6 features (P and Q values for 3 phases) 
o B27_power: 6 features (P and Q values for 3 phases) 

 Number of hidden layers and number of neurons per hidden layer: 
 Adjusted for each trial according to Table 3 

 Number of output layer:  56 (Held constant for Trials 1 – 11) 
 Voltage Monitors:  

o B01_voltage: 6 features (Mag. and Phase values for 3 phases) 
o B03_voltage: 6 features (Mag. and Phase values for 3 phases) 
o B05_voltage: 6 features (Mag. and Phase values for 3 phases) 
o B06_voltage: 6 features (Mag. and Phase values for 3 phases) 
o B07_voltage: 6 features (Mag. and Phase values for 3 phases) 
o B24_voltage: 6 features (Mag. and Phase values for 3 phases) 
o B08_voltage: 2 features (Mag. and Phase values for 1 phase) 
o B15_voltage: 6 features (Mag. and Phase values for 3 phases) 
o B18_voltage: 6 features (Mag. and Phase values for 3 phases) 
o B27_voltage: 6 features (Mag. and Phase values for 3 phases) 

B. Hyper-Parameters (Held constant for Trials 1-11) 

 Activation Function per Layer : Hyperbolic Tangent (tanh) 
 Loss Function: Mean Squared Error 
 Optimizer: Stochastic Gradient Descent 
 Batch Size = 10 

V. TRIAL RESULTS 

The following results are for MLP topologies trained and tested on ERCOT data and validated on 
COAST data.   

A. Trails 1 - 11 

Table 3 presents training, testing and validation root-mean squared errors for nine MLP model 
architectures. As indicated in Table 3, the number of hidden layers and number of hidden layer 
neurons were varied. The number of input and output layer neurons was held constant at 56 neurons 
to correspond to the number of input and output features.   

As indicated in this table, 70% of the ERCOT data was used for training and 30% was held out for 
testing.  The “COAST Act. vs. Est” column shows results for the various architectures of the MLP 
when predicting output voltages and phase angles for COAST data that has never been seen by the 
neural network. 

 Table 3 - Trial Results for Baseline MLP Model without Hyper-Parameter Optimization 
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Trial Input 
Layer 

Hidden 
Layers 

Output 
Layer 

Train 
RMSE 
(70%) 

Test 
RMSE 
(30%) 

COAST Act. vs. 
Est. RMSE 

1 
56 

Neurons 

 
1 Layer 

56 Neurons 

56 
Neurons 

0.140927 0.142162 0.323075 

2 56 
Neurons 

 
1 Layer 

112 Neurons 

56 
Neurons 

0.140486 0.136711 0.323293 

3 56 
Neurons 

 
1 Layer 

224 Neurons 

56 
Neurons 

0.137222 0.137328 0.322124 

4 56 
Neurons 

 
10 Layers 

56 Neurons 

56 
Neurons 

0.092110 0.092036 0318610 

5 56 
Neurons 

 
10 Layers 

112 Neurons 

56 
Neurons 

0.091231 0.090394 0.317231 

6 56 
Neurons 

 
10 Layers 

224 Neurons 

56 
Neurons 

0.089581 0.089328 0.333226 

7 56 
Neurons 

 
20  Layers 
56 Neurons 

56 
Neurons 

0.085845 0.087380 0.309943 

8 
56 

Neurons 

 
20 Layers 

112 Neurons 

56 
Neurons 

0.082363 0.082748 0.314640 

9 
56 

Neurons 

 
20 Layers 

224 Neurons 

56 
Neurons 

0.077807 0.078516 0.314956 

10 56 
Neurons 

 
50 Layers 

224 Neurons 

56 
Neurons 

0.076469 0.078396 0.313638 

11 
56 

Neurons 

 
100 Layers 

224 Neurons 

56 
Neurons 

0.079144 0.079668 0.307243 

 

B. Error Distributions for Baseline MLP Network 

 Trial 1 - 1 Layer 56 Hidden Neurons: 
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Figure 9 - Voltage Magnitude Error Distribution for MLP without Hyper-Parameter Optimization 

 

Figure 10 - Voltage Phase Angle Error Distribution for MLP without Hyper-Parameter Optimization 

 Trial 9 - 20 Layers 224 Hidden Neurons: 

 

Figure 11 - Voltage Magnitude Error Distribution for MLP without Hyper-Parameter Optimization 

 

Figure 12 - Voltage Phase Angle Error Distribution for MLP without Hyper-Parameter Optimization 

 Trial 10 - 50 Layers 224 Hidden Neurons: 
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Figure 13 - Voltage Magnitude Error Distribution for MLP without Hyper-Parameter Optimization  

 

Figure 14 - Voltage Phase Angle Error Distribution for MLP without Hyper-Parameter Optimization 

 Trial 11 - 100 Layers 224 Hidden Neurons: 

 

Figure 15 - Voltage Magnitude Error Distribution for MLP without Hyper-Parameter Optimization 
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Figure 16 - Voltage Phase Angle Error Distribution for MLP without Hyper-Parameter Optimization 

The results presented in Table 3 show that with adjustment of the number of hidden layers and 
number of hidden layer neurons, a feedforward multilayer perceptron model (MLP) shows promise in 
terms of serving as a fully data-driven distribution system state estimator.   

Figures 9-16 reveal that the error distributions of an un-optimized MLP can be modeled as 
approximately Gaussian or more accurately as mixed Gaussian. 

VI. CONCLUSIONS 

State estimation applied to electric power systems has been proposed since the early 1970s.  The 
application of state estimation was primarily made to transmission systems as opposed to distribution 
systems. Classical or conventional state estimation was based upon an iterative algorithm to minimize 
error utilizing estimators such as weighted least squares. There are challenges to develop state 
estimation algorithms for power distribution systems due to inherent system unbalance among 
phases, bi-directional power flow and more recently, and dynamics  and uncertainty associated with 
distributed energy resources (i.e. photovoltaic ,wind, and electric vehicles). 

This research focuses on the data-driven approaches to the state estimation problem that employ the 
application of machine learning and neural networks in general and deep learning models in particular 
to mitigate the challenges associated with the direct application of conventional analytical 
approaches. Initial results based on MLPs are presented. The state estimation problem was staged 
with a power flow simulation of an IEEE 34 Node Test Feeder. This simulation provided input data 
consisting of real and reactive power flows between nodes and output or target data consisting of 
voltage magnitudes and phase angles at nodes for use in training MLPs. 

In future research, we will also examine CNN and LSTM architectures and hybrid models that may 
contain elements of conventional state estimation methods and various combinations of MLP, CNN 
and LSTM architectures. After training using the previously gathered input and output datasets from 
the power flow simulation, each of these model types will be evaluated in terms of their ability to 
perform regression in order to predict voltage magnitudes and phase angles as outputs given 
previously unseen real and reactive power as inputs. 

Initially, the models will not be optimized and their configuration will follow an ad-hoc or heuristic 
approach.  Future research will evaluate the ability to optimize so-called hyper-parameters of each 
model type to determine a methodical approach to model configuration. Consideration of application 
to larger distribution networks will also be made. 
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