Identification of differential pharyngeal cytokine profiles during HIV infection

R. A. P. M. Perera
The University of Hong Kong, China

P. C. S. Tsang
The University of Hong Kong, China

Craig S. Miller
University of Kentucky, cmiller@uky.edu

P. Li
Queen Elizabeth Hospital, China

M. P. Lee
Queen Elizabeth Hospital, China

See next page for additional authors

Follow this and additional works at: https://uknowledge.uky.edu/cohr_present

Part of the Dentistry Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
https://uknowledge.uky.edu/cohr_present/1

This Presentation is brought to you for free and open access by the Oral Health Research at UKnowledge. It has been accepted for inclusion in Center for Oral Health Research Presentations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Authors
R. A. P. M. Perera, P. C. S. Tsang, Craig S. Miller, P. Li, M. P. Lee, and L. P. Samaranayake
Identification of differential pharyngeal cytokine profiles during HIV infection

RAPM Perera¹*, PCS Tsang¹, C Miller², PL Li³, MP Lee³, LP Samaranayake¹

From Institut Pasteur International Network Annual Scientific Meeting
Hong Kong, 22-23 November 2010

Background
Significantly higher pharyngeal shedding of Epstein-Barr virus (EBV) is observed during HIV infection. Increased EBV shedding in pharynx is not affected even during highly active antiretroviral therapy (HAART). EBV positive monocyte populations have been shown to carry EBV to pharyngeal mucosa. Human cytokine profiles are often altered to facilitate herpes virus infection. Thus pharyngeal cytokine profiles may influence EBV reactivation and shedding during HIV infection. Our objective was to compare 37 pharyngeal cytokine profiles of HIV-seropositive patients who were or were not receiving HAART therapy.

Methods
120 HIV positive volunteers under HAART and 72 HIV patients not undergoing antiviral therapy were investigated. All Volunteers with oral pathologies and smoking were excluded. Pharyngeal secretions were collected using standard procedures and analyzed for 37 cytokine profiles using human cytokine profiler array panels and ELISA. Cytokine interactome maps generated using Ingenuity database.

Results
Proteome profiler arrays demonstrated differential cytokine expression among HIV infected individual under HAART, HIV infected individuals without HAART and the healthy control. HIV group consisted of up regulated C5a, G-CSF, CXCL1, soluble ICAM1, IL-1α, IL-1β, IL1-Ra, IL-6, IL-8, IL-10, IL-12α, IL-13, IL-16, IL-25, IL-23α, IL-27, IL-32α, CXCL10, CXCL11, CCL-13, MIF, CCL3, CCL4, SERPIN-E1, CCL5, CXCL12, TNFα and soluble TREM1 and down regulated soluble sCD40, eGM-CSF, I-309, IFN-γ, IL-17A, IL-2, IL-4, IL-5. From these C5a, sTREM1, TNF alpha, CXCL12, CCL5, IL-17E, IL-23, IL-32α, IL-16, CCL3, IL-6 showed significantly higher expression levels in both HIV groups compared to healthy group (P < 0.05). TGF β1 levels in HIV patients undergoing HAART (0.5 +/-0.1 ng/ml) and without HAART (0.4 +/-0.1 ng/ml) were significantly increased when compared with the healthy control group (0.3 +/-0.07 ng/ml) (P = 0.0001). TGF β1 levels had a significant positive correlation with higher CD4 counts in the group receiving HAART (P = 0.006). Cytokine interactome mapping revealed significantly increased immune cell trafficking in pharynx during HIV infection.

Conclusion
Pharyngeal TGF β1 levels are significantly increased during HIV infection. As TGF β1 is a known trigger of Epstein Barr viral lytic gene promoters, may influence pharyngeal reactivation of Epstein-Barr virus. Additionally, increased tendency for immune cell trafficking may facilitate EBV positive monocyte trafficking towards pharyngeal mucosa during HIV infection.

Author details
¹The University of Hong Kong, Hong Kong SAR. ²University of Kentucky, Lexington, KY 40536, USA. ³Queen Elizabeth Hospital, Hong Kong, Hong Kong SAR.

Published: 10 January 2011

doi:10.1186/1753-6561-5-S1-P90