Identification of proteins potentially involved in the formation of Lafora bodies, a hallmark of Lafora disease

Elham Schokraie
ETH Zurich, Switzerland

Oliver Kötting
ETH Zurich, Switzerland

Matthew S. Gentry
University of Kentucky

Follow this and additional works at: https://uknowledge.uky.edu/biochem_present

Part of the Cell Biology Commons, and the Molecular Biology Commons

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Repository Citation
Schokraie, Elham; Kötting, Oliver; and Gentry, Matthew S., "Identification of proteins potentially involved in the formation of Lafora bodies, a hallmark of Lafora disease" (2013). *Molecular and Cellular Biochemistry Presentations*. 1.
https://uknowledge.uky.edu/biochem_present/1

This Presentation is brought to you for free and open access by the Molecular and Cellular Biochemistry at UKnowledge. It has been accepted for inclusion in Molecular and Cellular Biochemistry Presentations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Identification of proteins potentially involved in the formation of Lafora bodies, a hallmark of Lafora disease

Elham Schokraie1*, Oliver Kötting1, Matthew S Gentry2

From Molecular Neurodegeneration: Basic biology and disease pathways
Cannes, France. 10-12 September 2013

Background
Lafora Disease (LD) is a fatal teenage-onset progressive myoclonus epilepsy. It is characterized by the formation of Lafora bodies (LBs), deposits of abnormally branched, insoluble, hyperphosphorylated glycogen-like polymers that are generally believed to trigger the development of the clinical symptoms of LD. 58% and 35% of the LD cases are caused by mutations in EPM2A (laforin) and EPM2B (malin), respectively. However, little is known about their function in LB formation. Two different mechanisms have been proposed to explain the accumulation of insoluble LBs: first, excessive glycogen phosphorylation and, second, an imbalance between glycogen synthesizing enzymes. The present study aims at the identification of proteins involved in the molecular mechanisms leading to LB formation and appearance of LD and the phosphorylation of glycogen.

Materials and methods
Isolation of native LBs is a prerequisite for proteomic analysis of proteins associated with LBs. Therefore, a workflow has been established for the isolation of native LBs from different tissues. Here, we show the analysis of brain, heart and skeletal muscle tissue from 9-month-old EPM2A−/− mice. Successful purification of the inclusion bodies was demonstrated by light microscopy after PAS and iodine staining and by electron microscopy. Peptides for analysis on a LTQ Orbitrap Velos were generated by In-solution tryptic digestion of proteins attached to the isolated bodies. To allow for a semi-quantitative analysis, wild-type tissues were prepared in parallel and used as controls. Each experiment was performed with two biological and two technical replicates.

Results
Using the established workflow we isolated native LBs of variable sizes and shapes from brain, heart and skeletal muscle of EPM2A−/− mice. The semi-quantitative analysis resulted in the identification of 90 proteins that were highly upregulated in knockout tissues or not detectable in the wild type. Many of these are well-known proteins involved in glycogen metabolism indicating the significance of our study. However, we also identified a number of interesting candidates potentially or de facto involved in disease related processes, such as autophagy.

Conclusions
We established the first workflow for the isolation of native LBs allowing for a subsequent proteomic analysis of associated proteins. Using this method, we identified known glycogen-related proteins together with new candidates putatively involved in LB formation and LD establishment representing potential targets for future therapeutic approaches.

Acknowledgement
This research project is funded within the programme “Rare Diseases - New Approaches” by GEBERT RÜF STIFTUNG (GRS-049/10), allocated to Oliver Kötting. This study was performed in cooperation with Functional Genomic Center Zurich (FGCZ) and Electron Microscopy Center of the ETH Zurich.

1Department of Biology, Plant Biochemistry, ETH Zurich, Zurich, Switzerland
Full list of author information is available at the end of the article
Authors’ details

1 Department of Biology, Plant Biochemistry, ETH Zurich, Zurich, Switzerland.
2 Department of Molecular and Cellular Biochemistry and Center for Structural Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.

Published: 13 September 2013

doi:10.1186/1750-1326-8-S1-P36

Cite this article as: Schokraie et al.: Identification of proteins potentially involved in the formation of Lafora bodies, a hallmark of Lafora disease. Molecular Neurodegeneration 2013 8 (Suppl 1):P36.