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Figure 1.3 RTK-Mediated Ras-ERK MAPK Cascade and PI3K-PDK1-Akt 

Pathway. Ligand binding induces the dimerization of RTKs, which triggers 

autophosphorylation of tyrosine residues located on the cytoplasmic portion of the 

receptor. Once phosphorylated, adapter proteins such as Shc/Grb2 binds in a sequence 

dependent fashion to specific phosphorylated tyrosine residues via SH2 domains and 

recruit additional proteins to the activated receptor complex.  Among these proteins are 

GEFs, such as Sos1, which once in proximity to the plasma membrane activates Ras 

small GTPases. The GTP-loaded Ras, in turn, activates the Raf/MEK/ERK signaling 

cascade scaffolded by KSR. Phosphorylated ERK proteins dimerize and translocate into 

the nucleus, where they activate transcription factors such as Elk-1 to control gene 

expression. PI3K can also be recruited to specific phospho-tyrosine residues on the 

activated RTK through the SH2 domain located in the p85 regulatory subunit. 

Meanwhile, Ras small GTPases can also directly interact with p110 catalytic subunit in a 

GTP-dependent manner. Both mechanisms have been proven crucial for PI3K activation. 

Once activated, PI3K produces PI(3,4,5)P3, which is responsible for the membrane 

recruitment of PDK1 and Akt via PH domains. Anchored onto the membrane, PDK1 

phosphorylates and activates Akt, which in turn phosphorylates multiple downstream 

targets and control diverse cellular functions, including cell survival. 
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The Effector Pathways of Ras 

 Activated Ras proteins interact with a diverse array of downstream effector 

proteins, allowing regulation of a wide range of signaling cascades [49]. At present, a 

number of Ras effector proteins have been identified by a variety of approaches, 

including genetic screens in Drosophila and C. elegans, biochemical binding assays and 

yeast two-hybrid screening. These effector proteins include Raf kinases, PI3K, RalGDS 

family proteins, Ras-association containing protein family (RASSF), phospholipase C-ε 

(PLCε), Ras interaction protein-1 (RIN1), ALL (acute lymphoblastic leukaemia)-1 fused 

gene on chromosome 6 (AF-6), etc [50, 51]. Through the regulation of this diverse 

collection of effector proteins, Ras proteins control a variety of cellular activities, 

including proliferation, differentiation, cell survival and death [25]. 

 

The Ras Effector Domain 

 The effector domain (G2 domain) of the Ras GTPases is responsible for the 

recognition and interaction with the downstream effector proteins [2]. Upon GTP 

binding, the G2 effector domain undergoes a conformational change, allowing effector 

protein binding. As discussed above, a variety of studies have revealed that individual 

Ras protein can act on multiple effector proteins. For instance, Ras signals through the 

activation of Raf1, PI3K, RalGDS, RIN1, AF6, etc. when GTP-bound [49]. This suggests 

that different residues within the effector domain are likely responsible for directing the 

association with different effector proteins. Indeed, analysis of Ras effector domain 

mutants has revealed point mutations that preferentially bind and activate one single 

downstream effector pathway. Using Ras as an example of this approach, Thr35 and Gln38 

residues have been shown to be required for PI3K and RalGDS binding, Glu37 is 

important for Raf1 and PI3K binding, while Tyr40 is critical for Raf1 and RalGDS 

binding [52]. These effector domain mutants of Ras proteins have been proved useful for 

determining the relative contribution of individual effector pathways to Ras function. For 

example, Rodriguez-viciana, et al. identified the critical role of PI3K in actin 

cytoskeleton rearrangement and cell transformation using this approach [52]. 
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MEK/ERK MAPK Cascade 

 The mitogen activated protein kinase (MAPK) cascades are well defined 

downstream effector pathways for a variety of Ras subfamily GTPases [49]. MAPK 

cascades are composed of three levels of protein kinases: MAP kinase kinase kinase 

(MAPKKK), MAP kinase kinase (MAPKK) and MAP kinase (MAPK) [53]. The 

activation of MAPK cascades involves the sequential phosphorylation of all three protein 

kinases. The first mammalian effector of Ras identified was the serine/threonine protein 

kinase Raf, which is a MAPKKK [54]. There are three closely related Raf proteins: A-

Raf, B-Raf, and C-Raf (Raf-1), all of which display high binding affinity to GTP-bound 

Ras with an intact effector domain.  The binding of Raf to plasma membrane anchored 

GTP-bound Ras relocates Raf from the cytoplasm. The full activation of Raf is 

contributed by a complex mechanism involving Ras binding in combination with 

association with scaffolding protein like kinase suppressor of Ras (KSR) and the action 

of a variety of additional cellular kinases [55]. Active Raf kinases then phosphorylate 

their direct substrates MEK1/2 (MAPKK). The dual specificity MEK1/2 kinases, in turn, 

phosphorylate the tandem threonine and tyrosine residues of ERK1/2 (MAPK) [53]. 

Upon phosphorylation, ERK1/2 homodimerizes and translocates into the nucleus, where 

they directly  or indirectly phosphorylate of a variety of transcriptional factors, such as 

Elk-1 and c-Jun, to activate gene expression, especially the expression of genes involved 

in cell cycle progression/cell proliferation (Fig. 1.3) [56].  

 To enhance the efficiency and specificity of MAPKKK/MAPKK/MAPK cascade 

signaling, all three kinases are often found pre-assembled on a “scaffolding” protein. For 

instance, KRS is able to bind to Raf, MEK1/2 and ERK1/2,  allowing this multidomain 

protein to exert substantial control over ERK signaling, influencing the signal intensity, 

time course, and importantly, the nature of the cellular response (Figure 1.3) [55]. 

Therefore, scaffolding complexes allow modulation of MAPK signaling and help to 

regulate fundamental cellular processes. 

 Besides ERK1/2, there are two other major MAPKs: p38 MAPK and JNK (c-Jun 

N-terminal kinase) [53]. Similar to ERK, both p38 and JNK MAPK pathways have 

equivalent three level kinase cascades, and both kinase cascades are downstream effector 

pathways for activated Ras proteins [53]. However, the cellular functions of these three 
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MAPK pathways are overlapping, but not identical. While ERK signaling is critical in 

mitogen signaling, p38 and JNK pathways are thought to play a major role in stress 

response and other pathways through the regulation of a distinct array of transcription 

factors [57, 58].  

 

p38 MAPK Pathway 

  p38 MAPKs, along with JNK, are also called stress-activated protein kinases 

(SAPKs) since they respond to various environmental and cellular stresses, such as 

osmotic stress, UV irradiation, hypoxia, oxidative stress and pro-inflammatory cytokines, 

although they are also activated by a number of growth factors [57]. Initially, p38 

MAPKs were extensively studied in cytokine-mediated signaling and considered 

important in inflammatory responses. However, later studies revealed that p38 MAPKs 

play critical roles beyond the stress response, including development, differentiation, 

proliferation and survival/apoptosis [59, 60]. p38 MAPKs are comprised of four isoforms 

in mammalian systems: p38α, p38β, p38γ and p38δ. However, these kinases share only 

about 60% sequence identity, suggesting that each may control diverse cellular functions 

[58]. This notion is supported by the distinct expression patterns of the isoforms. p38α/β 

are ubiquitously expressed, whereas p38γ/δ expression is more tissue restricted. p38γ is 

enriched in muscle and p38δ is highly expressed in lung and kidney [59]. Since most of 

available reagents are specific for the p38α and β isoforms, including selective 

pharmacological inhibitors (for example SB203580), both p38α and p38β are much better 

studied than the remainder of the family [61]. 

 Similar to the ERK cascade, the activation of p38 MAPKs involves a three-level 

hierarchical cascade (MAPKKK/MAPKK/MAPK) [53]. p38 MAPKs can be activated by 

dual specificity MAPKKs, MKK3/6, which phosphorylate a TGY module in the 

activation loop [57]. Unlike ERK, the p38 cascade is regulated by a large number of 

MAPKKKs, including MEKKs, apoptosis signal-regulating kinase 1 (ASK1), 

transforming growth factor β-activated kinase 1 (TAK1), and mixed lineage kinases 

(MLKs), all of which have been shown to activate MKK3/6 and ultimately regulate p38 

activity (Fig. 1.4) [57]. This reverse pyramidal structure for the p38 cascade indicates that 

a large number of different upstream stimuli (including both cellular stresses and 



16 
 

extracellular ligands) utilize specific MAPKKKs to feed into this kinase signaling 

pathway, which puts p38 at a key convergent regulatory point for a wide range of 

intracellular signaling networks.  

 To facilitate signal transduction specificity, scaffolding proteins are also involved 

in p38 signaling [62]. For instance, the OSM scaffold binds to MEKK3, MKK3 and p38 

MAPK. In response to osmotic stress, OSM is recruited to the plasma membrane and 

binds to the activated Rac GTPase [62]. Following assembly of the scaffolded complex, 

p38 MAPK is rapidly and spatially activated. This complex is conserved from yeast to 

mammals, suggesting its evolutionary importance [62]. In addition, some scaffolding 

proteins for JNK, such as JNK-interacting proteins (JIPs), also appear to function in the 

regulation of p38 MAPK signaling. JIP2 scaffolds a complex that contains the Rac GEFs 

Tiam and RasGRF1, MLK3, and MKK3 to specifically activate p38 MAPK [63]. 

 As a serine/threonine protein kinase, p38 MAPK acts by phosphorylating and 

subsequently regulating the activity of its direct substrates. These include transcription 

factors, a second tier of kinases, and phosphatases [64]. For example, p38 phosphorylates 

the ATF-2 transcription factor, which can form homodimers or heterodimers with c-Jun, 

therefore, regulate downstream gene targets [65]. p38 MAPK is also known to 

phosphorylate Sap-1a and growth arrest and DNA damage transcription factor 153 

(GADD153) [66, 67]. In addition to directly regulating gene transcription, p38 can also 

control signaling pathways by phosphorylating kinases including mitogen activated-

protein kinase activated protein kinases (MAPKAPKs, MK2/3) [68], mitogen- and stress-

activated protein kinases (MSK1/2) [69], mitogen-activated protein kinase-interacting 

kinases (MNK1/2) [70] and PRAK (also called MK5) [71]. Among these, MK2 is one of 

the best characterized substrate kinases. p38 and MK2 constitutively form a heterodimer 

and shuttle between the cytoplasm and nucleus, where they are able to phosphorylate a 

number of downstream targets upon stimulation [72]. These substrates include the small 

heat shock protein HSP27, which may contribute to the regulation of cytoskeleton 

dynamics, protein folding, and cell survival [73, 74]. 
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PI3K Pathway 

 Phosphatidylinositol 3-kinase (PI3K) is a lipid kinase which catalyzes the 

phosphorylation of phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2) at the 3’ position of 

the inositol ring to produce phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3), which 

is a well-known intracellular second messenger that binds to a group of proteins through 

their conserved pleckstrin homology (PH) domains [75]. PI3K is composed of a p110 

catalytic subunit and a p85 regulatory subunit (Fig. 1.3). The p110 catalytic subunit can 

directly interact with Ras GTPase in a GTP- and effector domain-dependent manner, 

making PI3K another downstream effector of Ras proteins [52, 76]. In addition, the 

recruitment of SH2 domain containing p85 regulatory subunit to phosphorylated RTK is 

also essential for the activation of PI3K [77]. Upon PI3K activation and PI(3,4,5)P3 

production, the protein kinases PDK1 and Akt, among numerous other PH domain 

containing proteins, are recruited to the plasma membrane, where these proteins control a 

range of signal transduction pathways [78, 79]. PDK1 displays constitutive kinase 

activity toward the AGC family kinases, including Akt/PKB, PKC, SGK 

(Serum/glucocorticoid regulated kinase) among others [79]. However, it is only when 

recruited to the plasma membrane that these kinase can interact with their substrates, 

many of which are simultaneously recruited to the plasma membrane via PH domains. 

Indeed, the PI3K-PDK1-Akt signaling axis is one of the most intensively studied 

growth/survival signaling pathways, and the simultaneous membrane recruitment of 

PDK1 and Akt has been shown to be essential for Akt activation [80]. 

  

Additional Ras Effector Pathways  

 Besides MAPK and PI3K pathways, there are several other well defined Ras 

effector pathways. RalGDS (Ral guanine nucleotide dissociation stimulator), which 

functions as GEFs for the Ral GTPases, is another well-studied Ras effector [81]. 

Through this effector cascade, Ras can regulate the Ral GTPases, leading to the 

regulation of phospholipase D1 (PLD1), and Forkhead O transcription factors (FoxO) 

family [82, 83]. 

 Phospholipase Cε has also been identified as a Ras effector [84]. As a member of 

the PLC family, PLCε hydrolyzes phosphatidylinositol 4,5-diphosphate (PI(4,5)P2), 
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The lack of mTORC2 specific inhibitors has made it difficult to study mTORC2-

mediated signaling. Rapamycin specifically inhibits mTORC1 signaling. However, it acts 

by binding Raptor, leading to the disassembly of mTORC1 without altering mTOR 

kinase activity and therefore not altering mTORC2 complex activity [230]. Recently, the 

discovery of an efficient ATP-binding competitive inhibitor for mTOR makes 

pharmacological inhibitor studies feasible for mTORC2. By comparing rapamycin 

treatment alone, with co-treatment of rapamycin and an mTOR kinase inhibitor, it is 

possible to identify mTORC2 specific targets [272, 273]. Importantly, this combination 

inhibitor strategy may prove useful for studying the role of mTORC2 in Rit-mediated 

biology. 

 mTORC2 is a key regulator of AGC kinase family members including Akt, SGK 

and PKC within their conserved hydrophobic regulatory motif. All of these kinases are 

known to play crucial cellular roles including cell survival, energy metabolism, 

cytoskeleton dynamics and cell motility [226, 274]. Since Rit can stimulate mTORC2 

activity, it will be interesting to investigate the possible roles of Rit in these biological 

processes. For instance, both Rit and PKC are known to regulate neurite outgrowth in 

neuronal cell lines as well as primary neurons [102, 109, 111, 242]. This suggests that Rit 

may regulate mTORC2-PKC pathway to control neurite outgrowth, which will be 

important future research direction. 

 

Rit and Adult Neurogenesis 

 Adult neurogenesis is a recently discovered physiological activity in the adult 

brain, which is responsible for the continuous production of new neurons in the central 

nervous system. Two major niches with high levels of adult neurogenesis have been 

identified in vertebrates, the SGZ in the hippocampal DG and SVZ of the lateral 

ventricles[137]. Adult neurogenesis in the SGZ is of particular interest since it appears to 

play a critical role in new memory formation [135].  In addition, adult neurogenesis 

appears to play a role in recovery/repair following brain injury-induced hippocampal 

neuron loss [181, 182]. The data included in this thesis indicates that Rit is a regulator of 

adult neurogenesis in the SGZ, particularly following traumatic brain injury, by 

regulating the survival of newborn hippocampal neurons.  
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 Following controlled cortical impact, an experimental model of TBI, Rit loss 

selectively exacerbates the loss of Dcx+ immature neuron within the DG, strongly 

suggesting that Rit signaling plays a protective role in this neuron population after injury 

(Fig. 5.8). This conclusion was supported by in vitro studies showing that Rit loss 

selectively sensitizes Dcx+ immature neurons to H2O2 (Fig. 5.5). TBI results in an acute 

and massive loss of immature neurons in the DG, compromising the very population of 

cells poised to compensate for trauma-induced neuronal loss. And recent work suggests 

that the loss of these cells following TBI exacerbates the resultant cognitive dysfunction 

[181]. Thus, these studies suggest that Rit signaling may facilitate brain recovery after the 

injury. However, more questions remain to be answered. In addition to newborn 

immature neurons, neural stem cells (NSCs) have also been shown to be vulnerable, 

including TBI [175]. Our in vitro culture studies indicate that Rit promotes the survival of 

immature neurons, but not nestin+ NSCs, following oxidative stress (Fig. 5.5). Whether 

Rit contributes to neural stem cell survival following TBI in vivo remains to be examined. 

The study is technically challenging due to the lack of effective immunostaining 

protocols allowing for neural stem cell quantification. To address this question, it is likely 

that our Rit-/- mice with need to be crossed with Nestin-GFP transgenic mice, which 

express GFP in nestin+ neural stem cells within hippocampal dentate gyrus [141].  

The molecular mechanism(s) underlying Rit-mediated neuron survival following 

TBI remain to be addressed. The data from this dissertation shows that loss of Rit impairs 

both p38 and Akt phosphorylation after H2O2 exposure, implicating p38-MK-HSP27-Akt 

signaling cascade in Rit-dependent survival signaling (Fig. 5.3). More studies are needed 

to determine, as discussed above, whether additional signaling pathways are involved. It 

would not be surprising if p38-MSK1/2-CREB signaling, or other cascades were also 

shown to contribute to neural survival. To confirm that Rit activation is alone sufficient 

to promote neuronal survival, it will be necessary to generate an inducible RitQ79L 

expressing transgenic mouse line. With this model, it would be possible to test whether 

active Rit expressing neurons display increased resistance following TBI, and to confirm 

the importance of specific downstream effector pathways in Rit-mediated pro-survival 

signaling. 
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 Based upon the studies described in this dissertation, Rit loss impairs IGF-1, but 

not BDNF, signaling in hippocampal neurons (Figs. 6.3 & 6.4), supporting a role for Rit 

in IGF-1-mediated signal transduction. IGF-1 is known to promote the proliferation and 

survival of multiple cell types, including important roles in regulation of the central 

nervous system [162, 253, 254, 256]. TBI transiently upregulates brain IGF-1 level [275], 

which can lead to a robust increase in the proliferation of neural stem cells [167]. This 

pathway appears to represent an endogenous neuroprotective or repair mechanism, and 

we hypothesize that Rit may play an important role in this cascade. To test this notion, a 

series of studies will be needed. First, we need to track the proliferation of neural stem 

cells shortly after TBI. By tracking the number of BrdU+ cells co-labeled with specific 

neuronal markers (Nestin, Dcx and NeuN), we should be able to assess the contribution 

of Rit to the TBI-induced upregulation of adult neurogenesis. We expect that Rit loss will 

attenuate TBI-induced adult neurogenesis. If so, it will then be important to determine if 

Rit loss impairs adult neurogenesis induced by exogenous IGF-1 administration in naïve 

or brain-injured mice.  

IGF-1 has also been shown in an array of in vivo studies to involve in exercise-

induced adult neurogenesis and neuron survival [159, 163, 164]. Physical exercise 

induces synthesis and secretion of IGF-1 in the liver and boosts the level of circulating 

IGF-1, which enters central nervous system by crossing blood-brain barrier. As a result, 

physical exercise leads to increased IGF-1 in the brain, including hippocampus, which 

may be responsible for the survival of neurons as well as the enhancement of the 

proliferation and differentiation of neural stem cells in the hippocampal DG. Therefore, it 

will be interesting to ask whether Rit is involved in physiological stimuli such as exercise 

to modulate adult neurogenesis. Understanding the potential role of Rit in IGF-1 

signaling may have great clinical significance. Decreased expression level of cerebral 

IGF-1R in the patients with Alzheimer’s disease suggests that patients with 

neurodegenerative diseases may have obtained some level of IGF-1 resistance, which 

could hamper the effect of direct IGF-1 administration [276, 277]. Novel therapies for 

neurodegenerative diseases may be developed through selectively targeting Rit signaling, 

thus bypassing IGF-1R. 
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 In addition, IGF-1 signaling has also been suggested to play important roles in 

some other disease processes including supporting cancer development [254]. Future 

studies will investigate whether Rit also contributes to IGF-1 signaling-dependent cancer 

cell proliferation. 

 

Rit in Neuron Morphogenesis 

 Our earlier studies have identified a critical role of Rit in neurite outgrowth in 

PC6 cells [95, 107], suggesting Rit is a key regulator of neuronal differentiation. In 

addition, ectopic overexpression of constitutively active and dominant negative Rit 

mutant in primary neuron cultures has revealed that the fine regulation of Rit activation in 

primary neurons may contribute to the control of neuron morphology [109]. Active Rit is 

able to induce axonal extension while inhibiting dendritic elongation, with the opposite 

effects resulting from dominant-negative Rit expression in primary cultured neurons. 

Taken together, these data indicate that Rit may play an important role in neuron 

morphogenesis. Therefore, it is important in future to examine in more detail the 

morphology of Rit null neurons. Golgi-Cox stain is a proven method for examining 

neuron morphology, including quantification of the dendrite number, branch complexity 

and length, as well as dendritic spine density and morphology [278]. Mechanistic studies 

indicate that both p38 and ERK MAP kinases are involved in Rit-mediated neurite 

outgrowth [95]. We have now shown that both Rit and p38 contribute to mTORC2 kinase 

activity regulation (See Chapter Four). Collectively, it is plausible to ask whether Rit-

p38-mediated neurite outgrowth and neuron morphogenesis requires mTORC2 as a 

downstream target, since mTORC2 has been shown to regulate cytoskeleton 

rearrangement, regulating cell motility and morphology in multiple cell models from 

single cell organisms to vertebrates [133, 279-282]. Future studies could be directed at 

examining the role of Rit-mTORC2 signaling in primary neuron cultures as well as 

neuronal cell lines. 

 

In conclusion, the data presented in this dissertation has identified a novel and 

unexpected physiological role for Rit in promoting cell survival in response to oxidative 

stress. Importantly Rit selectively promotes newborn immature neuron survival following 
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traumatic brain injury, which, to our knowledge, makes Rit the first small GTPase shown 

to play a critical role in the survival of a select population of developing neurons. This 

Rit-mediated pro-survival pathway appears to be dependent upon p38 MAPK-MK2-

HSP27-Akt signaling complex in a fashion that depends upon mTORC2 activity. Future 

studies will need to investigate the upstream signals that controls stress-dependent Rit 

activation, the molecular mechanisms that couple Rit to p38 MAPK and its coupling to 

potentially distinct downstream signaling complexes, and the specific cellular targets that 

underlie Rit-mediated survival. In addition, this work has revealed a previously 

unrecognized but critical role for Rit in IGF-1 signaling, suggesting Rit a key regulator of 

IGF-1-mediated biology including adult neurogenesis. Future studies will be needed to 

investigate the contribution of Rit to adult neurogenesis, which may provide novel 

avenues for the development of new therapeutic strategies for the treatment of patients 

suffering from brain injuries and neurodegenerative diseases. 
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Appendix 

List of Abbreviations 

 

4E-BP1 Elongation initiation factor 4E-binding protein 1 
AC  Adenylate cyclase 
AF-6  ALL (acute lymphoblastic leukemia)-1 fused gene on chromosome 6 
AGC family Protein kinase A/G/C family 
aPKC  Atypical protein kinase C 
AraC  Cytosine arabinoside 
Arf  ADP-ribosylation factor 
ASK1  Apoptosis signal-regulating kinase 1 
ATP  Adenosine triphosphate 
BDNF  Brain-derived neurotrophic factor 
BMP7  Bone morphogenetic protein 7 
BrdU  3’-bromodeoxyuridine 
BSA  Bovine serum albumin 
cAMP  cyclic AMP (adenosine monophosphate) 
CCI  Controlled cortical impact 
Cdc25  Cell division cycle 25 
CMV  Cytomegalovirus 
CREB  cAMP-response element binding protein 
CTR  Control 
DAG  Diacylglycerol 
Dcx  Doublecortin 
DIV  Days in vitro 
DG  Dentate gyrus 
DMEM Dulbecco’s modified Eagle’s medium 
DNA-PK DNA protein kinase 
DTT  Dithiothreitol 
EGF  Epithelial growth factor 
ER  Endoplasmic reticulum 
ERK  Extracellular signal regulated protein kinase 
ES  Embryonic stem cell 
ET  Etoposide 
FBS  Fetal bovine serum 
FGF  Fibroblast growth factor 
FJC  Fluorojade-C 
FoxO  Forkhead O transcription factor 
FRET  Fluorescence resonance energy transfer 
GAP  GTPase-activating protein 
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GAPDH Glyceraldehyde 3-phosphate dehydrogenase 
GCV  Ganciclovir 
GDI  Guanine nucleotide dissociation inhibitor 
GDNF  Glial cell line-derived neurotrophic factor 
GDP  Guanosine diphosphate 
GEF  Guanine nucleotide exchange factor 
GFAP  Glial fibrillary acidic protein 
GFP  Green fluorescent protein 
GPCR  G-protein coupled receptor 
GST  Glutathione-S-transferase 
GTP  Guanosine triphosphate 
GTPase Guanosine triphosphatase 
H2O2  Hydrogen peroxide 
HA  Hemaggliutinin  
HSP27  Heat shock protein 27 
hsvTK  Thymidine kinase enzyme from herpes simplex virus 
IFN-γ  Interferon-γ 
IGF-1  Insulin-like growth factor 
IGF-1R IGF-1 receptor 
Iκ-B  Inhibitory factor for NF-κB 
IKK  Iκ-B kinase 
IP  Immunoprecipitation 
i.p.  Intraperitoneally 
IP3  1,4,5-trisphosphate 
IPTG  Isopropyl-β-D-thiogalactopyranoside 
IRS-1  Insulin receptor substrate-1 
JIP  JNK-interacting protein 
JNK  c-Jun N-terminal kinase 
KSR  Kinase suppressor of Ras 
MAP2  Microtubule associated protein 2 
MAPK  Mitogen-activated protein kinase 
MEF  Mouse embryonic fibroblast 
MEK  MAP kinase kinase/ERK kinase 
MK2  MAPK-activated protein kinase 2 
MLK  Mixed lineage kinase 
MST1/2 Mammalian Ste20-like kinase 1/2 
mTOR  Mammalian target of rapamycin 
mTORC1/2 Mammalian TOR complex ½ 
NeuN  Neuronal Nuclei 
NF-κB  Nuclear factor κ B 
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NGF  Nerve growth factor 
NGS  Normal goat serum 
NSC  Neural stem cell 
NT-3  Neurotrophin-3 
OSM  Osmosensing scaffold for MKK3 
PACAP38 Pituitary adenylate cyclase-activating polypeptide-38 
PAGE  polyacrylamide gel electrophoresis 
PARP  Poly (ADP-ribose) polymerase 
PBS  Phosphate buffered saline 
PC6  Pheochromocytoma 6 cell line 
PCR  Polymerase chain reaction 
PFA  Paraformaldehyde 
PH  Pleckstrin homolog domain 
PI3K  Phosphatidylinositol-3 kinase 
PKC  Protein kinase C 
PLC  Phospholipase C 
PSA-NCAM Polysialylated neural cell adhesion molecule 
Rab  Ras-related GTP-binding protein 
Ran  Ras-related nuclear protein 
Raptor  Regulatory associated protein of mTOR 
Ras  Rat sarcoma 
RASSF Ras-association containing protein family 
RBD  Ras-binding domain 
Rho  Ras homolog gene family 
Ric  Ras-related protein which interacts with calmodulin 
Rictor  Rapamycin-insensitive companion of mTOR 
Rin  Ras-related protein in neurons 
RIN1  Ras interaction protein-1 
Rit  Ras-related protein in tissues 
ROS  Reactive oxygen species 
RT  Room temperature 
RTK  Receptor tyrosine kinase 
RT-PCR Reverse transcription-PCR 
S6K1  Ribosomal protein S6 kinase 1 
SAPK  Stress-activated protein kinase 
S.D.  Standard deviation 
SDS  Sodium dodecyl sulfate 
SEM  Standard error mean 
SGK  Serum/glucocorticoid regulated protein kinase 
SGZ  Sub-granular zone 
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SH2  Src homology 2 domain 
SH3  Src homology 3 domain 
shRNA small hairpin RNA 
Sin1  SAPK-interacting protein 1 
SOD  Superoxide dismutase 
Sos1  Son of sevenless 1 
SV40  Simian virus 40 
SVZ  Sub-ventricular zone 
TAK1  transforming growth factor β-activated kinase 1 
TBI  Traumatic brain injury 
TM  Tunicamycin 
TNF-α  Tumor necrosis factor-α 
TrkA  Neurotrophic tyrosine kinase receptor A 
TrkB   Neurotrophic tyrosine kinase receptor B 
UPS  Ubiquitin-proteasome system 
VEGF  Vascular endothelial growth factor 
WT  Wild-type 
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