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tumor cells [28–30] and with drug resistance [31] (for review see

[32]). RT-PCR was performed on all cell types using three known

isoforms of uPAR precursors, including the soluble receptor,

isoform 2 (see Methods). As shown in Figure 4D, reduced RNA

expression was observed for LNCaPLN3 in the presence of DBP-

maf at both 0.001 and 1 mg/mL of DBP-maf for both uPAR1 and

uPAR2 isoforms. The isoforms uPAR2 and uPAR3 showed

similar reduction of expression with DBP-maf treatment of PC3M

cells. Interestingly, although PC3MLN4 cells showed no signifi-

cant response to DBP-maf (Figure 5D), there was a statistically

significant reduction of uPAR2 with DBP at 1 mg/mL. In almost

all conditions examined, after 72 hours uPAR levels had returned

to control values (data not shown). The peptide was also tested

using the cell line (LNCaPLN3), which was active in all assays and

(PC3M), which was active in migration but not in proliferation.

They showed no significant change in any of the uPAR isoform

levels with the peptide (Figure 6A and 6B). The tumor lines were

then tested to observe the effect of DBP-maf on uPAR expression

at the protein level. Cells were harvested after 24 hours and lysates

were immunoblotted. As shown in Figure 4, DBP-maf did not

inhibit the expression of uPAR in any cell lines after 24 hours

(Figure 7A), however a reduction was seen after 72 hours only in

the LNCaPLN3 cells (Figure 7B). DBP treated cells showed no

significant change in receptor expression.

Discussion

The vitamin D binding protein DBP-maf, has been shown to

inhibit both tumor and blood vessel growth. We demonstrate here,

for the first time, a direct effect on prostate cancer cells in the

absence of macrophages, increasing the scope of DBP-maf beyond

its already demonstrated antiangiogenic and immuno-modulatory

Figure 5. DBP-maf inhibits expression of uPAR in PC3M cells. PC3M, and PC3MLN4 cells were treated with DBP or DBP-maf (0.001 and 1 mg/
mL) and incubated for 24 hours then harvested. RT products (cDNA), identified as uPAR1, 2, and 3, were amplified by real-time quantitative PCR.
p,0.05.
doi:10.1371/journal.pone.0013428.g005

Figure 6. DBP-maf peptide does not inhibit expression of uPAR in PC3M or LNCaPLN3 cells. LNCaPLN3 (A) and PC3M cells (B) were
treated with DBP or DBP-maf (0.001 and 1 mg/mL) and incubated for 24 hours then harvested. RT products (cDNA), identified as uPAR1, 2, and 3, were
amplified by real-time quantitative PCR. p,0.05.
doi:10.1371/journal.pone.0013428.g006

DBP-maf Inhibits Tumor Cells

PLoS ONE | www.plosone.org 8 October 2010 | Volume 5 | Issue 10 | e13428



characteristics. DBP-maf demonstrated potent inhibition of both

proliferation and migration of tumor cells.

It is interesting to note the response of the parental PC3M cells

compared to the metastatic clone. PC3M cells did not show

sensitivity to DBP-maf in proliferation assays, but their migration

was inhibited by DBP-maf. There was a reduction of uPAR

expression as detected by RT-PCR, but protein expression of the

uPAR isotypes tested appeared unchanged. Finally, DBP-maf

caused a slight increase in loss due to apoptosis or necrosis (Table 1),

whereas the other cell lines demonstrated decreased apoptosis or

necrosis. The metastatic clone PC3MLN4 exhibited a potent

response to treatment in both proliferation and migration even at

low dose (1 ng/mL) but showed no reduction in uPAR expression

either at the mRNA or protein level. Additional proliferation studies

were done to determine whether the discrepancy in response

between the parental and metastatic clone was due to a general

change in cell sensitivity. Calcitriol showed potent and consistent

inhibition among all cell types within identical dose ranges. PC3M

and PC3MLN4 cells were also tested with etoposide and their

responses were similar (data not shown), suggesting that the

metastatic clone gained sensitivity to DBP-maf that the parental

line does not demonstrate. The effect of DBP-maf on PC3MLN4

cells caused the highest significant reduction rates of proliferation

and migration compared to the other cell lines. Studies showed all

tumor cell lines to be sensitive to DBP-maf in migration assays.

Our observations in culturing of these cells were that the

metastatic clones of both PC3M and LNCaP were more sensitive

to trypsinization than the parental lines. Many factors may

regulate the migration of cells and although uPAR is a possible

mediator, it may not be the sole mechanism by which DBP-maf

inhibits migration. The peptide was effective in migration studies

but showed no ability to affect proliferation or uPAR expression.

Since the peptide represents only a portion of the protein it does

not possess all of the domains of the native DBP-maf, such as the

vitamin D binding region. It is possible that the ability to regulate

migration and proliferation resides in separate domains of the

protein. Although all of the cell lines responded to DBP-maf in one

or more of the assays, only LNCaPLN3 demonstrated reduction of

the uPAR protein level. It is possible, however, that the antibody

does not recognize all isoforms of uPAR.

It is now commonly accepted that the tumor microenviron-

ment, and not just the tumor cell alone, represents an effective

target for therapy. In addition to the investigation of anti-tumor

effects, the method of delivery of these drugs is being explored.

Figure 7. DBP-maf inhibits protein expression of uPAR. LNCaP, LNCaPLN3, PC3M, and PC3MLN4 were treated with DBP or DBP-maf and
incubated for 24 hours (A) then harvested and immunoblotted using an anti-uPAR antibody. LnCaPLN3 cells at 72 hours (B). p,0.05.
doi:10.1371/journal.pone.0013428.g007

DBP-maf Inhibits Tumor Cells

PLoS ONE | www.plosone.org 9 October 2010 | Volume 5 | Issue 10 | e13428



Bioavailability is a crucial component of any therapeutic

strategy. Poor absorption, internalization, short half-life in

circulation, and a number of other deficiencies can make a

therapy that has shown great promise in vitro, ineffective in the

clinic. The effective in vivo doses for DBP-maf (pg-ng) have

tended to be lower than the in vitro doses (ng-mg range) [4,6–10].

Perhaps this is because of multiple mechanisms of its activity.

The potential to impact blood vessel growth and tumor cell

growth as well as stimulate a potent immune response through

macrophage activation is difficult to measure in toto using in vitro

approaches. They do, however, provide a way to characterize

these effects individually.

The effect of DBP-maf treatment on uPAR expression in

prostate tumor cells was previously unknown. uPAR expression

has been correlated with tumor metastasis in a number of tumors

[26,28–30,32]. Studies of esophageal tumors showed PAI-1 and

uPA were expressed throughout the tumors but not in normal

esophageal tissue and that uPAR was expressed at the tumor

borders [33,34]. A link between pancreatic cancer and uPA has

been demonstrated, which could explain the potent effect of DBP-

maf in our previous pancreatic tumor studies [33].

The relationship among the plasmin-related proteins PAI-1,

uPA and uPAR is complex [35]. Although PAI-1 inhibits the

expression of uPA, which would be thought to inhibit tumor

progression, PAI-1 also promotes tumor growth and angiogenesis

on its own [36,37]. In this sense, a therapy that would attenuate

uPAR expression without promoting tumor growth would be

valuable. Since metastasis is the primary cause of death in cancer

patients, uPAR sensitivity to DBP-maf may represent an attractive

avenue for further study.
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