• Home
  • Search
  • Browse Collections
  • My Account
  • About
  • DC Network Digital Commons Network™
Skip to main content

UKnowledge

  • Home
  • About
  • FAQ
  • My Account

UKnowledge > College of Engineering > Civil Engineering > Research Data

Civil Engineering Research Data

 
Printing is not supported at the primary Gallery Thumbnail page. Please first navigate to a specific Image before printing.

Follow

Switch View to Grid View Slideshow
 
  • Multi-Temporal UAV Images and GeoDatabase Used to Estimate Temporal and Spatial Soil Moisture Content by L. Sebastian Bryson and Batmyagmar Dashbold

    Multi-Temporal UAV Images and GeoDatabase Used to Estimate Temporal and Spatial Soil Moisture Content

    We used small unmanned aerial vehicle (UAV) with optical digital camera to detect a land movement and to extract soil parameters. Using multi-temporal images in Garrard County, Kentucky, we detected land movement on three pairs of images that were captured one month apart. The multi-temporal images and the result of the movement analysis are available in folders. In addition, vertical displacement analysis is carried out using Differential Interferometry technique (DinSAR) to a pair of Synthetic Aperture Radar (SAR) images. Soil moisture data was estimated using linear regression machine learning model, and the python code and table used as training points ...Read More

  • GeoDatabase and Modeling Code Used for Landslide Hazard and Susceptibility Mapping in Eastern and Northern Kentucky by L. Sebastian Bryson, Batmyagmar Dashbold, and Matthew M. Crawford

    GeoDatabase and Modeling Code Used for Landslide Hazard and Susceptibility Mapping in Eastern and Northern Kentucky

    We created a landslide susceptibility map using spatial soil property features extracted from the NRCS WSS that include percent sand, percent silt, percent clay, saturated hydraulic conductivity, available water capacity, one third bar water content, plasticity index, and liquid limit, all of which were used as features in the logistic regression analysis. We also used satellite soil moisture data, and a high-resolution (1.5 m) LiDAR-derived digital elevation map (DEM) which include slope, aspect, curvature, elevation, roughness, and plan curvature. We show that using publicly available data, a multi-temporal landslide hazard map can be created that will produce a close-to-real time ...Read More

  • Landslide Soil Hydrology Data for Three Landslides in Kentucky by Matthew M. Crawford and L. Sebastian Bryson

    Landslide Soil Hydrology Data for Three Landslides in Kentucky

    This data is from three landslides monitored in Kentucky between October 2015 and September 2020. The purpose was to capture and analyze subsurface hydrologic conditions within the landslides at different slope positions over time. The site descriptions, field methodology, data-acquisition techniques, and observations provide a general picture of soil moisture in hillslope soils. Data collected includes volumetric water content, soil water potential, bulk electrical conductivity, bulk dielectric permittivity, temperature. Water potential is the energy state of water in the soil, a determination of stress in the soil based on how water moves. Water potential can be described as the negative ...Read More

 
 
 

Advanced Search

  • Notify me via email or RSS

Browse

  • Collections
  • Disciplines
  • Authors

Author Corner

  • Author FAQ
  • Submit Research
 
Elsevier - Digital Commons

Home | About | FAQ | My Account | Accessibility Statement

Privacy Copyright