Abstract

Seed germination requirements may determine the kinds of habitat in which plants can survive. We tested the hypothesis that nitrogen (N) addition can change seed germination trait-environmental filter interactions and ultimately redistribute seed germination traits in alpine meadows. We determined the role of N addition on germination trait selection in an alpine meadow after N addition by combining a 3-year N addition experiment in an alpine meadow and laboratory germination experiments. At the species level, germination percentage, germination rate (speed) and breadth of temperature niche for germination (BTN) were positively related to survival of a species in the fertilized community. In addition, community-weighted means of germination percentage, germination rate, germination response to alternating temperature and BTN increased. However, germination response to wet-cold storage (cold stratification) and functional richness of germination traits was lower in alpine meadows with high-nitrogen addition than in those with no, low and medium N addition. Thus, N addition had a significant influence on environmental filter-germination trait interactions and generated a different set of germination traits in the alpine meadow. Further, the effect of N addition on germination trait selection by environmental filters was amount-dependent. Low and medium levels of N addition had less effect on redistribution of germination traits than the high level.

Document Type

Article

Publication Date

5-14-2021

Notes/Citation Information

Published in Frontiers in Plant Science, v. 12, article 634850.

© 2021 Liu, Liu, Zhang, Zhang, Baskin, Baskin, Liang, Bu, Li, Zhang, Cui and Xiao

This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Digital Object Identifier (DOI)

https://doi.org/10.3389/fpls.2021.634850

Funding Information

This study was supported by the National Natural Science Foundation of China (Grant nos. 31670437, 31760132), the National Key R&D Program of China (Project no. 2018YFD0502401), and the Research Fund for Scientific Program of Higher Education of Gansu Province (2017A-141).

Share

COinS