Year of Publication

2011

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Arts and Sciences

Department

Statistics

First Advisor

Dr. Richard J. Kryscio

Abstract

The typical research of Alzheimer's disease includes a series of cognitive states. Multi-state models are often used to describe the history of disease evolvement. Competing risks models are a sub-category of multi-state models with one starting state and several absorbing states.

Analyses for competing risks data in medical papers frequently assume independent risks and evaluate covariate effects on these events by modeling distinct proportional hazards regression models for each event. Jeong and Fine (2007) proposed a parametric proportional sub-distribution hazard (SH) model for cumulative incidence functions (CIF) without assumptions about the dependence among the risks. We modified their model to assure that the sum of the underlying CIFs never exceeds one, by assuming a proportional SH model for dementia only in the Nun study. To accommodate left censored data, we computed non-parametric MLE of CIF based on Expectation-Maximization algorithm. Our proposed parametric model was applied to the Nun Study to investigate the effect of genetics and education on the occurrence of dementia. After including left censored dementia subjects, the incidence rate of dementia becomes larger than that of death for age < 90, education becomes significant factor for incidence of dementia and standard errors for estimates are smaller.

Multi-state Markov model is often used to analyze the evolution of cognitive states by assuming time independent transition intensities. We consider both constant and duration time dependent transition intensities in BRAiNS data, leading to a mixture of Markov and semi-Markov processes. The joint probability of observing a sequence of same state until transition in a semi-Markov process was expressed as a product of the overall transition probability and survival probability, which were simultaneously modeled. Such modeling leads to different interpretations in BRAiNS study, i.e., family history, APOE4, and sex by head injury interaction are significant factors for transition intensities in traditional Markov model. While in our semi-Markov model, these factors are significant in predicting the overall transition probabilities, but none of these factors are significant for duration time distribution.

Share

COinS