Year of Publication

2016

Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation

College

Agriculture, Food and Environment

Department

Plant and Soil Sciences

First Advisor

Dr. Paul M. Bertsch

Second Advisor

Dr. David H. McNear Jr.

Abstract

Engineered nanomaterials (ENMs) have become ubiquitous in consumer products and industrial applications, and consequently the environment. Much of the environmentally released ENMs are expected to enter terrestrial ecosystems via land application of nano-enriched biosolids to agricultural fields. Among the organisms most likely to encounter nano-enriched biosolids are the key soil bacteria known as plant growth promoting rhizobacteria (PGPR). I reviewed what is known concerning the toxicological effects of ENMs to PGPR and observed the need for high-throughput methods to evaluate lethal and sublethal toxic responses of aerobic microbes. I addressed this issue by developing high-throughput microplate assays which allowed me to normalize oxygen consumption responses to viable cell estimates. Oxygen consumption is a crucial step in cellular respiration which may be examined relatively easily along with viability and may provide insight into the metabolic/physiological response of bacteria to toxic substances.

Because many of the most toxic nanomaterials (i.e. metal containing materials) exhibit some level of ionic dissolution, I first developed my methods by examining metal ion responses in the PGPR, Bacillus amyloliquefaciens GB03. I found this bacterium exhibits differential oxygen consumption responses to Ag+, Zn2+, and Ni2+. Exposure to Ag+ elicited pronounced increases in O2 consumption, particularly when few viable cells were observed. Also, while Ni2+ and Zn2+ are generally thought to induce similar toxic responses, I found O2 consumption per viable cell was much more variable during Ni2+ exposure and that Zn2+ induced increased O2 utilization to a lesser extent than Ag+. Additionally, I showed my method is useful for probing toxicity of traditional antibiotics by observing large increases in O2 utilization in response to streptomycin, which was used as a positive control due to its known effects on bacterial respiration.

After showing the utility of my method for examining metal ion responses in a single species of PGPR, I investigated the toxicity of silver ENMs (AgENMs) and ions to three PGPR, B. amyloliquefaciens GB03, Sinorhizobium meliloti 2011, and Pseudomonas putida UW4. The ENM exposures consisted of untransformed, polyvinylpyrrolidone coated silver ENMs (PVP-AgENMs) and 100% sulfidized silver ENMs (sAgENMs), which are representative of environmentally transformed AgENMs. I observed species specific O2 consumption responses to silver ions and PVP-AgENMs. Specifically, P. putida exhibited increased O2 consumption across the observed range of viable cells, while B. amyloliquefaciens exhibited responses similar to those found in my first study. Additionally, S. meliloti exhibited more complex responses to Ag+ and PVP-AgENMs, with decreased O2 consumption when cell viability was ~50-75% of no metal controls and increased O2 consumption when cell viability was <50%. I also found the abiotically dissolved fraction of the PVP-AgENMs was likely responsible for most of the toxic response, while abiotic dissolution did not explain the toxicity of sAgENMs.

My work has yielded a straightforward, cost-effective, and high-throughput method of evaluating viability and oxygen consumption in aerobic bacteria. I have used this method to test a broad range of toxic substances, including, metal ions, antibiotics, and untransformed and transformed ENMs. I observed species specific toxic responses to Ag+, PVP-AgENMs, and sAgENMs in PGPR. These results not only show the clear utility of the methodology, but also that it will be crucial to continue examining the responses of specific bacterial strains even as nanotoxicology, as a field, must move toward more complex and environmentally relevant systems.

Digital Object Identifier (DOI)

http://dx.doi.org/10.13023/ETD.2016.346