Year of Publication

2012

Degree Name

Master of Science (MS)

Document Type

Master's Thesis

College

Agriculture

Department

Plant and Soil Science

First Advisor

Dr. John H. Grove

Abstract

Corn nitrogen (N) applications are still done on a field basis in Kentucky, according to previous crop, soil tillage management and soil drainage. Soil tests, as well as plant analysis for N, are not very useful in making N fertilizer rate recommendations for corn. Recommended rates assume that only 1/3 to 2/3 of applied N is recovered, variability largely due to the strong affect of weather on the release of soil N and fertilizer N fate. Many attempts have been made to apply N in a more precise and efficient way. Two experiments were conducted at Spindeltop, the University of Kentucky’s experimental farm near Lexington, over two years (2010, 2011), using a commercially available active optical sensor (GreanSeekerTM) to compute the normalized difference vegetative index (NDVI), and with this tool/index assess the possibility of early (V4-V6) N deficiency detection, grain yield prediction by NDVI with and without side-dressed N, and determination of the confounding effect of soil background on NDVI measurements. Results indicated that the imposed treatments affected grain yield, leaf N, grain N and grain N removal. Early N deficiency detection was possible with NDVI. The NDVI value tended to saturate in grain yield prediction models. The NDVI was affected by tillage management (residue/soil color background differences), which should be taken into account when using NDVI to predict grain yield. Side-dress N affected NDVI readings taken one week after side-dressing, reducing soil N variability and plant N nutrition. There is room for improvement in the use of this tool in corn N management.

Share

COinS