Abstract

OBJECTIVES: Calcium independent group VIA phospholipase A2 (iPLA2β) is up-regulated in vascular smooth muscle cells in some diseases, but whether the up-regulated iPLA2β affects vascular morphology and blood pressure is unknown. The current study addresses this question by evaluating the basal- and angiotensin II infusion-induced vascular remodeling and hypertension in smooth muscle specific iPLA2β transgenic (iPLA2β-Tg) mice.

METHOD AND RESULTS: Blood pressure was monitored by radiotelemetry and vascular remodeling was assessed by morphologic analysis. We found that the angiotensin II-induced increase in diastolic pressure was significantly higher in iPLA2β-Tg than iPLA2β-Wt mice, whereas, the basal blood pressure was not significantly different. The media thickness and media∶lumen ratio of the mesenteric arteries were significantly increased in angiotensin II-infused iPLA2β-Tg mice. Analysis revealed no difference in vascular smooth muscle cell proliferation. In contrast, adenovirus-mediated iPLA2β overexpression in cultured vascular smooth muscle cells promoted angiotensin II-induced [3H]-leucine incorporation, indicating enhanced hypertrophy. Moreover, angiotensin II infusion-induced c-Jun phosphorylation in vascular smooth muscle cells overexpressing iPLA2β to higher levels, which was abolished by inhibition of 12/15 lipoxygenase. In addition, we found that angiotensin II up-regulated the endogenous iPLA2β protein in-vitro and in-vivo.

CONCLUSION: The present study reports that iPLA2β up-regulation exacerbates angiotensin II-induced vascular smooth muscle cell hypertrophy, vascular remodeling and hypertension via the 12/15 lipoxygenase and c-Jun pathways.

Document Type

Article

Publication Date

2-20-2012

Notes/Citation Information

Published in PLoS One, v. 7, no., 2, p. 31850.

© 2012 Calderon et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Digital Object Identifier (DOI)

http://dx.doi.org/10.1371/journal.pone.0031850

Included in

Physiology Commons

Share

COinS