Year of Publication

2011

Degree Name

Doctor of Philosophy (PhD)

Document Type

Dissertation

College

Engineering

Department

Computer Science

First Advisor

Dr. Zongming Fei

Abstract

In wireless networks, devices (nodes) are connected by wireless links. An important issue is to set up high quality (high bandwidth) and efficient routing paths when one node wants to send packets to other nodes. Resource allocation is the foundation to guarantee high quality connections. In addition, it is critical to handle void areas in order to set up detour-free paths. Moreover, fast message broadcasting is essential in mobile wireless networks. Thus, my research includes dynamic channel allocation in wireless mesh networks, geographic routing in Ad Hoc networks, and message broadcasting in vehicular networks.

The quality of connections in a wireless mesh network can be improved by equip- ping mesh nodes with multi-radios capable of tuning to non-overlapping channels. The essential problem is how to allocate channels to these multi-radio nodes. We develop a new bipartite-graph based channel allocation algorithm, which can improve bandwidth utilization and lower the possibility of starvation. Geographic routing in Ad Hoc networks is scalable and normally loop-free. However, traditional routing protocols often result in long detour paths when holes exist. We propose a routing protocol-Intermediate Target based Geographic Routing (ITGR) to solve this problem. The novelty is that a single forwarding path can be used to reduce the lengths of many future routing paths. We also develop a protocol called Hole Detection and Adaptive Geographic Routing, which identifies the holes efficiently by comparing the length of a routing path with the Euclidean distance between a pair of nodes. We then set up the shortest path based on it. Vehicles play an important role in our daily life. During inter-vehicle communication, it is essential that emergency information can be broadcast to surrounding vehicles quickly. We devise an approach that can find the best re-broadcasting node and propagate the message as fast as possible.

Share

COinS