Year of Publication

2009

Degree Name

Doctor of Philosophy (PhD)

Document Type

Dissertation

College

Engineering

Department

Civil Engineering

First Advisor

Dr. James Fox

Abstract

Sediment transport at the watershed scale in the Bluegrass Region of Kentucky is dominated by surface fine grained laminae, streambed, and streambank erosion; high instream sediment storage; and surface erosion processes. All these processes can be impacted by agricultural, urban, and suburban land-uses as well as hydrologic forcing. Understanding sediment transport processes at the watershed scale is a need for budgeting and controlling sediment pollution, and watershed modeling enables investigation of the cumulative effect of sediment processes and the parameters controlling these processes upon the entire sediment budget for a watershed. Sediment transport is being modeled by coupling the hydrologic model Hydrologic Simulations Program-FORTRAN (HSPF) with an in-house conceptually based hydraulic and sediment transport model. The total yield at the watershed outlet as well as the source fractions from surface fine grained lamina, streambed, and streambank sources; deposition; and biological generation within the streambed are predicted with the sediment transport model. Urbanization scenarios are then run on the calibrated model so as to predict the sediment budget for the South Elkhorn watershed for present and future conditions.

Share

COinS