Year of Publication

2007

Degree Name

Doctor of Philosophy (PhD)

Document Type

Dissertation

College

Engineering

Department

Electrical Engineering and Computer Science

First Advisor

Dr. Henry G. Dietz

Second Advisor

Dr. William R. Dieter

Abstract

Energy consumption is increasingly affecting battery life and cooling for real- time systems. Dynamic Voltage and frequency Scaling (DVS) has been shown to substantially reduce the energy consumption of uniprocessor real-time systems. It is worthwhile to extend the efficient DVS scheduling algorithms to distributed system with dependent tasks. The dissertation describes how to extend several effective uniprocessor DVS schedul- ing algorithms to distributed system with dependent task set. Task assignment and deadline assignment heuristics are proposed and compared with existing heuristics concerning energy-conserving performance. An admission test and a deadline com- putation algorithm are presented in the dissertation for dynamic task set to accept the arriving task in a DVS scheduled real-time system. Simulations show that an effective distributed DVS scheduling is capable of saving as much as 89% of energy that would be consumed without using DVS scheduling. It is also shown that task assignment and deadline assignment affect the energy- conserving performance of DVS scheduling algorithms. For some aggressive DVS scheduling algorithms, however, the effect of task assignment is negligible. The ad- mission test accept over 80% of tasks that can be accepted by a non-DVS scheduler to a DVS scheduled real-time system.

Share

COinS