Year of Publication


Document Type





Chemical Engineering

First Advisor

Dibakar Bhattacharyya


Nanosized metal particles have become an important class of materials in the field of catalysis, optical, electronic, magnetic and biological devices due to the unique physical and chemical properties. This research deals with the synthesis of structured bimetallic nanoparticles for the dechlorination of toxic organics. Nanoparticle synthesis in aqueous phase for dechlorination studies has been reported. However, in the absence of polymers or surfactants particles can easily aggregate into large particles with wide size distribution. In this study, we report a novel in-situ synthesis method of bimetallic nanoparticles embedded in polyacrylic acid (PAA) functionalized microfiltration membranes by chemical reduction of metal ions bound to the carboxylic acid groups. Membrane-based nanoparticle synthesis offers many advantages: reduction of particle loss, prevention of particle agglomeration, application of convective flow, and recapture of dissolved metal ions. The objective of this research is to synthesize and characterize nanostructured bimetallic particles in membranes, understand and quantify the catalytic hydrodechlorination mechanism, and develop a membrane reactor model to predict and simulate reactions under various conditions. In this study, the PAA functionalization was achieved by filling the porous PVDF membranes with acrylic acid and subsequent in-situ free radical polymerization. Target metal cations (iron in this case) were then introduced into the membranes by ion exchange process. Subsequent reduction resulted in the formation of metal nanoparticles (around 30 nm). Bimetallic nanoparticles can be formed by post deposition of secondary appropriate metal such as Pd or Ni. The membranes and bimetallic nanoparticles were characterized by: SEM, TEM, TGA, and FTIR. A specimen-drift-free X-ray energy dispersive spectroscopy (EDS) mapping system was used to determine the two-dimensional element distribution inside the membrane matrix at the nano scale. This high resolution mapping allows for the correlation and understanding the nanoparticle structure, second metal composition in terms of nanoparticle reactivity. Chlorinated aliphatics such as trichloroethylene and conjugated aromatics such as polychlorinated biphenyls (PCBs) were chosen as the model compounds to investigate the catalytic properties of bimetallic nanoparticles and the reaction mechanism and kinetics. Effects of second metal coating, particle size and structure and temperature were studied on the performance of bimetallic system. In order to predict reaction at different conditions, a two-dimensional steady state model was developed to correlate and simulate mass transfer and reaction in the membrane pores under convective flow mode. The 2-D equations were solved by COMSOL (Femlab). The influence of changing parameters such as reactor geometry (i.e. membrane pore size) and Pd coating composition were evaluated by the model and compared well with the experimental data.