Year of Publication

2004

Document Type

Dissertation

College

Agriculture

Department

Plant Pathology

First Advisor

Christopher L. Schardl

Abstract

Neotyphodium species, endophytic fungi associated with cool-season grasses, enhance host fitness and stress tolerance, but also produce biologically active alkaloids including ergot alkaloids associated with fescue toxicosis in grazing animals. One approach to reduce fescue toxicosis is to manipulate genes in the ergot alkaloid pathway. The gene, dmaW, encoding the first pathway-specific step in ergot alkaloid biosynthesis, was cloned previously from Claviceps spp. and its function was demonstrated by expression in yeast. Putative homologs have been cloned from Neotyphodium coenophialum (from tall fescue) and Neotyphodium sp. Lp1 (from perennial ryegrass). In order to confirm the function of dmaW in ergot alkaloid production, dmaW in Neotyphodium sp. isolate Lp1 was knocked out by gene replacement. The dmaW knockout mutant produced no detectable ergovaline or simpler ergot alkaloids. Complementation with Claviceps fusiformis dmaW restored ergovaline production. These results confirmed that the cloned endophyte gene was dmaW, and represented the first genetic experiments to show the requirement of dmaW for ergot alkaloid biosynthesis. Neotyphodium coenophialum, endophyte of the grass tall fescue (Lolium arundinaceum) has two homologs of dmaW. Considering the possible field applications in future, the Cre/lox site-specific recombination system was chosen because of the potential to sequentially knock out both homologs and obtain marker-free dmaW mutants of N. coenophialum. One homolog, dmaW-2, was disrupted by marker exchange, and the marker was eliminated by Cre, thus demonstrating the application of Cre/lox system in N. coenophialum to eliminate a marker gene. The dmaW-2 knockout did not eliminate ergovaline production, indicating that the dmaW-1 was probably also active in N. coenophialum. A putative ergot alkaloid biosynthesis gene cluster was identified in Claviceps purpurea and C. fusiformis. C. purpurea and C. fusiformis produce different subsets of ergot alkaloids. Identification of nine common genes between them suggests the possible role of these genes in the early part of the ergot alkaloid biosynthetic pathway.

Share

COinS