Year of Publication

2011

Degree Name

Doctor of Philosophy (PhD)

Document Type

Dissertation

College

Engineering

Department

Mechanical Engineering

First Advisor

Dr. Fazleena Badurdeen

Second Advisor

Dr. I.S. Jawahir

Abstract

In this research, a decision support model for coordinating sustainable product and supply chain design decisions is developed using a multi-stage hierarchical approach. The model evaluates alternate product designs and their corresponding supply chain configurations to identify the best product design and the corresponding supply chain configuration that maximizes the economic, environmental and societal benefits. The model considers a total life-cycle approach and incorporates closed-loop flow among multiple product lifecycles. In the first stage, a mixed integer linear programming model is developed to select for each product design an optimal supply chain configuration that maximizes the profit. In the subsequent stages, the economic, environmental and societal multiple life-cycle analysis models are developed which assess the economic, environment and the societal performance of each product design and its optimal supply chain configuration to identify the best product design with highest sustainability benefits.

The decision support model is applied for an example problem to illustrate the procedure for identifying the best sustainable design. Later, the model is applied for a real-time refrigerator case to identify the best refrigerator design that maximizes economic, environmental and societal benefits. Further, sensitivity analysis is performed on the optimization model to study the closed-loop supply chain behavior under various situations. The results indicated that both product and supply chain design criteria significantly influence the performance of the supply chain. The results provided insights into closed-loop supply chain models and their behavior under various situations. Decision support models such as above can help a company identify the best designs that bring highest sustainability benefits, can provide a manager with holistic view and the impact of their design decisions on the supply chain performance and also provide areas for improvement.

Included in

Engineering Commons

Share

COinS