
University of Kentucky University of Kentucky

UKnowledge UKnowledge

University of Kentucky Master's Theses Graduate School

2010

DETECTION OF ROOF BOUNDARIES USING LIDAR DATA AND DETECTION OF ROOF BOUNDARIES USING LIDAR DATA AND

AERIAL PHOTOGRAPHY AERIAL PHOTOGRAPHY

Andrew David Gombos
University of Kentucky, gombos@gmail.com

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Gombos, Andrew David, "DETECTION OF ROOF BOUNDARIES USING LIDAR DATA AND AERIAL
PHOTOGRAPHY" (2010). University of Kentucky Master's Theses. 75.
https://uknowledge.uky.edu/gradschool_theses/75

This Thesis is brought to you for free and open access by the Graduate School at UKnowledge. It has been
accepted for inclusion in University of Kentucky Master's Theses by an authorized administrator of UKnowledge.
For more information, please contact UKnowledge@lsv.uky.edu.

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/gradschool_theses
https://uknowledge.uky.edu/gradschool
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu

ABSTRACT OF THESIS

DETECTION OF ROOF BOUNDARIES USING LIDAR DATA AND AERIAL
PHOTOGRAPHY

The recent growth in inexpensive laser scanning sensors has created entire fields of
research aimed at processing this data. One application is determining the polygonal
boundaries of roofs, as seen from an overhead view. The resulting building outlines
have many commercial as well as military applications. My work in this area has
created a segmentation algorithm where the descriptive features are computationally
and theoretically simpler than previous methods. A support vector machine is used
to segment data points using these features, and their use is not common for roof
detection to date. Despite the simplicity of the feature calculations, the accuracy of
our algorithm is similar to previous work. I also describe a basic polygonal extraction
method, which is acceptable for basic roofs.

KEYWORDS: LiDAR data, Support Vector Machine, Segmentation,
Building extraction, terrain

Author’s signature: Andrew David Gombos

Date: May 7, 2010

DETECTION OF ROOF BOUNDARIES USING LIDAR DATA AND AERIAL
PHOTOGRAPHY

By
Andrew David Gombos

Director of Thesis: Ruigang Yang

Director of Graduate Studies: Raphael Finkel

Date: May 7, 2010

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the University
of Kentucky Library are as a rule open for inspection, but are to be used only with
due regard to the rights of the authors. Bibliographical references may be noted, but
quotations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the
signature of each user.

Name Date

THESIS

Andrew David Gombos

The Graduate School
University of Kentucky

2010

DETECTION OF ROOF BOUNDARIES USING LIDAR DATA AND AERIAL
PHOTOGRAPHY

THESIS

A thesis submitted in partial
fulfillment of the requirements for
the degree of Master of Science in
the College of Engineering at the

University of Kentucky

By
Andrew David Gombos
Lexington, Kentucky

Director: Dr. Ruigang Yang, Professor of Computer Science
Lexington, Kentucky 2010

Copyright c© Andrew David Gombos 2010

To Stephanie

ACKNOWLEDGMENTS

I would like to thank Dr. Ruigang Yang, for his guidance and support during this

project. I would also like to thank committee members Dr. Judy Goldsmith and Dr.

Jinze Liu for their advice and support during this project. Finally I would like to

thank Dr. Raphael Finkel for assisting as the Director of Graduate Studies, and the

rest of the Computer Science department faculty and staff.

iii

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . iv

List of Figures . v

Chapter 1 Introduction . 1
1.1 Types of remote sensors . 2
1.2 Related work . 2

Point cloud only methods . 2
Photograph Augmented methods . 4
Related tasks . 4

1.3 Goal and contribution . 5
1.4 Outline . 5

Chapter 2 Preliminaries . 6
2.1 Introduction to Support Vector Machines 6
2.2 An overview of LiDAR systems . 8

Chapter 3 Method . 10
3.1 Training . 10
3.2 Recognition . 11
3.3 Basic data structures . 13

Chapter 4 Feature vector creation . 14
4.1 Feature selection . 14
4.2 Calculation . 15

Chapter 5 Implementation and Experimental Results 19
5.1 Results . 19
5.2 Accuracy measurements . 25

Chapter 6 Conclusions and future work . 26
6.1 Acknowledgments . 26

Bibliography . 27

Vita . 30

iv

LIST OF FIGURES

2.1 Illustration of an support vector machine model. Colored circles indicate
the feature vectors of two separate classes. Darker colored circles indicate
the support vectors. 7

2.2 Linear, Polynomial, Gaussian Radial Basis, and Sigmoid kernels. u and
v are feature vectors, γ, b, and d are constants. T denotes the transpose
vector. 7

2.3 An example of a LiDAR data set. The green flat regions are roofs, and
the red clouds are trees . 8

2.4 Irregular spacing of LiDAR data points 9
2.5 Different LiDAR height returns for the same point 9

3.1 Accuracy percentages for varying γ and c values 11
3.2 A roof probability map. Roofs have a very strong signature, while the

road and creek are barely visible . 12
(a) Probability bitmap. White pixels indicate a higher probability

of belonging to a roof . 12
(b) Aerial photograph of the same region 12
(c) The probability bitmap overlaid on the aerial photo. The white

dots representing the roofs are clearly visible 12

5.1 Aerial photographs of the training tiles 20
(a) Tile 1 . 20
(b) Tile 2 . 20

5.2 Three testing tiles, with different characteristics 21
(a) A dense neighborhood setting, with some more sparsely popu-

lated areas . 21
(b) A suburban setting with a few large buildings 21
(c) The large highways and factories form one of the most prominent

features of this tile . 21
5.3 Resulting classification of the tile in Figure 5.2a. 22

(a) Classification of the tile in Figure 5.2a using a model trained on
the tile in Figure 5.1b. Red areas are false positive areas, blue
areas are false negatives, and purple areas are true positives. . . 22

(b) A region of the probability bitmap from the results shown in part
(a). The detected roofs and sheds are clearly visible as whiter
patches. No intensity correction was applied to this image. . . . 22

5.4 A comparison of the results between training tiles. The neighborhood
based training tile provides much more accurate results. 23

(a) Using the tile of Figure 5.1a . 23
(b) Using the tile of Figure 5.1b . 23

v

5.5 Large roofs are missing due to the aggressive error reduction algorithm,
even though they were properly detected in the LiDAR data. 23

(a) The large roofs, such as the blue region in the upper right corner,
are not properly detected . 23

(b) The blue region is easily detected in the probability bitmap . . 23
5.6 The large, incorrect region of highway was successfully removed from the

output. Only smaller buildings, such as houses, remain. 24
(a) This image has some small noise artifacts, but large noise regions

are successfully removed. The highway runs across the top of this
image . 24

(b) This section of the highway was strongly detected in the proba-
bility bitmap (Image enhancement applied for clarity) 24

5.7 Examples of detected roof polygons . 25
(a) High quality detection results 25
(b) Detected roofs which were not in the reference map 25

vi

Chapter 1 Introduction

This thesis presents a new technique for modeling polygonal roof outlines from laser
scanned point cloud data and aerial photographs. An emphasis is placed on the
simplicity of the feature calculations used to describe each point mathematically.
This results in a method which is easy to understand, as well as easy to compute.
A support vector machine is used to classify the data into roof and non-roof groups
based on these features. I implemented and tested the algorithm on real-world data,
and achieved high quality results on a wide variety of roof types.

The recent explosion of interest in urban data collection has provided a huge
amount of information for accurate three dimensional models. Photographic imagery
is available from satellites, airplanes, and vehicles with roof-mounted cameras. Simi-
larly, high resolution point cloud data is available from airplanes and vehicle-mounted
laser scanners. Accurate data describing roads, landmarks, protected areas such as
parks, bodies of water, and other points of interest are generated by mapping compa-
nies. The most ambitious projects seek to combine all of this data together to create
realistic models of urban environments. Much research has been dedicated to various
components of this task, such as building reconstruction and tree identification.

This work takes a much more narrow scope than generating a complete model
of a city. We are only interested in determining the outlines of a building roof from
above. Despite the reduced complexity of this task, building outline information
is still very useful. The outlines are painstakingly created by hand by surveying
and mapping companies. The areas of geographical information systems (GIS) and
photogrammetry involve the creation, manipulation, and interpretation of this data.

Wide scale roof outline information (collected over many square miles) may be
analyzed by a property valuation authority (PVA), zoning commissions, real estate
developers, land use managers, farmers, and census bureaus. For example, the city
of Lexington, Kentucky recently passed an ordinance which charges property owners
a fee based on the area of impervious surfaces on the property [10]. Automated
methods to detect buildings, parking lots, sidewalks, and other impervious surfaces
would make it much easier to calculate the required fees. A zoning commission may
also want statistics about the average footprint of buildings in a neighborhood, to
determine if a new building would meet the defined zone. Other statistics, such as
the average distance from a building to the nearest road or the land use percentage
are easily calculated. It is also straightforward to determine how many buildings, and
their sizes, lie in a flood plain other other areas susceptible to natural disasters.

It is possible to automatically generate three dimensional roof models using only
the outline. Many common types of roofs can be accurately described by the straight
skeleton of the boundary, as described in Laycock and Day [15] and Ross et al. [20].
If the height of the outline is also stored, then a simple model of the building can be
easily generated.

1

1.1 Types of remote sensors

To eliminate much of the tedious manual surveying work, our environmental data is
collected by remote sensing methods. These methods are differentiated by their res-
olution, accuracy, and cost. The Shuttle Radar Topography Mission [5] used a radar
system attached to the Space Shuttle to achieve approximately 30 meter resolution.
While this resolution works well for determining the rough elevation changes for a
digital elevation model (DEM), it is not acceptable for modeling fine details of a re-
gion. Similarly, the National Elevation Dataset [8] provides resolutions of three, ten,
and 30 meters. While this data was specifically processed to represent the bare land
elevation, much of it was collected using stereo imaging techniques. In this method,
two photographs are taken of the same region at different positions. The parallax
shift between these two images can be used to determine the elevation of specific
points.

Laser based scanners are more appropriate for our needs. They provide a high
resolution view of anything on the surface — trees, buildings, automobiles and power
lines may all be detected by a laser based scanner. Note that most of these features
are of items we are not interested in. Aerial scanning using a LiDAR (Light Detection
and Ranging) system can provide a high resolution, top-down view of the ground.
Photographs can be taken simultaneously, resulting in an orthographic image which
is georeferenced to correspond exactly with the LiDAR points. These photographs
usually have a much higher resolution than the returned pulses from the scanner, so
they are important for determining the exact boundaries of building footprints on the
ground.

Vehicle and tricycle mounted scanners and cameras can produce data similar to the
aerial coverage. However, the different vantage point provides important side views
of buildings. These can be used to create and texture map more complete models of
buildings and other features. Data collected using this method is not very useful for
determining roof outlines, since the roof itself is not generally sampled. Therefore,
aerial collection of data is the most common for roof detection and segmentation.

1.2 Related work

Roof and building recognition algorithms can be classified into two main categories.
The first category only uses point cloud information and various recognition tech-
niques to classify buildings. The second category augments the point clouds with
georeferenced photographic data. The reconstructed models may also be texture
mapped if enough photographs are available of the sides of the building.

Point cloud only methods

Segmenting the various features which appear in a point cloud has many applica-
tions, such as automatically mapping the locations of different objects in an urban
environment. Golovinskiy et al. [9] attached a laser scanner to a vehicle, and accu-
rately map small elements of the environment such as mailboxes, light posts, and

2

stop signs. By using a vehicle mounted scanner, significant detail at the street level
can be produced. However, aerial data is still necessary to get a complete picture of
larger structures such as buildings. They also used sophisticated methods to segment
different point clouds from one another, to properly detect different objects in the
environment. This is not necessary for our project, since our data does not have a
high enough density, or the correct perspective to distinguish smaller objects.

Several groups have also proposed methods to generate complete building models
by fitting planes to the roof surfaces. Zhou and Neumann [27] first preprocess the
input data to remove vegetation which would disrupt the rest of the process. Then a
region-growing algorithm is used to discover all planar patches in the data. After the
largest patches are combined to form the ground level patch, the remaining patches
are combined to form the planar roof polygons. While this is an effective technique,
it can only handle flat, planar roofs without user intervention. Finding a curved roof
such as those on some barns and silos is not directly possible using this method.

Tarsha-Kurdi et al. [25] use simple mathematical principles to find probable roof
planes. Their work compares two methods: 3D Hough transform and a RANdom
SAmple Consensus (RANSAC) algorithm. The 3D Hough transform suffers from
several problems similar to the two-dimensional version — there is a direct trade off
between the step size though the parameter space and the required memory resources
and computational time. If a large parameter step size is used, then planes which
do not lie along the plane defined by the parameter values will probably not be
detected. Their RANSAC formulation is much quicker, and several modifications to
the basic algorithm are described to give higher-quality results. However, like the
Hough transform method, the error each estimated plane must be calculated across
the entire point set. Since identified plane points are removed after each iteration of
the algorithm, the performance will improve over time. While our algorithm uses a
RANSAC technique to determine the ground level, the number of points considered
is limited to improve the performance of the feature generation algorithm.

Rottensteiner and Briese [21] introduce a curvature-based segmentation approach
to locate probable roof planes. Planes are iteratively grown from seed points, and
new points are added that meet certain tolerance requirements for the existing plane.
After the planar regions are developed, several post-processing steps are performed
to refine the collection of planes which actually belong to roofs. As with all methods
which only utilize LiDAR data, the quality of the results is dependent on the original
resolution of the data points. To address this problem, they propose an extension of
the method which uses photographs to improve the edge resolution.

Verma et al. [26] attempt to match entire polyhedral roof structures, rather than
simple planes, onto the data. If the polyhedra are able to model all of the possible
roof sub-structures in the landscape, then very high quality models can be produced.
However, roof sub-structures which do not have a corresponding polyhedral model
cannot be recognized at all. The current work also does not address non-planar roof
structures.

Pu and Vosselman [19] take a different approach, by recognizing individual fea-
tures of a building, such as windows, doors, and walls. This method produces a
much more detailed model which can then be texture mapped. While some roof

3

polygons can be determined from the ground level perspective data that this algo-
rithm requires, the entire roof outline cannot be determined. However, it is useful as
a complementary technique for generating a complete, detailed urban map.

These methods all rely on the point cloud data being as free of irrelevant data as
possible. Since only geometric information such as curvature, point density, and the
nearest neighbors to a point is available, any noise such as trees and power lines can
prevent good results. Adding other layers of information, such as photographs of the
region, can help to remove these irrelevant points.

Photograph Augmented methods

Recognizing and properly segmenting vegetation is one of the most important tasks
for building reconstruction, since vegetation is the most likely source of noise in the
point cloud. Secord and Zakhor [23] combine point cloud data with aerial imagery to
remove vegetation such as trees which may interfere with the roof detection process.
Their process is very similar to ours, with the goal of detecting trees rather than
roofs. First, a feature vector is calculated for each point, using characteristics such
as the image color (in the hue, saturation, value color space) and the approximate
surface normal. The resulting feature vectors are used as the input into a weighted
support vector machine model, which is described in more detail in Section 2.1.

Satellite imagery utilizing non-visible wavelengths of light can also be used to
classify different regions as building and vegetation. Since different materials absorb
infrared and ultraviolet light differently, they can be more accurately distinguished
than by relying on visible attributes such as color. Sohn and Dowman [24] exploit
this property by combining IKONOS imagery with LiDAR data. However, IKONOS
imagery does not have the spatial resolution necessary for using the image to improve
the accuracy of the building outline. Additionally, satellite imagery is an extra ex-
pense on top of the LiDAR collection cost, while an aerial photograph may be taken
from the same airplane and at the same time as the LiDAR data.

Ameri and Fritsch [2] also use aerial photographs to refine the models generated
from a point cloud and produce more accurate results. In addition to refining the
detected edges, their system is also able to detect small features which are not well
represented in the point cloud, such as dormer windows. A new regression algorithm
is used to fit approximate roof planes to the points that are clustered by a region
growing algorithm. The results of this algorithm are much more detailed than are
necessary for our application, but would be a good choice for urban modeling.

Related tasks

The accurate detection of roof outlines can be made easier by preprocessing the data
first. Koch et al. [14] describe a method to segment individual trees in a forest. While
we are not interested in the exact tree count of an area, several of the techniques
they describe may be used to segment trees in urban environments. They suggest
an inverse-watershed segmentation method, where regions are created which have a
monotonically decreasing height from the region’s maximum.

4

Alharthy and Bethel [1] give several techniques that may be used to filter out
artifacts in the data and produce more accurate results. One significant and simple
method involves exploiting a property of LiDAR measurements. Each data point
can have multiple associated height values, corresponding to different heights from
which the laser beam was reflected back.1. By filtering out points which have a large
difference in the return heights, points belonging to objects such as trees and cars are
removed. However, this filtering technique may erroneously remove points belonging
to glass roofs, such as green houses, skylights, and large atriums.

1.3 Goal and contribution

Many of the existing algorithms outlined above perform complex mathematical oper-
ations on the data, such as principle component analysis and regression algorithms to
calculate the final roof polyhedra. Our method seeks to simplify the required manip-
ulation of the data. This has two significant advantages over previous methods. The
first advantage is that the calculation of feature vectors is relatively fast. Since the
characteristics of each point are calculated using only local features, the problem is
trivially parallelizable. While my implementation does not parallelize feature vector
calculation, a significant speedup can be realized. Additionally, if the point cloud is
broken down into smaller tiles which are processed in parallel, the height of the quad
trees and nearest neighbor trees will be reduced, further improving the execution
time.

The second advantage is that our method is not limited to specific shapes or
geometries of roofs. By carefully choosing the training data to include uncommon
roof structures such as domes and semi-cylindrical barn roofs, these regions can also
be recognized without any modification to the underlying algorithm. This also means
that the algorithm can successfully recognize a large variation in the sizes of roofs.
Small roofs with only a few data points, such as a backyard shed, are recognized by
the model. Large roofs, such as those for factories and warehouses, are also detected.

1.4 Outline

Section 2 begins with an overview of several critical components of our system. In
Section 3 we give an overview of the algorithm used to identify building roofs. Section
4 will describe the algorithms as well as the necessary data structures in more detail.
Section 5 will give details about our specific implementation of the algorithm. The
section will also give some experimental results which show how well the method
works on large areas of land. Finally, Section 6 will give some conclusions about the
success and applicability of our method.

1Section 2.2 explains this idea in much more detail.

5

Chapter 2 Preliminaries

2.1 Introduction to Support Vector Machines

The support vector machine (SVM) was developed by Cortes and Vapnik in 1995 [4].
A SVM directly estimates the boundary surface model between two or more classes
of data points. The model consists of parameters for a hyperplane that separates
the two classes as completely as possible. The hyperplane model is trained using an
iterative approach which is guaranteed to converge. Support vector machines perform
well even when there are outliers in the data, so they work well for our application
which has many potential outliers.

Each data point is represented as a feature vector, or a list of attributes which
describe the characteristics each data point has. These attributes are typically floating
point numbers, so the feature vector is an array of floating point numbers. Each
element in the array describes a particular characteristic of the data, such as the
height of a point or the red component of the RGB pixel. The feature vectors may
be combined into a large, rectangular matrix with the characteristic labels on each
column, and each row describes a feature vector.

These features must be selected so that they classify points into a specific class.
The hyperplane chosen to define the boundary between two classes must maximize
the margin, or the perpendicular distance from the boundary to the closest feature
vector. Features which lie on the margin boundary are called support vectors. These
features are used to define the boundary, and classify the unknown data. Since only
the data points that are around the boundary from the two classes are examined,
any outliers in the data are automatically eliminated from consideration without any
preprocessing of the data. Figure 2.1 gives an illustration of the different components
of a support vector machine model.

Linear boundary functions are easy to calculate, but they are not useful to describe
many types of data classes. The shape of the hypersurface that is used is defined by
a kernel function. This allows the SVM to easily support nonlinear boundaries by
simply changing the kernel function that is used. Some common kernels are shown
in Figure 2.2. The kernel function must be evaluated for training as well as unknown
feature classification stages, so if efficiency is important it is necessary to choose the
kernel with the least complexity that will achieve the desired classification accuracy.

Feature selection and parameter estimation are important stages to get the best
results out of an SVM. One of the most important techniques I have found for getting
good results out of an SVM is to scale the data to the range [0, 1] or [−1,+1]. Each
element of the feature vector is scaled independently. Thus, for a six element feature
vector, there are six independent scaling factors which must be applied. By scaling the
data before the model is trained, numerical instability is reduced when multiplying
large matrices. Additionally, extremely high peaks in the data will not overshadow
other elements in the feature set. Therefore, scaling the data is a useful way to make
sure that all of the features that are used are seen as equally important (or weighted,

6

Margin

Boundary

Figure 2.1: Illustration of an support vector machine model. Colored circles indicate
the feature vectors of two separate classes. Darker colored circles indicate the support
vectors.

uTv
(
γuTv + b

)d
e−γ|u−v|

2
tanh(γuTv + b)

Figure 2.2: Linear, Polynomial, Gaussian Radial Basis, and Sigmoid kernels. u and
v are feature vectors, γ, b, and d are constants. T denotes the transpose vector.

if some features are more important than others).
Determining exactly which features produce the best result is also important.

Unfortunately this must be done by testing random combinations of features and
examining the validation accuracy, rather than some general heuristic. Grid search
procedures should be used to optimize the parameters of the model (such as the
kernel function parameters). Heuristic methods have been developed to reduce the
size of the search space, however these may converge to a local maximum, which is
not a global maximum. For more information about support vector machine training
algorithms, libraries, and other information see [11], [3], and [12]. Section 3.1 gives
details about our particular algorithm.

7

Figure 2.3: An example of a LiDAR data set. The green flat regions are roofs, and
the red clouds are trees

2.2 An overview of LiDAR systems

Light Detection and Ranging (LiDAR) systems use the reflection from a laser pulse to
determine the distance to objects. The laser beam is systematically scanned across an
area to generate the point cloud. A example of such a point cloud is given in Figure
2.3. Since LiDAR data is usually collected from moving vehicles such as airplanes or
automobiles, data collected during different passes may not be exactly aligned. This
phenomenon can be seen in Figure 2.4. The east-to-west stripes are very consistent
across the entire data set. However, the north-to-south grid is not uniform. This
causes issues for data storage and representation and algorithms such as finding the
nearest neighbor to a point. The large gaps between pairs of scan lines also reduces
the effective resolution in the north-to-south direction.

The laser beam also introduces several interesting features into the data. Since
the laser beam must travel tens or hundreds of meters to reach the surface, beam
divergence becomes a significant factor. The divergence of the laser beam is dependent
on several factors, such as the wavelength of the laser light itself. At ground level, the
beam width is approximately 20 cm. If some portion of the beam reaches the level of a
tree, it may be reflected back to the receiver in the plane. However, another portion
of the beam may continue down to the actual ground level before being reflected.
Which return pulse should be used as the height for this coordinate? Current LiDAR
systems store several possible reflected pulses, or returns, for each point. Figure 2.5
shows an example of this behavior. Two heights, corresponding to the height at the
tip of each arrow, are returned. Multiple return values can be used in areas other

8

Figure 2.4: Irregular spacing of LiDAR data points

Return 1

Return 2

Laser pulse

Figure 2.5: Different LiDAR height returns for the same point

than 3D modeling. By analyzing the difference between return values, scientists have
been able to determine large scale characteristics of forests [16].

9

Chapter 3 Method

Training and recognition share many of the same steps. First, the data must be
loaded into the necessary data structures. Then each data point must have several
additional characteristics, such as the local curvature, calculated to determine the
complete feature set. The training stage then generates the SVM model which will
be used by the recognition stage.

3.1 Training

The training process begins by loading known roof outlines that were human gen-
erated. This supervised learning technique was chosen over data mining because
thousands of these roof outlines had been accurately mapped. To generate the two
data sets, any data point which falls inside of these roof outlines is marked as a roof
point, otherwise it is a non-roof point. If the roof has any obstructions, such as an
overhanging tree branch, then those points will also be included in the roof set.

After the data points have been partitioned, the optimal SVM model must be
determined. There are several parameters that must be chosen for a given model.
The most important decision is the selection of the kernel function used. Some com-
mon kernel functions used in SVM models were given in Figure2.2. Clearly a linear
boundary function will not be able to cleanly separate data which has a quadratic
correlation component. Using the radial basis function is suggested in SVM guide
written by Hsu et al. [11]. Some experiments showed that the radial basis function is
also the best kernel function to use in our problem.

The radial basis function has one parameter, γ. In addition, the SVM model has
a cost parameter c. When calculating the boundary layer, the SVM training routine
determines if any features have been misclassified. If c is very large, then this decision
is a hard decision. That is, the determination of whether to use this boundary model
or not is a binary choice based on whether any misclassified points exist. While
this may make for a very accurate model (assuming one can be found), the model
is likely to be over fitted to the data. The particular variances and coefficients in
the model will be representative of the noise in the training data, rather than more
generic patterns which are present in unknown data as well. To help eliminate the
over fitting problem, the value of c can be made relatively small. Then the decision
becomes a soft decision. Here, the training algorithm may accept several misclassified
points if the overall result is accurate. The parameters γ and c are correlated, so the
parameter space consists of a two dimensional grid of values.

To speed up the parameter estimation search, a subset of the total training data
set is used. Several distinct regions are chosen to be representative of the complete
data set, so that the final accuracy of the model is not significantly compromised.
The following ranges were used for the parameter space:

10

−5

0

5

10

15

−16−14−12−10−8−6−4−2024

93

94

95

96

97

98

99

Gamma

C

A
cc

ur
ac

y
(%

)

Figure 3.1: Accuracy percentages for varying γ and c values

c :[2−5 . . . 213]
γ :[2−15 . . . 23]

At each iteration, the exponent values were incremented or decremented by 2. An
example of the resulting accuracy over the parameter space is shown in Figure 3.1.

3.2 Recognition

The recognition process begins by loading in an already trained SVM model. Recog-
nition is split into two phases: Roof outline generation, and outline culling. To
generate the roof outline data, a feature vector is created for each point. The SVM
model is used to classify it, and the resulting probability that the point belongs to a
roof is stored in a bitmap. This bitmap is then processed to retrieve the actual roof
contours. The outline culling phase removes non-roof contours to produce the final
roof polygon set.

Instead of a binary label classification of roof or non-roof, the SVM algorithm
is also able to compute the probability that a data point is a roof. By using the
probability value, the determination of the contours of the roof becomes a soft decision
problem. Various image processing and morphology techniques may also be used

11

(a) Probability bitmap. White pixels indicate a
higher probability of belonging to a roof

(b) Aerial photograph of the same region

(c) The probability bitmap overlaid on the aerial
photo. The white dots representing the roofs are
clearly visible

Figure 3.2: A roof probability map. Roofs have a very strong signature, while the
road and creek are barely visible

to enhance the probability image for easier roof recognition. An example of the
probability bitmap is shown in Figure 3.2.

After creation of the probability bitmap, a combination of erosion and dilation
operations were used to remove the outlier noise pixels from the bitmap. Additional
dilation steps also help to fill in holes in the roof regions. Unfortunately these dilations
also eliminate some of the potential fine features of the roof outlines. However, most
roofs do not have many fine features to preserve, so it is likely that noise is being
smoothed instead.

After most of the fine noise has been removed (false positive patches are still
present), the OpenCV [18] library is used to extract the edge contours from the
image. These contours will become the final roof outlines after more processing. The
contours are converted into polygons with an allowable error of one meter. This

12

corresponds to one pixel in the probability bitmap, so the generated polygons follow
the detected edges very closely. However, roof outlines which do not have noise on
the boundary will still produce polygons with a low vertex count, and long, straight
edges.

Statistical processing is used to reject the outlier polygons. The number of vertices
and the average length of edges are used to classify the polygons into three groups: too
small to be a roof, probably a roof, and too large to be a roof. Some care is necessary
as small roofs such as garden sheds are detected by the algorithm. However, large
false positive segments can be much more easily classified as incorrect. After filtering
out invalid polygons, the final set of polygons is returned by the algorithm.

3.3 Basic data structures

Two similar data structures handle fast, efficient access to the LiDAR data. A quad
tree [6, 22] is used to rapidly search for a given point, as well as retrieve all of the
points that lie in a given rectangle. An approximate nearest neighbor library [17] was
used to efficiently calculate the k points which are closest to an initial point, within
some threshold.

13

Chapter 4 Feature vector creation

4.1 Feature selection

In any classification problem, different feature sets may greatly affect the poten-
tial accuracy of the method. After some experimentation to determine the optimal
combination, I chose six features their accuracy, ease of calculation, simplicity, and
robustness over different types of land:

• Horizontal and vertical curvature components

• Relative height

• The interpolated color of each point

• The distance to the nearest road

This feature set has significant variation over the residential areas and farmland of
the data set. Each feature is discussed in more detail below.

Curvature

The curvature of a point is a useful metric to describe the rate of change in the shape
of a surface at a point. For a point which is in the middle of a roof plane, the curvature
value will be close to zero, since most roofs are approximately planar. However, trees
will have wildly varying curvatures, as the LIDAR points describe individual leaves
and branches, rather than the potentially much smoother general shape of the tree.

Relative Height

The relative height of each point is determined by approximating the shape of the
ground in a neighborhood surrounding the point. By using the relative height of a
point as a feature instead of the absolute height, a building on the top of a hill can
be recognized alongside a building that is at the base of the hill. However, this does
not account for buildings of different heights. For example, a one story ranch house,
a two story commercial building and a tall grain silo must all appear in the training
data for them to be accurately recognized.

Interpolated color

The color of each point provides an important clue to the type of each point. Since
the spatial resolution of the aerial photograph is much higher than the LIDAR data,
each point is colored using the bi-linear interpolation of the nearest pixel values. Care
must be taken to weight the color information less than other descriptors. While a
residential roof is generally a neutral gray, black, or brown, these are also the colors
of roadways, dead grass, and gravel parking lots.

14

Distance to the nearest road

Many roofs are near roads, whether they are residential or commercial buildings. The
use of road proximity does not work as well in a rural area, where long private access
roads are more common.

4.2 Calculation

Overview

Several different procedures are used to generate the necessary features.

1. Initialize the quad tree and approximate nearest neighbor data structures

2. Compute the ground plane mesh

3. For each data point to be processed

a) Calculate the principle curvatures
b) Calculate the bi-linearly interpolated color
c) Estimate the relative height to the ground
d) Determine the distance to the nearest road

4. Determine the probability data point belongs to a roof

5. Create an image where each pixel represents the calculated probability

6. Process the image to improve the roof edge definition, and threshold to a binary
image

7. Find the closed contours in the image

8. For each contour

a) Approximate the contour by a polygon
b) Classify each polygon as a roof contour or not

Using a probability measure allows the contour decision function to become a soft
decision, and allow roof areas that were not as strongly detected to be added to the
final roof polygon.

15

Ground plane mesh

Estimating the shape of the ground is important for determining the relative height of
a data point. An iterative approximation method is used to estimate the ground plane
for a grid of rectangles, which may be different sizes. The steps of our implementation
are given in Algorithm 1. It is important to choose the two thresholds so that a
building with a large, flat roof such as a warehouse is not marked as the ground
plane. Additionally, slight bumps and dips in the ground level must be tolerated. In
large areas of farmland, the roads are often raised above the ground level by several
meters. However, the roads should still be considered part of the ground plane.

To satisfy these two conditions, Tground is chosen to be two meters. Twindow size

is chosen to be 300 meters. This seems to be a good balance between ignoring
any large roof profiles, and allowing any hills or other significant altitude deviations
to be modeled. A more accurate ground model could be determined if the fitting
planes were instead allowed to be paraboloids. However, there is a much greater
risk for modeling the noise (such as trees and buildings) with higher order surfaces.
Additionally, the computational cost for determining the best fit paraboloid for a
window is also higher than with a simple plane. Since our sample data consists of a
relatively flat landscape, the plane is used as the fitting element.

Algorithm 1 Estimation of the ground plane mesh
1. Let Windows = {training region}

2. For each window ∈ Windows

a) Choose three random points in window, and determine the fitting plane
b) Count the number of points which lie around this plane (within a tolerance

Tground)
i. If the number of points is lower than a threshold and size(window)

is greater than a threshold Twindow size

then Windows = Windows ∪ {window subdivided into four
rectangles}
else Windows = Windows \ window

3. Repeat (2) until Windows = ∅

Principle Curvatures

The principle curvatures of a point in a 3D cloud are useful for determining the
likelihood that a point lies on a plane, like that of a roof. Garimella and Swartz [7]
present several algorithms to determine the curvature of triangular mesh surfaces.
With some modifications their method can be implemented on unstructured point
clouds as well.

16

We estimate the curvature of a point p by fitting a quadric surface to the sur-
rounding points, aligning the Z axis of the surface along the approximate surface
normal of the point in the cloud. The normal at p is estimated by fitting a least-
squares plane to the approximate nearest neighbors of p. An outline of the algorithm
used is given in Algorithm 2.

It is possible to use the calculated quadric surface to estimate a new normal for the
points, and iterate until the normal estimation converges. However, our application
does not require curvature estimations which are accurate to several decimal places;
after all, the model must be able to usefully use such precision. Therefore, the
curvatures at each point are estimated using only the plane which is fit through the
neighborhood.

Algorithm 2 Estimation of the principle curvatures
Input: A neighborhood N = {a point p and its four (approximate) nearest neigh-
bors}

1. Least-squares fit a plane to the neighborhood N, and determine the outward-
facing normal n̂ to this plane

2. Transform the points in N to a local coordinate system where n̂ is the positive
Z axis.

3. Compute a least-squares quadric surface to the transformed points. The quadric
surface is given by the equation

 x2
0 x0y0 y2

0 x0 y0
· · · · · · · · · · · · · · ·
x2
k xkyk y2

k xk yk

a
b
c
d
e

 =

z0
z1
z2
z3
z4

 (4.1)

4. Compute the principle curvatures of the quadric surface

κ1 =
a+ c+

√
(a− c)2 + b2

(1 + d2 + e2)2 (4.2)

κ2 =
a+ c−

√
(a− c)2 + b2

(1 + d2 + e2)2 (4.3)

Color interpolation

Color cues sampled from the aerial photograph are important signifiers of potential
roofs. For example, a point with a green color is probably vegetation, while white
and black areas can be roofs, roads, and gravel areas. The color for each pixel is

17

bi-linearly interpolated, since the resolution of the photographs is much higher than
the LiDAR data.

The colors are also analyzed using the Y’UV color space using the following con-
version equations:

Y ′ = 0.299R + 0.587G+ 0.114B (4.4)

U = 0.436B − Y
′

0.886 (4.5)

V = 0.615R− Y
′

0.701 (4.6)

Relative height above ground estimation

During the initialization of the algorithm, a ground plane was estimated for varying
sized tiles. Each point is checked against each bounding tile to determine which
ground plane approximation to use. The absolute value of the distance to the ground
plane is used so that the direction of the ground plane normal is not important.
However, this has the potential to cause issues if there are deep depressions in the
ground below the approximated ground plane. Fortunately, such depressions are not
likely to be formed in the shape of an inverse roof, so this potential issue was ignored.

Distance to the nearest road

The distance from a given point to the nearest road is strongly correlated with the
probability that the point describes a roof (assuming other the criteria are met, such
as the relative height and curvature). The lines which describe a given road can be
obtained from public sources, so including them in the feature set is not problematic.
Since the number of road polylines is relatively low, a simple brute force search
produces acceptable performance.

18

Chapter 5 Implementation and Experimental Results

I implemented the algorithm as a C++ program running on a computer with an Intel
Core i7 920, 6 GB of RAM, and Windows Vista SP2. The SVM library used was
LibSVM [3]. LiDAR data as well as a human-generated building and road maps were
provided by GRW Inc. The DGNdirect library from the Open Design Alliance was
used to read the roof and road data. Approximately 320 million square meters of
data was available for testing. The average point spacing was 2.1 meters, which is
dense enough to recognize roofs without requiring extremely large processing times.

The calculation of feature vectors took about 45 minutes for each 4000 meter
square tile, which contained about 4,000,000 points on average. This time was dwarfed
by the training time for the SVM. Depending on the contents of each particular tile,
training times of two to four days were common. During the classification phase of
each tile, about 180 points were processed per second. However, this still resulted
in times of several hours to generate the probability bitmap. The computational
requirements were increased dramatically by the use of probability information in the
SVM model. Training times without probability information were on average less
than one half of a day, and several thousand points could be classified per second.
The probability bitmap processing component only took a few seconds, so it was
dwarfed by the other processing components.

The slow training and evaluation times show that this SVM library (and per-
haps the particular algorithms used) does not handle a very large number of data
points. Input samples of a few hundred thousand points executed much faster. The
implementation was trained on two tiles from the data, which are given in Figure 5.1.
Three additional testing tiles were used to examine different aspects of the algorithm’s
performance. These tiles are shown in Figure 5.2.

5.1 Results

On a point by point basis, the SVM classifier achieved approximately 95% accuracy.
However, determining the correct roof polygons is still not an easy task, due to the
relatively low point density. The SVM model has the most trouble distinguishing
the ridge lines of roofs where two roof planes meet. This is due to the significantly
different curvature at this points compared to the curvature of the flat roof planes.
This complication results in holes around the ridge lines, some of which extend to
the edge of the roof profile. These few incorrectly classified points can result in the
entire roof polygon being determined incorrectly. In the following result images, three
different colors are shown. Red polygons are areas which were only detected by the
algorithm. Blue areas are the human generated reference roof polygons. Purple areas
indicate roofs which were successfully detected by the algorithm.

The classification accuracy was very good on some images. For example, the tile
in Figure 5.2a was tested on a model trained on the tile in Figure 5.1b. The results
are shown in Figure 5.3a. The results show very little noise and misdetected roofs. It

19

(a) Tile 1 (b) Tile 2

Figure 5.1: Aerial photographs of the training tiles

is possible to see several small out-buildings and sheds in the blue reference polygons.
The noise reduction algorithm unfortunately removes any detection of these areas,
although they are easily visible in the probability bitmap, shown in Figure 5.3b. Most
of the regions completely in red are valid roofs which were not present in the reference
data.

The particular training data used for the model also can dramatically determine
the quality of the results. Figure 5.4 shows the dramatic difference choosing a tile
with similar data can have.

Large roofs, such as those on factories, posed a problem for the final noise-
reduction step. Figure 5.5 shows this issue. The large blue regions at the top right
corner are large missing roofs, which should have been easily detected. In fact, the
probability image shows that the roof was cleanly detected. However, the resulting
polygon contained too much fine detail (too many vertices and edges), so it was elimi-
nated from the final results. This gives a clear indication of where future work should
be directed. The other large blue regions show similar behavior.

Some legitimate noise patches are also eliminated using the same algorithm. Fig-
ure 5.6 shows a highway segment which was strongly detected by the SVM model.
However, it is not present in the final output polygons, which means it was success-
fully detected as noise and removed. This model was trained using the tile of Figure
5.1b. Using the tile of Figure 5.1a resulted in a much weaker signature of the road,
but this also resulted in a much weaker signature on most buildings in the image.

20

(a) A dense neighborhood setting, with some more
sparsely populated areas

(b) A suburban setting with a few large buildings

(c) The large highways and factories form one of the
most prominent features of this tile

Figure 5.2: Three testing tiles, with different characteristics

21

(a) Classification of the tile in Figure 5.2a using a model trained on
the tile in Figure 5.1b. Red areas are false positive areas, blue areas
are false negatives, and purple areas are true positives.

(b) A region of the probability bitmap from the results shown in part (a). The detected
roofs and sheds are clearly visible as whiter patches. No intensity correction was
applied to this image.

Figure 5.3: Resulting classification of the tile in Figure 5.2a.

22

(a) Using the tile of Figure 5.1a (b) Using the tile of Figure 5.1b

Figure 5.4: A comparison of the results between training tiles. The neighborhood
based training tile provides much more accurate results.

(a) The large roofs, such as the blue region
in the upper right corner, are not properly
detected

(b) The blue region is easily detected in the
probability bitmap

Figure 5.5: Large roofs are missing due to the aggressive error reduction algorithm,
even though they were properly detected in the LiDAR data.

23

(a) This image has some small noise arti-
facts, but large noise regions are successfully
removed. The highway runs across the top
of this image

(b) This section of the highway was strongly
detected in the probability bitmap (Image en-
hancement applied for clarity)

Figure 5.6: The large, incorrect region of highway was successfully removed from the
output. Only smaller buildings, such as houses, remain.

The model trained on the neighborhood setting tile shown in Figure 5.1b per-
formed consistently better than the tile of mostly farm areas in Figure 5.1a. Un-
fortunately there were not any other farm tiles present in the data set to test the
performance of that model on similar data. The results show that the neighborhood
tile performs well as a general roof classifier for a wide variety of buildings, without
optimizing the particular content the SVM was trained on. Selecting additional areas
to add to the training data set, such as a large highway, would probably improve the
performance of the model. However, the execution time of the SVM would also be
increased significantly.

24

5.2 Accuracy measurements

Unfortunately, much of the previous work for detecting roof outlines does not present
an analysis of how well the algorithm worked. Instead, renderings are used to show
the quality of the computed results. This makes comparing different approaches
challenging, especially if one algorithm generates fitting planes for each roof while
another only calculates the outline. Sohn and Dowman [24] present a simple technique
of counting the number of pixels which are appropriately classified in the output
image. However, this results in misleading accuracy numbers for our example data
set. Each tile of data contains several roofs which are not marked on the ground
truth map of the building outlines, resulting in false positives. Additionally, every
building is marked in the reference map, even though we are not interested currently
in detecting small out buildings or sheds. This results in an artificially high false
negative rate.

A detailed view of some of the extracted roof polygons can be seen in Figure 5.7.
Even though the point by point accuracy is not perfect, for most application purposes
of counting roofs and their sizes, the results are very good. In these examples, every
roof that should be detected was marked with a red blob of the correct size. A stronger
polygon regularization scheme would enhance the overall shape of the detections
further.

(a) High quality detection results

(b) Detected roofs which were not in the reference map

Figure 5.7: Examples of detected roof polygons

25

Chapter 6 Conclusions and future work

Determining the roof boundaries from point clouds and aerial photography has many
uses. While other research has also combined LiDAR data as well as photographic
images to generate a more accurate result, our method generates results which are
roughly equivalent in quality, while the feature vector values require much less ma-
nipulation of the actual data. The feature calculation is very quick, compared to the
time required to train the SVM model.

The main SVM point segmentation model works well, correctly distinguishing be-
tween most roofs and the surrounding environment. However, the model which clas-
sifies polygons as roofs or noise needs further refinement. Large, complex roofs may
easily be rejected as noise if they were not perfectly separated from the background
points. However, some regions of noise (especially smaller lumps) pass through the
filter easily. More work is required to create an accurate model for classifying the
actual roof polygons after segmentation.

Further research is also needed to improve the SVM performance. The perfor-
mance of the SVM library significantly limits the overall performance of the algorithm.
There have been recent advances in algorithms which can train certain types of sup-
port vector machines faster. Thorsten Joachims’ work [13] in this area is promising,
and a different formulation of the feature set may produce acceptable results using a
linear kernel. Alternate implementations of SVM algorithms may also be optimized
for very large data sets. Current implementations appear to be targeted towards
data sets with a few hundred thousand elements at once, and our data is an order of
magnitude larger.

Despite these issues, a simple feature vector set combined with a support vector
machine can reliably segment roofs from the surrounding environment. By keeping
each feature relatively simple to calculate, the overall system accuracy is high, even
on local neighborhood configurations, such as highways, which the system may have
not been trained on originally. This ability to scale feature traits to objects of an
arbitrary size is also an important capability of the system. We have also shown
that the support vector machine is a suitable learning model for this problem. While
SVMs have been used extensively for other classification tasks such as document
classification, their use in point cloud classification is not common. Further work to
classify the resulting polygons as roof or noise will further improve the overall system
results.

6.1 Acknowledgments

GRW Inc. provided the data set used in the experiments. The Open Design Al-
liance provided the DGNdirect library used to load the human generated training
data. The open source projects LibSVM, OpenCV, and Eigen provided optimized
implementations of many of the algorithms necessary for the project.

26

Bibliography

[1] A. Alharthy and J. Bethel. Heuristic filtering and 3D feature extraction from
LIDAR data. INTERNATIONAL ARCHIVES OF PHOTOGRAMMETRY RE-
MOTE SENSING AND SPATIAL INFORMATION SCIENCES, 34(3/A):29–
34, 2002.

[2] Babak Ameri and Dieter Fritsch. Automatic 3d building reconstruction using
plane-roof structures. In Proceedings of ASPRS Annual Conference, pages 22–26,
2000.

[3] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector
machines, 2001. Software available at http://www.csie.ntu.edu.tw/˜cjlin/
libsvm.

[4] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):
273–297, 1995.

[5] Tom G. Farr, Paul A. Rosen, Edward Caro, Robert Crippen, Riley Duren, Scott
Hensley, Michael Kobrick, Mimi Paller, Ernesto Rodriguez, Ladislav Roth, David
Seal, Scott Shaffer, Joanne Shimada, Jeffrey Umland, Marian Werner, Michael
Oskin, Douglas Burbank, and Douglas Alsdorf. The shuttle radar topography
mission. Rev. Geophys., 45(2), May 2007. ISSN 8755-1209. URL http://dx.
doi.org/10.1029/2005RG000183.

[6] R. A. Finkel and J. L. Bentley. Quad trees a data structure for retrieval on
composite keys. Acta Informatica, 4(1):1–9, March 1974. URL http://dx.doi.
org/10.1007/BF00288933.

[7] R. V. Garimella and B. K. Swartz. Curvature estimation for unstructured trian-
gulations of surfaces. Technical report, Los Alamos National Laboratory, 2003.

[8] D. Gesch, M. Oimoen, S. Greenlee, C. Nelson, M. Steuck, and D. Tyler. The
national elevation dataset. Photogrammetric Engineering and Remote Sensing,
68(1):5–11, 2002.

[9] Aleksey Golovinskiy, Vladimir G. Kim, and Thomas Funkhouser. Shape-based
recognition of 3D point clouds in urban environments. In International Confer-
ence on Computer Vision (ICCV), 2009.

[10] Lexington-Fayette County Urban Government. Water quality management
fees. Chapter 16, Article XIV. URL http://library5.municode.com:
80/default-now/template.htm?view=browse&doc_action=setdoc&doc_
keytype=tocid&doc_key=fb9f0fac1bfdadf04db32b178188f8af&infobase=
11163.

27

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1029/2005RG000183
http://dx.doi.org/10.1007/BF00288933
http://dx.doi.org/10.1007/BF00288933
http://library5.municode.com:80/default-now/template.htm?view=browse&doc_action=setdoc&doc_keytype=tocid&doc_key=fb9f0fac1bfdadf04db32b178188f8af&infobase=11163
http://library5.municode.com:80/default-now/template.htm?view=browse&doc_action=setdoc&doc_keytype=tocid&doc_key=fb9f0fac1bfdadf04db32b178188f8af&infobase=11163
http://library5.municode.com:80/default-now/template.htm?view=browse&doc_action=setdoc&doc_keytype=tocid&doc_key=fb9f0fac1bfdadf04db32b178188f8af&infobase=11163
http://library5.municode.com:80/default-now/template.htm?view=browse&doc_action=setdoc&doc_keytype=tocid&doc_key=fb9f0fac1bfdadf04db32b178188f8af&infobase=11163

[11] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A practical guide to sup-
port vector classification. Technical report, National Taiwan University, October
2008. URL http://www.csie.ntu.edu.tw/˜cjlin/papers/guide/guide.pdf.

[12] T. Joachims. Making large-scale svm learning practical. In Bernhard Schölkopf,
Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel
Methods - Support Vector Learning. MIT Press, 1999.

[13] T. Joachims. Training linear SVMs in linear time. In ACM SIGKDD Inter-
national Conference On Knowledge Discovery and Data Mining (KDD), pages
217–226, 2006.

[14] B. Koch, U. Heyder, and H. Weinacker. Detection of individual tree crowns in
airborne lidar data. Photogrammetric Engineering and Remote Sensing, 72(4):
357, 2006.

[15] RG Laycock and AM Day. Automatically generating roof models from building
footprints. In Proceedings of WSCG. Citeseer, 2003.

[16] K. Lima, P. Treitza, M. Wulderb, B. St-Ongec, and M. Floodd. LiDAR remote
sensing of forest structure. Progress in Physical Geography, 27(1):88–106, 2003.

[17] David M. Mount and Sunil Arya. ANN: A Library for Approximate Nearest
Neighbor Searching. Online. URL http://www.cs.umd.edu/˜mount/ANN/.

[18] OpenCV. Online. URL http://opencv.willowgarage.com/wiki/.

[19] Shi Pu and George Vosselman. Automatic extraction of building features from
terrestrial laser scanning. International Archives of Photogrammetry, Remote
Sensing and Spatial Information Sciences, 36(5), 2006.

[20] Lutz Ross, Birgit Kleinschmit, Jürgen Döllner, and Henrik Buchholz. Auto-
mated transformation of 2d vector-based plans to 3d geovirtual environments.
In International Conference on Information Technologies in Landscape Archi-
tecture, 2006. URL http://www.kolleg.loel.hs-anhalt.de/studiengaenge/
mla/mla_fl/conf/pdf/conf2006/43ROSS_L.pdf.

[21] F. Rottensteiner and C. Briese. Automatic generation of building models from
lidar data and the integration of aerial images. International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences of the ISPRS,
34(3/W13):174–180, 2003.

[22] Hanan Samet. The design and analysis of spatial data structures. Addison-Wesley
series in computer science. Addison-Wesley, 1990.

[23] John Secord and Avideh Zakhor. Tree detection in urban regions using aerial
lidar and image data. Geoscience and Remote Sensing Letters, IEEE, 4(2):196
–200, April 2007. ISSN 1545-598X. doi: 10.1109/LGRS.2006.888107.

28

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.cs.umd.edu/~mount/ANN/
http://opencv.willowgarage.com/wiki/
http://www.kolleg.loel.hs-anhalt.de/studiengaenge/mla/mla_fl/conf/pdf/conf2006/43ROSS_L.pdf
http://www.kolleg.loel.hs-anhalt.de/studiengaenge/mla/mla_fl/conf/pdf/conf2006/43ROSS_L.pdf

[24] Gunho Sohn and Ian Dowman. Data fusion of high-resolution satellite imagery
and lidar data for automatic building extraction. ISPRS Journal of Photogram-
metry and Remote Sensing, 62:43–63, 2007.

[25] F. Tarsha-Kurdi, T. Landes, and P. Grussenmeyer. Hough-transform and ex-
tended RANSAC algorithms for automatic detection of 3D building roof planes
from Lidar data. International Archives of Photogrammetry, Remote Sensing
and Spatial Information Sciences, 36(3/W52):407–412, 2007.

[26] V. Verma, R. Kumar, and S. Hsu. 3d building detection and modeling from
aerial lidar data. In Computer Vision and Pattern Recognition, volume 2, 2006.

[27] Qian-Yi Zhou and Ulrich Neumann. Fast and extensible building modeling from
airborne lidar data. In GIS ’08: Proceedings of the 16th ACM SIGSPATIAL
international conference on Advances in geographic information systems, pages
1–8. ACM, 2008. doi: http://doi.acm.org/10.1145/1463434.1463444.

29

Vita

• Date and Place of Birth: May 24, 1986 Charleston, WV

• Education

– University of Kentucky, Bachelor of Science in Mathematics, Magna Cum
Laude

– University of Kentucky, Bachelor of Science in Computer Science, Magna
Cum Laude

30

	DETECTION OF ROOF BOUNDARIES USING LIDAR DATA AND AERIAL PHOTOGRAPHY
	Recommended Citation

	Abstract
	Title Page
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Types of remote sensors
	1.2 Related work
	Point cloud only methods
	Photograph Augmented methods
	Related tasks

	1.3 Goal and contribution
	1.4 Outline

	2 Preliminaries
	2.1 Introduction to Support Vector Machines
	2.2 An overview of LiDAR systems

	3 Method
	3.1 Training
	3.2 Recognition
	3.3 Basic data structures

	4 Feature vector creation
	4.1 Feature selection
	4.2 Calculation

	5 Implementation and Experimental Results
	5.1 Results
	5.2 Accuracy measurements

	6 Conclusions and future work
	6.1 Acknowledgments

	Bibliography
	Vita

