10-8-2015

Analytic Approaches for Causal Inference with Complex Multi-Component Interventions

Glen P. Mays
University of Kentucky, glen.mays@cuanschutz.edu

Arnold J. Stromberg
University of Kentucky, astro11@uky.edu

Jing Li
University of Kentucky, jingli.tj@uky.edu

Mark V. Williams
University of Kentucky, mark.will@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/hsm_present

Part of the [Community Health and Preventive Medicine Commons](https://uknowledge.uky.edu/hsm_present), [Health and Medical Administration Commons](https://uknowledge.uky.edu/hsm_present), [Health Economics Commons](https://uknowledge.uky.edu/hsm_present), and the [Health Services Research Commons](https://uknowledge.uky.edu/hsm_present)

Repository Citation

https://uknowledge.uky.edu/hsm_present/115

This Presentation is brought to you for free and open access by the Health Management and Policy at UKnowledge. It has been accepted for inclusion in Health Management and Policy Presentations by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
Analytic Approaches for Causal Inference with Complex Multi-Component Interventions

Glen Mays, PhD
Arnold Stromberg, PhD
Jing Li, MD, MS
Mark V. Williams, MD
ACHIEVE Quantitative Study Design

- **Hospital Adoption**: Survey hospitals to determine the scope and timing of transitional care components (TCC)

- **Cluster Identification**: Use qualitative and quantitative data to identify clusters of TCCs implemented together

- **Retrospective Analysis**: Use administrative data to:
 - Compare patterns of care and outcomes before vs. after adoption of TCC clusters
 - Detect changes in care and outcomes attributable to TCC implementation (2009-14)

- **Prospective Analysis**: Measure patient-centered care patterns, experiences, & outcomes across TCC clusters using an incomplete fractional factorial design
Overview of ACHIEVE Quantitative Design

US Hospitals

- HEN Hospitals
 - QIO ICPC Hospital?
 - Yes
 - No
 - CCTP in Community?
 - Yes
 - No
 - TC Cluster 1
 - TC Cluster 2
 - TC Cluster 3
 - TC Cluster 4
 - TC Cluster 5
 - TC Cluster 6
 - TC Cluster 7
 - TC Cluster 8
 - TC Cluster 9
 - TC Cluster 10
 - TC Cluster 11
 - TC Cluster 12
 - TC Cluster 13
 - TC Cluster 14
 - TC Cluster 15

- Kaiser Hospitals
 - QIO ICPC Hospital?
 - Yes
 - No

- Other Hospitals

Retrospective Claims Analysis: All hospitals/patients in all clusters included
Prospective Analysis: red TC clusters selected by Fractional Factorial Design

Stratified probability sample of hospitals (assume 5 hospitals from each of 8 clusters)
(sampling probabilities within strata proportional to hospital patient volume)
Stratified random sample of 300 patients from each hospital (12,000 total)
Dealing with Complexity: Retrospective Analysis

- **Principal components analysis/factor analysis:** Identify clusters of TCCs commonly implemented together
- **Cluster analysis:** Identify comparison groups of hospitals/communities that use the same combinations of TCC clusters
- **Qualitative data:** Site visit and focus group findings inform TCC cluster and comparison group identification
- **Adoption/selection analysis:** Evaluate selection bias in hospital/community adoption of TCCs and the types of patients exposed
- **Interrupted time series analysis:** Estimate changes in patient care and outcomes attributable to TCC implementation
- **Hierarchical multivariate adjustment:** control for patient, hospital and community covariates, balance across TCCs/groups
- **Instrumental variables and person-centered effects:** control for unobserved confounding and estimate patient heterogeneity in treatment effects
Dealing with Complexity: Prospective Analysis

- **Incomplete fractional factorial selection:** Screen and sample a subset of TCC clusters (factors) and types of care settings (levels) that provide contrasts for the fullest possible range of TCC, hospital, and community combinations.

- **Care settings/levels:** A total of 40 care settings will be selected, balancing hospital and community characteristics (10 Kaiser settings).

- **Patient/caregiver sampling:** 300 patients from each setting surveyed within 45 days of discharge, plus 180 caregivers and 75 providers.

- **Outcomes:** Comparison of patterns of care, experiences with care, and patient-centered outcomes across TCC clusters and settings.

- **Hierarchical modeling & propensity score weighting:** balance and adjust for patient/hospital/community covariates across TCC clusters.

- **Tree-based models:** identify interactions among patient subpopulations, patient/caregiver characteristics, and TCC clusters.
Dealing with Complexity: Prospective Analysis

<table>
<thead>
<tr>
<th>Hospital/Community Care Setting Combinations</th>
<th>TCC Clusters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TCC 1</td>
</tr>
<tr>
<td>Academic affiliations</td>
<td></td>
</tr>
<tr>
<td>Community hospitals</td>
<td></td>
</tr>
<tr>
<td>System memberships</td>
<td></td>
</tr>
<tr>
<td>Rural settings</td>
<td></td>
</tr>
<tr>
<td>Community-based TC components</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
</tbody>
</table>

Incomplete Fractional Factorial sampling from cells to reduce confounding and maximize identification of TCC effects and care setting interactions