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ABSTRACT
Mild cognitive impairment (MCI) is a neurological condition related to early stages of dementia
including Alzheimer’s disease (AD). This study investigates the potential of measures of transfer
entropy in scalp EEG for effectively discriminating between normal aging, MCI, and AD
participants. Resting EEG records from 48 age-matched participants (mean age 75.7 years)—15
normal controls, 16 MCI, and 17 early AD—are examined. The mean temporal delays
corresponding to peaks in inter-regional transfer entropy are computed and used as features to
discriminate between the three groups of participants. Three-way classification schemes based on
binary support vector machine models demonstrate overall discrimination accuracies of 
91.7— 93.8%, depending on the protocol condition. These results demonstrate the potential for
EEG transfer entropy measures as biomarkers in identifying early MCI and AD. Moreover, the
analyses based on short data segments (two minutes) render the method practical for a primary
care setting.

Keywords: early Alzheimer’s disease, mild cognitive impairment, EEG-based diagnosis, transfer
entropy
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1. INTRODUCTION
Mild cognitive impairment (MCI) is a memory and cognition disruption associated with
old age and a departure from normal aging. Amnestic MCI is often an early stage of
dementia such as Alzheimer’s disease (AD) [1, 2]. Identifying MCI state enables early
intervention. Development of a simple electroencephalogram (EEG)-based screening
method for MCI for use in the primary care setting would be a valuable tool in the
research and treatment of both disorders.

Transfer entropy is an information theoretic measure that quantifies the statistical
coherence between systems evolving time [3, 4]. While standard time-delayed mutual
information fails to distinguish information that is actually exchanged from shared
information due to common history and input signals, transfer entropy is able to
effectively distinguish driving and responding elements and to detect asymmetry in the
interaction of subsystems [3]. The fact that it is non-symmetric enables one to infer the
direction of information flow. Transfer entropy reduces to Granger causality for
processes in which the output variable depends linearly on its own previous values (i.e.,
vector auto-regressive processes) and Gaussian variables [5]. Transfer entropy has been
applied to many different fields, including neuroscience, systems biology,
bioinformatics, environmental sciences, climatology, engineering, finance, astronomy,
Earth and space sciences, and astronomy. Transfer entropy has been used for estimation
of functional connectivity of neurons [6, 7] and social influence in social networks.
Recent studies indicate that cognitive declines in MCI and AD may manifest as reduced
complexity and perturbations in EEG synchrony [8-11]. Much work has been done to
show the group differences between different cognitive statuses. However, group
differences often are not sufficient to establish the initial evaluation of subjects with
cognitive impairment in the routine clinical practice [12]. This work aims to develop
easy neural indicators to diagnose and predict cognitive decline pre-clinically, such as
among people with subjective memory complaints.

While various studies have investigated applications of entropy and complexity
measures of scalp EEG for discrimination of cognitive deficits [8, 13-18], the
investigation on transfer entropy of EEG has been limited. Based on the hypothesis that
the cognitive disruption of AD or MCI may affect the information exchange between
two areas of the brain, this work aims to explore the application of transfer entropy of
scalp EEG to diagnose AD and MCI. In this study, inter-regional EEG dynamics in MCI
and AD during rest and a simple counting task is examined. Transfer entropy-based
measures are studied as features to discriminate cognitive impairment of MCI and AD.
To the authors’ best knowledge, this article is the first study on transfer entropy analysis
of scalp EEG for AD and MCI participants.

2. METHODS
2.1. Data
The EEG data used in this study were collected in the Behavioral Science Department
and Sanders-Brown Center on Aging at the University of Kentucky (UK) College of
Medicine. Participants between the ages of 60 and 90 years were recruited from a study
cohort of cognitively normal older adults followed by the Alzheimer’s Disease Center
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(ADC) of the UK College of Medicine [19]. MCI patients were recruited from the
Memory Disorders Clinic of the ADC. Normal older participants are screened regularly
and when screenings indicate possible cognitive decline, they are referred to the ADC’s
Research Memory Disorders Clinic. MCI and AD participants were diagnosed and
recruited by cognitive neurologists Drs. C. Smith and G. Jicha at the UK ADC Clinical
Core and from its Research Memory Disorders Clinic. All participants provided written
informed consent before participation. This study was approved by the Institutional
Research Board (IRB) of the University of Kentucky. The database includes 15 NC, 
16 MCI, and 17 AD participants. The mean (standard deviation) ages for NC, MCI, and
AD participants are 75.7 years (5.5 years), 74.6 years (9.0 years), and 76.7 years 
(5.2 years), respectively.

All MCI participants belonged to the amnestic subtype. In addition, a few of the MCI
participants also presented with executive dysfunction. Differences between single- and
multiple-domain MCI subtypes are not the focus of the current study. A list of
neurological assessments used to make MCI/AD diagnoses is provided in Table 1.
Means (standard deviation) for Mini-Mental State Examination (MMSE) scores were
29.43 (0.73), 27.40 (2.00), and 24.26 (2.42) for the NC, MCI, and AD groups,

Table 1. UK-ADC uniform research battery of cognitive tests and other
evaluations

General Cognitive Measures Baseline Only
MMSE; Kokmen Test National Adult Reading Test*
Clinical Dementia Rating (CDR)

Attention/Executive Domain Measures Medical Evaluation
Trail Making Tests A & B Physical exam*
WAIS-R Digit Span & Digit Symbol Neurological exam*

Medical history*

Memory Domain Measures Medications
WMS Logical Memory I & II Nutritional supplements
California Verbal Learning Test* Food Frequency Questionnaire (FFQ)

Language Domain Measures Psychiatric Evaluation
Controlled Oral Word Association Neuropsychiatric Inventory Questionnaire
Test (COWAT)* (NPI-Q)
Animal & Vegetable Fluency Geriatric Depression Scale (GDS)
Boston Naming

Visual/Spatial Domain Measures Functional Ability Measures
CERAD Figures Functional Assessment Questionnaire (FAQ)

SF-36*
ADCS-ADL*

*Additional test measures or expanded content beyond Uniform Data Set (UDS) core measures



respectively. MCI and early AD participants’ EEG data were recorded as soon as
possible after diagnoses. Patients with stroke or seizure history were not included.

Participants were connected to 64- or 32-channel EEG caps using a Neuroscan II
system (10–20 montage). In either case, only the 32 common channels were recorded.
EEG data were recorded under a protocol using three different non-memory-task
conditions. These included (1) resting with eyes open for 5 min (REO condition), (2)
resting with eyes closed while counting backwards by ones for 10 min while tapping a
finger (counting task), and (3) resting with eyes closed for 10 min (REC condition). The
EEG recording was performed without interruption at the same appointment for each
subject. EEG data were acquired at 500 Hz. The 32 EEG channels included 2 ocular
channels that were used to determine the dominant eye blink frequency. Notch filters
were used to remove dominant eye blink frequencies and to remove 60 Hz frequencies,
which may have been amplified by background electronic devices. A simple 2nd order
Butterworth filter was used to attenuate frequencies greater than 200 Hz.

2.2. Transfer Entropy
Information can be defined mathematically as that which decreases uncertainty [20].
Entropy, being a measure of the uncertainty in a system, can therefore be used to
mathematically quantify the basic amount of information in time series [20]. For
example, the average number of bits required to optimally encode independent samples
of a discrete variable x, which follows a probability distribution function px, is given by
the classical definition for Shannon entropy:

(1)

where the sum extends over all possible states xi (i = 1, ..., Ν) that the random variable
x can assume. The base of the logarithm depends only on the units used for measuring
information; thus, it will be dropped in further equations. If a different distribution is
used, there will be an excess number of bits and the information will not be optimally
encoded [3]. The excess number of bits that will be encoded if a different distribution
function q is used is given by the Kullback entropy [21]:

(2)

The mutual information of two random variables x and y with joint probability
distribution function px, y can be viewed as the excess amount of code produced when
the two variables are assumed to be independent. That is, assuming px, y (xi, yj) =
px(xi)py(yj). Mutual information Mxy between the variables x and y is thus the Kullback
entropy given the assumption of independence between the two variables:
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where the random variable y can assume states yi (j = 1, ..., Μ). Mutual information thus
provides an intuitive means for quantifying the deviation from independence of two
random variables. Note that mutual information Mxy is symmetric under the exchange
of x and y and therefore does not contain any information regarding the directional
transfer of information (which may relate to causal effect) [22].

Suppose that the variables x and y are generated by two separate but coupled
systems. An entropy rate S1 can be defined as the amount of additional information
required to represent the current value xn of the random variable x given the value of
both variables at an observation d steps in the past:

(4)

where pxn, xn−d, yn−d is the joint probability function for the observations xn, xn−d, yn−d, and
yn−d, and pxn|xn−d, yn−d is the conditional probability function for xn given xn−d and yn−d.
Further suppose that the value of the current observation xn of the random variable x is
independent of the value of the random variable y observed d steps in the past (yn−d).
The entropy rate in this case would then reduce to the following:

(5)

where pxn|xn−d is the conditional probability function for xn given xn−d. The incorrectness
of this assumption can then be express as the difference S1 − S2 between the two entropy
rates presented in Equations (4) and (5). This difference in entropy is then termed
transfer entropy [3]:

(6)

Substituting the definitions for the conditional probabilities given in Equations (7)
and (8), Equation (6) reduces to Equation (9):
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(9)

where pxn−d, yn−d is the joint probability of variables xn−d given yn−d, and pxn−d, yn−d is the
joint probability of variables xn given xn−d. The transfer entropy is explicitly not

symmetric since it measures the degree of dependence of x on y and not vice versa.
Thus, . Note that the definition of transfer entropy here follows the

definition in [3]. Recently, Wibral et al. proposed an improved definition of transfer
entropy to better measure the delay effect [23]. The differences between the two
definitions shall be investigated in future research.

2.3. Peak Inter-regional Transfer Entropy Delays (PITEDs)
The 30 channels were grouped into 14 scalp regions based on their arrangement and
location on the scalp. The regions included: (1) left frontal (LF); (2) right frontal (RF);
(3) frontal (F = LF + RF + channel FZ); (4) left temporal (LT); (5) right temporal (RT);
(6) left central (LC); (7) right central (RC); (8) central (C = LC + RC + channels FCZ
and CZ); (9) left parietal (LP); (10) right parietal (RP); (11) parietal (P = LP + RP +
channels CPZ and PZ); (12) left occipital (LO); (13) right occipital (RO); and (14)
occipital (O = LO + RO + channel OZ). Note that left and right regions do not include
central line channels; see Figure 1 for regional boundaries.

Peak values and peak delays are the most important characteristics of transfer
entropy. Since channels have different magnitudes, peak values may not accurately
reflect the effect of the measurements of information exchange between regions. We
chose to use peak delay as the features since they are not influenced by magnitudes of
the channels. First, transfer entropies were computed for each directional, pairwise
combination of 30 channels (2 ocular channels excluded) for each protocol condition.
The first two minutes of data for each protocol condition was used. Entropies were
computed for delays of 0.002 through 1 second in 0.002-second steps. The delay at
which the transfer entropy was greatest in magnitude was noted as the peak delay. Then,
the inter-region delay for a directional pairing of regions (for example, region X →
region Y) was computed as the average of all the delays for each channel in region X
to each channel in region Y; see Equation (10),

(10)

where is the peak delay for channel i in region X to channel j in
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were not computed between a major region (C, F, O, P, or R) and any of its sub-regions.
For example, the peak inter-regional delays for F→ LF or LF→ F were not computed.
Thus, a total of 166 directional, mean peak inter-regional transfer entropy delays
(PITEDs) were determined for each protocol condition.

2.4. Classification
For each protocol condition (REO, REC, or counting), we performed two types of
classifications: first, binary classifications were conducted to discriminate (1) MCI
vs. NC, (2) AD vs. NC, and (3) MCI vs. AD; and then a three-way classification was
performed based on the binary classification results to determine which of the three
groups a given record belonged to. The three-way classification scheme allows for
the differentiation of the three groups without a priori knowledge that individuals
fall into two of the three groups. Note that results of all classifications (both binary
and three-way) were based on leave-one-out cross-validation (LOOCV) to avoid
overfitting. For binary classifications, we used the support vector machine (SVM)
functions in MATLAB� [24] with quadratic kernel functions. A three-way
classification scheme is constructed by combining the outcomes of the binary
classifiers using the pairwise coupling approach proposed by Hastie and Tibshirani
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[25]. For a given record, binary SVM classifiers (i.e., MCI vs. NC, AD vs. NC, and
MCI vs. AD) are trained using all other available records and then applied to the
given record. If two out of three of the SVM binary classifiers classify a record as
belonging to class i, then the final decision of the three-way classifier is to classify
the record as belonging to class i. Otherwise, the probability that a record belongs to
each class, Pi, i = 1, 2, 3, is then estimated via pairwise coupling and then the final
decision of the three-way classifier is to choose the class corresponding to the largest
probability, argmaxi (Pi).

2.5. Feature Selection
Feature selection was performed for each of three binary discrimination problems
[(1) MCI vs. NC, (2) AD vs. NC, and (3) MCI vs. AD] for each protocol condition;
see the schematic process in Figure 2. We used the SVM functions in MATLAB�
[24] as the binary classifier. Quadratic kernel functions were used in all
discriminations and the cost coefficient was held constant at unity. Nested LOOCV
loops were used to avoid overfitting while suggesting and testing different
combinations of PITEDs as features [26, 27]. The inner loop generated a list of
suggested combinations via a forward, high-score, features selection method where
combinations were scored using LOOCV accuracy of SVM model predictions from
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a smaller, randomized, subset of records [26]. The outer loop determined the
LOOCV accuracy of combinations suggested by the inner loop for all available
records. The discriminatory power of individual PITEDs was then assessed based on
how often they appeared in the 100 best performing combinations tested in the outer
loop simulation.

2.6. Statistical Significance
Monte Carlo permutation testing was used to assess the statistical significance of the
LOOCV accuracies of the binary classifiers. Specifically, a random sample of 10,000
permutations of shuffled labels indicating groups (NC, MCI, or AD) was used to
estimate a 95% confidence interval for the probability that the leave-one-out cross-
validation accuracies obtained were due to chance. The p-values presented were
determined using this method [28].

3. RESULTS
3.1. Binary Discrimination Results
Two-sample Student’s t-distribution tests (unequal variance) are performed on group
means of PITEDs selected as features for binary classifiers in order to determine if
observed differences are significant enough to infer a linear separability at the
population level. Such an inference would require large differences between group
means and small variation within groups. It should be noted that inferences are
dependent on the assumption of representative samples.

3.1.1. MCI vs. NC
Results for LOOCV accuracies for each binary classifier are presented in Table 2 along
with the selected features. Accuracies presented are obtained using selected features.
For the REO condition, MCI participants demonstrate a lower PITED for occipital
region to right frontal region coupled with an increased PITED from the frontal region
to the left occipital region, compared to normal controls. An increased central-to-frontal
PITED is also observed for MCI participants. Most of the selected features for the
counting task include PITEDs of directed information transfer to the occipital region.
For the REC condition, the pathway of right frontal to right temporal to right parietal to
occipital appears discriminate MCI participants. Ninety-five percent confidence
intervals for the corresponding p-values are determined via Monte Carlo permutation
testing. LOOCV accuracies of 93.6% (p < 0.0032), 90.3% (p < 0.0182), and 87.1% 
(p < 0.0321) are achieved for MCI vs. NC discrimination for the REO condition,
counting task, and REC condition, respectively.

3.1.2. AD vs. NC
Compared to normal controls, AD participants demonstrate a significantly greater left
temporal-to-frontal PITED coupled with a decrease in frontal-to-left temporal PITED
during the REO condition. A greater right occipital-to-left central PITED is also
observed for AD participants. A LOOCV accuracy of 93.8% (p < 0.0043) is achieved
for the REO condition based on these differences. During the counting task, AD
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participants demonstrate significantly increased PITEDs for right parietal-to-left
occipital, left frontal-to-left occipital, and right occipital-to-left occipital. These
observations allow for a LOOCV accuracy of 90.6% (p < 0.0110) for AD vs. NC
discrimination during the counting task. When resting with eyes closed, AD participants
demonstrated an increase in occipital-to-left frontal PITED and a decrease in left
temporal-to-right central PITED coupled with a decrease in left occipital-to-left
temporal PTITED. An accuracy of 87.5% (p < 0.0324) is achieved for the REC
condition.
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Table 2. Group comparisons of selected features for binary classifiers

Condition MCI vs. NC AD vs. NC AD vs. MCI

Selected Group Selected Group Selected Group

Features Means Features Means Features Means

O → RF MCI<NC LT → F AD>NC LT → LF MCI<AD***

F → LO MCI>NC RO → LC AD>NC RO → LC MCI>AD

REO C → F MCI>NC F → LT AD<NC P → LO MCI<AD

acc. (sens., spec.): acc. (sens., spec.): acc. (sens., spec.):

93.6% (100%, 86.7%) 93.8% (100%, 86.7%) 90.9% (93.8%, 88.2%)

95% CI for p-value: 95% CI for p-value: 95% CI for p-value:

(0.0001, 0.0032) (0.0031, 0.0043) (0.0097, 0.0118)

Selected Group Selected Group Selected Group

Features Means Features Means Features Means

RF → LP MCI>NC RP → LO AD>NC*** RP → LO MCI<AD**

P → LT MCI<NC RO → LO AD>NC* RP → O MCI<AD***

Counting Task LP → LO MCI<NC LF → LO AD>NC* LF → LT MCI<AD*

acc. (sens., spec.): acc. (sens., spec.): acc. (sens., spec.):

90.3% (93.8%, 86.7%) 90.6& (82.4%, 100%) 90.9% (88.2%, 93.8%)

95% CI for p-value: 95% CI for p-value: 95% CI for p-value:

(0.00138, 0.0182) (0.0020, 0.0110) (0.0032, 0.0195)

Selected Group Selected Group Selected Group

Features Means Features Means Features Means

LO → RF MCI>NC**LT → RC AD<NC RF → RT MCI<AD*

C → RT MCI<NC**O → LF AD>NC LC → O MCI<AD

REC RT → RP MCI>NC LO → LT AD<NC RP → O MCI<AD

acc. (sens., spec.): acc. (sens., spec.): acc. (sens., spec.):

87.1% (87.5%, 86.7%) 87.5% (82.4%, 93.3%) 81.8% (100%, 64.7%)

95% CI for p-value: 95% CI for p-value: 95% CI for p-value:

(0.0057, 0.0321) (0.0211, 0.0324) (0.0162, 0.0373)

* p < 0.05 ** p < 0.01, ***p < 0.001. Feature designations are preceded by regional indices: LF = left frontal;
RF = right frontal; F = frontal; LT = left temporal; RT = right temporal; LC = left central; RC = right central;
C = central; LP = left parietal; RP = right parietal; P = parietal; LO = left occipital; RO = right occipital; O =
occipital; see Figure 1 for regional boundaries. REO = resting with eyes open; REC = resting with eyes
closed. acc. = accuracy, sens. = sensitivity, and spec. = specificity.



3.1.3. MCI vs. AD
For the REO condition, AD participants demonstrate a significantly greater left
temporal-to-left frontal PITED compared to MCI participants. This appears to closely
follow the observation of increased left temporal-to-frontal PITED in AD participants
compared to normal controls. Interestingly, during the REO condition, the right
occipital-to-left central PITED is greater for AD participants compared to NC
participants but lower for AD participants compared to MCI participants. There is also
an observed increase in parietal-to-left occipital PITED for AD participants. A LOOCV
accuracy of 90.9% (p < 0.0118) for MCI vs. AD discrimination is achieved based on
these observations for the eyes open resting condition. MCI vs. AD LOOCV accuracies
of 84.5% (p < 0.0195) and 81.8% (p < 0.0373) are achieved for the counting task and
REC condition, respectively. During the counting task, AD participants demonstrate
significantly increased right occipital-to-left central PITED compared to MCI
participants and NC participants. AD participants also have significantly higher right
parietal-to-occipital and left frontal-to-left temporal PITEDs. While resting with eyes
closed, AD participants have higher right frontal-to-right temporal, left central-to-
occipital, and right parietal-to-occipital PITEDs.

3.2. Three-way Classification Results
Table 3 is a contingency table that shows the performance of the three-way
classification for the REO condition. One participant from each group is misclassified
using data from the REO condition: one NC participant is misclassified as AD, one MCI
participant is misclassified as NC, and one AD participant is misclassified as MCI.
Overall, the accuracy is 93.8%.

Table 4 shows a summary of the three-way classification results for the counting
task. All NC participants are correctly classified. Two MCI participants are
misclassified as NC participants. Two AD participants are also misclassified, one as
MCI and one as NC. Thus, 100% of those predicted as AD are AD, 93.3% of those
predicted to be MCI are MCI, and 83.3% of those predicted to belong to the NC group
are actually NC participants. The resulting overall accuracy is 91.7%.

Results for the REC condition are very similar to those of the REO condition and are
presented in Table 5. Comparing Tables 3 and 5, the only differences are that an 
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Table 3. Contingency table of 3-way classification results for REO condition
using PITEDs.

Predicted Classes

NC MCI AD
NC 14 0 1 93.3%
MCI 1 15 0 93.8%
AD 0 1 16 94.1%

93.3% 93.8% 94.1% Overall Acc.:
93.8%
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NC participant is misclassified as MCI instead of being misclassified as AD and an MCI
participant is also misclassified as NC. The overall accuracy for the REC condition is
the same as for the counting task at 91.7%.

4. DISCUSSION
4.1. Contextualization of Results
In this study, average delays corresponding to maximized transfer entropy between
EEG channels of different scalp regions are examined in normal aging, MCI, and early
AD participants. We have analyzed EEG data collected using three different EEG
protocols: resting eyes open condition, resting eyes closed condition, and a simple
cognitive task of counting backwards by ones. Accuracies of 93.6-97.0% (using the
three EEG protocol conditions) are achieved for binary classifications between the three
groups using features from average peak inter-regional transfer entropy delays
(PITEDs). A three-way classification scheme is also derived from the binary classifiers
based on pairwise coupling, with overall accuracies of 91.7-93.8% (using the three EEG
protocol conditions). The resting-state protocols reflect default mode networking
activity in the brain and have shown promise in clinical application of AD [29].
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Table 4. Contingency Table of 3-way classification results for counting task using
PITEDs.

Predicted Classes

NC MCI AD
NC 15 0 0 100%
MCI 2 14 0 87.5%
AD 1 1 15 88.2%

83.3% 93.3% 100% Overall Acc.:
91.7%
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Table 5. Contingency table of 3-way classification results for REC condition
using PITEDs.

Predicted Classes

NC MCI AD
NC 14 1 0 93.3%
MCI 1 14 1 87.5%
AD 0 1 16 94.1%

93.3% 87.5% 94.1% Overall Acc.:
91.7%
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Counting and other cognitive protocols reflect task related network in the brain. 
Both method have demonstrated the EEG biomarkers’ are associated with AD
pathology [30].

As observed in previous studies [31-34], features that successfully discriminate
between AD and NC may not be able to discriminate between MCI and NC or between
AD and MCI. As such, previous studies often investigated the three binary
classification problems using different sets of features for each classification.
Moreover, none of the aforementioned studies reported three-way classification among
NC, MCI, and AD participants. A three-way classification model was constructed by
combining the binary classifiers in [18], where the results demonstrate overall
discrimination accuracies of 83.3%, 85.4%, and 79.2% for resting eyes open, counting
eyes closed, and resting eyes closed protocols, respectively. Therefore, the encouraging
results of three-way classifications in this work indicate the robustness of the transfer
entropy measures. The three-way classification scheme may be used for differentiation
of the three groups without a priori knowledge that individuals fall into two of the three
groups. In contrast to the previous studies on differences between the cognitive groups,
this work classifies participants at the individual level, which is the case when a patient
comes into a doctor’s office. Moreover, the individualized analysis also makes it easy
to test these EEG markers against known biomarkers and known cognitive tests.

The most significant results indicate that the transmission of electrophysiological
activity at the parietal electrode site to early visual cortex is delayed in AD patients
compared to those in MCI or in NC. The disruption of white matter connections has
been linked to delayed reaction times or processing speed in the brain [35]. Recent
evidence has shown that white matter lesion and Alzheimer’s Tau pathology at the
parietal lobe both contribute to development of AD [36]. The current entropy results of
delayed parietal activity in AD are consistent with AD pathology. In addition, it is also
well-known that medial temporal cortex, important structure for memory, is among the
earliest to be affected in AD pathology. Our second most significant result showed
delayed activity from left temporal cortex to left frontal in AD compared to that in NC
during resting eyes open state. This result indicates the deficits in the default-mode
network between left temporal-frontal communication. With further validation, these
parietal and temporal activity-related EEG indicators are likely promising markers with
clinical implication of AD progression. In addition, individual EEG indicators among
normal older adults may be used as a predictor for risk factor of AD.

4.2. Limitations and Future Work
The current method cannot be readily applied to the clinical setting since it requires 30
EEG channels, making setup time an issue. Fewer electrodes would be ideal for more
convenient application. Another shortcoming of the current study is the relatively small
sample size. Future work should examine the developed EEG indicators against known
biomarkers (e.g., cerebrospinal fluid proteins) in a larger sample size. Future work
should also investigate whether the EEG indicators bear longitudinal changes over
relatively short time periods at the individual level. Future work may also consider data
fusion of the features from different conditions to allow synergies between the features.
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5. CONCLUSIONS
Analysis of EEG inter-channel transfer entropy allows for observations of patterns in
the complexity and synchrony of EEG data. Specifically, the features proposed here are
intended to represent trends in the delay of the transfer of the information present in
EEG signals between major regions of the scalp. The successful discrimination between
the three groups of EEG records (NC, MCI, and AD) are the result of differences in the
dynamics of the distribution of information in EEG voltages across the scalp in resting
states and during a simple cognitive task. It is possible that the observed differences in
these information dynamics may be influenced by alterations in the functional
organization of the brain as a result of cognitive decline. The results of this pilot study
suggest the potential for the use of features representing inter-regional EEG transfer
entropy relationships as a means for objectively discriminating between normal older,
MCI, and AD participants.
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