6-8-2010

High-Activity Mutants of Butyrylcholinesterase for Cocaine Hydrolysis and Method of Generating the Same

Chang-Guo Zhan
University of Kentucky, zhan@uky.edu

Hoon Cho
University of Kentucky

Hsin-Hsiung Tai
University of Kentucky, htai1@uky.edu

Follow this and additional works at: http://uknowledge.uky.edu/ps_patents

Part of the [Pharmacy and Pharmaceutical Sciences Commons](http://uknowledge.uky.edu/ps_patents)

Recommended Citation

Zhan, Chang-Guo; Cho, Hoon; and Tai, Hsin-Hsiung, "High-Activity Mutants of Butyrylcholinesterase for Cocaine Hydrolysis and Method of Generating the Same" (2010). Pharmaceutical Sciences Faculty Patents. 49.
http://uknowledge.uky.edu/ps_patents/49

This Patent is brought to you for free and open access by the Pharmaceutical Sciences at UKnowledge. It has been accepted for inclusion in Pharmaceutical Sciences Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
HIGH-ACTIVITY MUTANTS OF BUTYRYLCHOLINESTERASE FOR COCAINE HYDROLYSIS AND METHOD OF GENERATING THE SAME

Inventors: Chang-Guo Zhan, Lexington, KY (US); Hoon Cho, Lexington, KY (US); Hsin-Hsiung Tai, Lexington, KY (US)

Assignee: University of Kentucky Research Foundation, Lexington, KY (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 130 days.

Filed: Aug. 15, 2008

Related U.S. Application Data

Division of application No. 11/243,111, filed on Oct. 4, 2005, now Pat. No. 7,438,904.

Int. Cl. A61K 38/46 (2006.01)
C12N 9/16 (2006.01)

U.S. Cl. 424/94.6; 435/196; 435/197

Field of Classification Search 424/94.6; 435/196, 197

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS

OTHER PUBLICATIONS

Zhan, et al.; Catalytic Mechanism and energy barriers for butyrylcholinesterase—catalyzed hydrolysis of cocaine; Biophysical Journal; 2005; 89; pp. 3863-3872.

Primary Examiner—Tekchand Suidha
(A) Attorney, Agent, or Firm—Stites & Harbison PLLC; Mandy Wilson Decker; Stephen Weyer

ABSTRACT

A novel computational method and generation of mutant butyrylcholinesterase for cocaine hydrolysis is provided. The method includes molecular modeling a possible BChE mutant and conducting molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations thereby providing a screening method of possible BChE mutants by predicting which mutant will lead to a more stable transition state for a rate determining step. Site-directed mutagenesis, protein expression, and protein activity is conducted for mutants determined computationally as being good candidates for possible BChE mutants, i.e., ones predicted to have higher catalytic efficiency as compared with wild-type BChE. In addition, mutants A199S/A328W/Y332G, A199S/F227A/A328W/Y332G, A199S/S287G/A328W/Y332G, and A199S/F227A/S287G/A328W/E441D all have enhanced catalytic efficiency for (-)-cocaine compared with wild-type BChE.

5 Claims, 6 Drawing Sheets
FIGURE 1
(A) BChE-(-)-cocaine non-prereactive complex
(B) BChE-(-)-cocaine prereactive complex
(C) BChE-(+)-cocaine non-prereactive complex
(D) BChE-(+)-cocaine prereactive complex

FIGURE 2
FIGURE 4
FIGURE 5
FIGURE 6
HIGH-ACTIVITY MUTANTS OF BUTYRYLCHOLINESTERASE FOR COCAINE HYDROLYSIS AND METHOD OF GENERATING THE SAME

This application is a division of and claims benefit to U.S. patent application Ser. No. 11/243,111, now allowed, filed Oct. 4, 2005 now U.S. Pat. No. 7,438,904. The contents of which are incorporated herein by reference in their entirety.

GOVERNMENT SUPPORT CLAUSE

Subject matter described herein was made with government support under Grant Number R01DA013930 awarded by the National Institute on Drug Abuse (NIDA) of the National Institutes of Health (NIH). The government has certain rights in the described subject matter.

FIELD OF THE INVENTION

The present invention relates to butyrylcholinesterase variant polypeptides, and in particular, butyrylcholinesterase mutants having amino acid substitutions.

BACKGROUND OF THE INVENTION

Cocaine abuse is a major medical and public health problem that continues to defy treatment. The disastrous medical and social consequences of cocaine addiction, such as violent crime, loss in individual productivity, illness and death, have made the development of an effective pharmacological treatment a high priority. However, cocaine mediates its reinforcing and toxic effects by blocking neurotransmitter reuptake and the classical pharmacodynamic approach has failed to yield small-molecule receptor antagonists due to the difficulties inherent in blocking a blocker. An alternative to receptor-based approaches is to interfere with the delivery of cocaine to its receptors and accelerate its metabolism in the body.

The dominant pathway for cocaine metabolism in primates is butyrylcholinesterase (BChE)-catalyzed hydrolysis at the benzoyl ester group (Scheme 1).

Scheme 1. Schematic representation of BChE-catalyzed hydrolysis at the benzoyl ester group.

Only 5% of the cocaine is deactivated through oxidation by the liver microsomal cytochrome P450 system. Cocaine hydrolysis at benzoyl ester group yields ecgonine methyl ester, whereas the oxidation produces norcocaine. The metabolite ecgonine methyl ester is a biologically inactive metabolite, whereas the metabolite norcocaine is hepatotoxic and a local anesthetic. BChE is synthesized in the liver and widely distributed in the body, including plasma, brain, and lung. Extensive experimental studies in animals and humans demonstrate that enhancement of BChE activity by administration of exogenous enzyme substantially decreases cocaine half-life.

Enhancement of cocaine metabolism by administration of BChE has been recognized to be a promising pharmacokinetic approach for treatment of cocaine abuse and dependence. However, the catalytic activity of this plasma enzyme is three orders-of-magnitude lower against the naturally occurring (−)-cocaine than that against the biologically inactive (+)-cocaine enantiomer. (+)-cocaine can be cleared from plasma in seconds and prior to partitioning into the central nervous system (CNS), whereas (−)-cocaine has a plasma half-life of approximately 45-90 minutes, long enough for manifestation of the CNS effects which peak in minutes. Hence, BChE mutants with high activity against (−)-cocaine are highly desired for use in humans. Although some BChE mutants with increased catalytic activity over wild-type BChE have previously been generated, there exists a need for

It was demonstrated that (−)/(+)-cocaine first slide down the substrate-binding gorge to bind to W82 and stands vertically in the gorge between D70 and W82 (non-preactive complex) and then rotates to a position in the catalytic site within a favorable distance for nucleophilic attack and hydrolysis by S198 (preactive complex). In the preactive complex, cocaine lies horizontally at the bottom of the gorge. The main structural difference between the BChe-(−)-cocaine complexes and the corresponding BChe-(+)-cocaine complexes exists in the relative position of the cocaine methyl ester group. Reaction coordinate calculations revealed that the rate-determining step for BChe-catalyzed hydrolysis of (+)-cocaine is the chemical reaction process, whereas for (−)-cocaine the change from the non-preactive complex to the preactive complex is rate determining. A further analysis of the structural changes from the non-preactive complex to the preactive complex reveals specific amino acid residues hindering the structural changes, providing initial clues for the rational design of BChe mutants with improved catalytic activity for (−)-cocaine.

Previous molecular dynamics (MD) simulations of preactive BChe-cocaine binding were limited to wild-type BChe. Even for the non-preactive BChe-cocaine complex, only one mutant (A328W/Y332A) BChe binding with (−)-cocaine was simulated and its catalytic activity for (−)-cocaine was reported by Sun et al. No MD simulation was performed on any preactive enzyme-substrate complex for (−)- or (−)-cocaine binding with a mutant BChe. In addition, all previous computational studies of Sun et al and Zhan et al are done with BChe interacting with cocaine were performed based on a homology model of BChe when three-dimensional (3D) X-ray crystal structure was not available for BChe, as taught by Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J. C.; Nachon, F. J. Biol. Chem. 2003, 278, 41141 (hereinafter “Nicolet et al.”), recently reported 3D X-ray crystal structures of BChe. As expected, the structure of BChe is similar to a previously published theoretical model of this enzyme and to the structure of acetylcholinesterase.

The main difference between the experimentally determined BChe structure and its model was found at the acetyl binding pocket (acetyl loop) that is significantly bigger than expected. It is unclear whether the structural difference at the acetyl binding pocket significantly affect BChe binding with (−)-cocaine and (−)-cocaine. Although previous MD simulations of cocaine binding with wild-type BChe and the reaction coordinate calculations point to some amino acid residues that might need to be mutated for the purpose of improving the catalytic activity for (−)-cocaine hydrolysis, it remains unknown which exact amino acid mutations will result in a BChe with a higher catalytic activity for (−)-cocaine.

Computational studies of wild-type BChe and cocaine from Sun, et al, based on a “homology model,” suggest that the rate-determining step for BChe-catalyzed hydrolysis of cocaine is the rotation of the cocaine in the active site of BChe. By decreasing the hindrance of the rotation, the rate of the hydrolysis may be enhanced. Sun, et al describes creating an A328W/Y332A BChe mutant by: (1) replacing Tyr332 with Ala, “to reduce the steric hindrance and the π-π interaction that impedes rotation,” and (2) replacing Ala328 with Trp “to provide a cation-π interaction to restore substrate affinity lost in disabling the π-π interaction.”

Sun et al studied the A328W/Y332A BChe mutant using enzyme assays and kinetics. In vitro studies were conducted using human plasma and in vivo studies were conducted using male Sprague-Dawley rats. The mutant was found to have enhanced catalytic properties. The mutant was further studied using molecular modeling. The three dimensional (3D) structure of A328W/Y332A was generated from the computationally generated 3D model of wild-type BChe and changing the relevant residues using commercially available software. Cocaine was docked to the catalytic gorge of the mutant BChe using other commercially available software. The cocaine-enzyme complex was refined by molecular dynamic simulation. The data generated by the molecular modeling studies were consistent with enzyme assays and kinetic data.

It should be noted that all prior computational techniques (molecular docking and molecular dynamics simulation) used by other researchers are based on an empirical force field which cannot be used to perform any necessary reaction coordinate calculation for the detailed understanding of the complicated catalytic reaction process. As it is well-known, it is particularly challenging to model and simulate the detailed reaction pathway and predict the kinetics of such an enzymatic reaction.

U.S. Patent Application Publication Nos. 2004/0121470; 2004/0129939; and 2003/0153062, describe 20+BChe mutants, or “variants,” from human and other animals, each having from one to six amino acid alterations and increased cocaine hydrolysis activity. For example, mutants include F227A/A328W; F227A/S287G/A328W; A119S/S287G/A328W; A328W/Y332M/S287G/F227A; A199S/F227A/S287G/A328W and A119S/F227A/S287G/A328W/Y332M. The mutants have varying increases in catalytic activity, up to 100-fold increase relative to wild-type BChe.
There exists a need in the art for determining which proposed mutant BChEs should have ever increasing catalytic activity and for generating those mutants which should have enhanced catalytic activity.

SUMMARY OF THE INVENTION

The present invention includes five novel human BChEs mutants that have unexpected increased catalytic efficiency for cocaine hydrolysis. The mutants have various unique amino acid residue substitutions which provide the surprising enhanced catalytic activity. These mutants are (1) a 199S/A328W/Y332G mutant (SEQ ID NO: 2), which has a approximately 65-fold improved catalytic efficiency against (−)-cocaine; (2) a 199S/F227A/A328W/Y332G mutant (SEQ ID NO: 8), which has an approximately 148-fold improved catalytic efficiency against (−)-cocaine; (3) a 199S/S287G/A328W/Y332G mutant (SEQ ID NO: 14), which has an approximately 456-fold improved catalytic efficiency against (−)-cocaine; a 199S/F227A/S287G/A328W/Y332G mutant (SEQ ID NO: 20), which has an approximately 1003-fold improved catalytic efficiency against (−)-cocaine; and a 199S/F227A/S287G/A328W/E441D mutant (SEQ ID NO: 26), which has an approximately 445-fold improved catalytic efficiency against (−)-cocaine.

In addition, the aforementioned mutant amino acid sequences can be truncated without substantially affecting the catalytic activity so that amino acid residues 1-67 and 443-574 can be removed without substantially affecting the catalytic activity of the enzymes. SEQ ID Nos: 4, 10, 16, 22 and 28 are the amino acid sequences for residue 68-142 corresponding to mutants 1-5, respectively. In addition, with regard to mutants 1-4, it was found that amino acid residues before 117 and after 438 could be removed without substantially changing the activity of the mutant enzymes, resulting in truncated amino acid sequences having SEQ ID Nos: 6, 12, 18 and 24, respectively. Finally with regard to mutant 5, amino acid residues before 117 and after 441 could be removed without substantially changing its activity resulting in SEQ ID NO: 30.

These aforementioned truncated sequences all of with similar catalytic activity is based on protein structures.

Further, the present invention is directed to a novel and unique pharmaceutical composition which comprises a butyrylcholinesterase variant peptide, namely mutants 1-5, along with a suitable pharmaceutical carrier. The pharmaceutical composition can be administered to an individual in an effective amount to lower the patient's cocaine blood concentration and in particular (−)-cocaine blood concentration.

In addition, the present invention is directed to a novel and unique method for developing mutants which have enhanced catalytic efficiency. The generation method includes both a computational portion and an experimental portion. With regard to the computational portion, a variety of state of the art computational techniques including molecular modeling, molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations, provide a virtual screening of possible BChE mutants. This virtual screening predicts which mutation will lead to a more stable transition state for a rate-determining step compared to the corresponding separated reactants, i.e., free cocaine and free enzyme. The more stable the transition state, the lower the energy barrier, and the higher the catalytic efficiency. Following the computational portion, an experimental test is then conducted on the possible mutants of the computation portion. The experimental test includes site-directed mutagenesis, protein expression, and enzyme activity assay.

The experimental tests are conducted on mutants which are predicted to have a high catalytic efficiency against (−)-cocaine than the wild-type BChE and/or other known BChE mutants against (−)-cocaine. Thus, the present method identifies or predicts mutants having high catalytic activity for cocaine hydrolysis by combining molecular modeling and MD simulations on the transition state structures of possible mutants of BChE. This method is an improvement over traditional random-search approaches, which, given the complex catalytic mechanism of cocaine hydrolysis, makes it difficult to improve the catalytic activity of BChE for cocaine hydrolysis.

The present invention in one form, concerns a butyrylcholinesterase variant peptide comprising an amino acid sequence selected from the group consisting of SEQ ID Nos: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30.

The present invention in another form thereof concerns a butyrylcholinesterase variant polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID Nos: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, and 29.

The present invention in another form thereof concerns a pharmaceutical composition comprising a butyrylcholinesterase variant polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID Nos. 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30; and a suitable pharmaceutical carrier.

The present invention in another form thereof concerns a method for treating a cocaine-induced condition comprising administering to an individual an effective amount of butyrylcholinesterase variant polypeptide having an amino acid sequence selected from the group consisting of SEQ ID Nos. 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30, to lower blood cocaine concentration.

The present invention in yet another form thereof concerns a method for generating butyrylcholinesterase mutants. The method includes generating an initial structure of the transition state structure for the rate-determining step of the cocaine hydrolysis catalyzed by a possible butyrylcholinesterase mutant. A sufficiently long time molecular dynamics simulation is performed on the transition state structure in water to have a stable molecular dynamics trajectory. The molecular dynamics trajectory is analyzed and the hydrogen bonding energies are estimated between the carboxyl oxygen of the (−)- cocaine benzyl ester and the oxygen ion hole of the possible butyrylcholinesterase mutant. If the overall hydrogen binding energy between the carboxyl oxygen of the (−)- cocaine benzyl ester and the possible butyrylcholinesterase mutant, in the transition state, is stronger than the overall hydrogen binding energy between the carboxyl oxygen of the (−)- cocaine benzyl ester and the wild-type butyrylcholinesterase, optionally, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry optimization is performed to refine the molecular dynamics-simulated structure, the hydrogen binding energies are calculated and the energy barrier is evaluated. Finally, the butyrylcholinesterase mutant is generated.
In various alternative embodiments, the generating an initial structure of the transition state structure is based on reaction coordinate calculations for the wild-type butyrylcholinesterase. The generating butyrylcholinesterase mutant includes performing site-directed mutagenesis on a nucleic acid sequence which includes wild-type butyrylcholinesterase to generate the mutant butyrylcholinesterase nucleic acid sequence. Using the mutant butyrylcholinesterase nucleic acid sequence, the protein encoded by the mutant nucleic acid sequences is expressed to produce mutant butyrylcholinesterase and catalytic activity assay is performed on the mutant butyrylcholinesterase.

The hybrid quantum mechanical/molecular mechanical geometry optimization may include calculating the hydrogen binding energies and evaluating the energy barriers only if the overall hydrogen binding energy between the carboxyl oxygen of the (+)-cocaine benzyl ester and the possible butyrylcholinesterase mutant, in the transition state, is stronger than known butyrylcholinesterase mutants against (-)-cocaine.

In yet another alternative embodiment, the method for generating butyrylcholinesterase mutants further includes determining the rate-limiting step in the hydrolysis of (+)-cocaine by the possible butyrylcholinesterase mutant by conducting molecular dynamics simulations and quantum mechanical/molecular mechanical calculations relating to the transition states for other reaction steps between (-)-cocaine by the possible butyrylcholinesterase mutant and calculating respective energy barriers, thereby establishing which of the reaction steps is the rate-determining one.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 are plots of distances in the MD simulation (-)-cocaine binding with A328W/Y332G BChE versus the simulation time, along with root-mean-square deviation (RMSD) in the enzyme-substrate complexes where FIG. 1A represents the non-prereactive enzyme-substrate complexes; and FIG. 1B represents the prereactive enzyme-substrate complexes in accordance with the present invention.

FIG. 2 shows the binding of structures of the simulated non-prereactive and prereactive complexes of wild-type BChE binding with two enantiomers of cocaine in which FIG. 2A depicts BChE (-)-cocaine non-prereactive complex; FIG. 2B depicts BChE (+)-cocaine prereactive complex; FIG. 2C depicts BChE (+)-cocaine non-prereactive complex; and FIG. 2D depicts BChE (+)-cocaine prereactive complex.

FIG. 3A shows the (+)-cocaine rotation in the BChE active site for the non-prereactive complex to the prereactive complex hindered by some residues at positions Y332, A328, and F329 residues in the non-prereactive complexes which are significantly different from the corresponding positions in the prereactive complex; and FIG. 3B shows the (+)-cocaine rotation in the BChE active site where none of the aforementioned residues hinders the (+)-cocaine rotation in the BChE active site from the non-prereactive complex to the prereactive complex in accordance with the present invention.

FIG. 4A depicts the (-)-cocaine rotation in the active site of A328W/Y332A; FIG. 4B depicts the (-)-cocaine rotation in the active site of A328W/Y332G BChE from the non-prereactive complex to the prereactive complex; and FIG. 4C depicts the (-)-cocaine rotation in the active site of wild-type BChE.

FIG. 5A is a plot of the key internuclear distances (in Å) versus the time in the simulated TS1 structure for (-)-cocaine hydrolysis catalyzed by A328W/Y332A; and FIG. 5B for A199S/A328W/Y332G BChE.

FIG. 6 is a plot of key internuclear distances (in Å) versus the time in the simulated TS1 structure for (-)-cocaine hydrolysis catalyzed by A199S/S287G/A328W/Y332G BChE.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention has two major improvements over the prior art. The first is the presently discovered BChE mutants, mutant 1, A199S/A328W/Y332G; mutant 2, A199S/F227A/A328W/Y332G; mutant 3, A199S/S287/G/A328W/Y332G; mutant 4, A199S/F227A/S287G/A328W/Y332G; and mutant 5, A199S/F227A/S287G/A328W/E441D each have a significantly higher catalytic efficiency. The second improvement is concerning the mutant designing or discovering process.

The BChE mutants 1-5 have full length amino acid sequences, SEQ ID NOS: 2, 8, 14, 20, and 26, respectively, which are encoded by nucleic acid sequences having SEQ ID NOS: 1, 7, 13, 19, and 25, respectively. Table 1 summarizes the catalytic efficiency against (-)-cocaine for the five mutants.

In addition to the full length BChE mutants, the respective amino acid sequence can be truncated without substantially affecting the respective catalytic activity. With all mutants, residues 1-67 and 443-574 can be removed without substantially affecting the catalytic activity of the respective mutant BChE. Further, with regard to mutant 1-4, amino acids 1-116 and 439-574 can be omitted without substantially affecting its catalytic activity. With regard to mutant 5, amino acid residues 1-116 and 442-574 can be omitted without substantially affecting its catalytic activity. Table 1 also provides a summary of amino acid SEQ ID NOS and corresponding nucleic acid SEQ ID NOS for the aforementioned truncated mutant BChE sequences.

<table>
<thead>
<tr>
<th>Amino Acid Number</th>
<th>Partially Truncated Nucleic Acid Sequence Corresponding To Amino Acid Residues</th>
<th>Catalytic Efficiency Against (-)-cocaine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutant Substituting</td>
<td>SEQ ID NO. for Amino Acid Residues</td>
<td>117-438/441*</td>
</tr>
<tr>
<td>A199S/A328W/Y332G</td>
<td>1-67 68-442</td>
<td>65-fold</td>
</tr>
<tr>
<td>A199S/F227A</td>
<td>7-8 9-10 11-12</td>
<td>148-fold</td>
</tr>
</tbody>
</table>
The BChE variant polypeptide, e.g., SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30 can be formulated in a pharmaceutical composition along with a suitable pharmaceutical carrier known to one skilled in the art.

The present BChE variant polypeptides can be used in treating a cocaine-induced condition by administering to an individual, an effective amount of one of the BChE variant polypeptides, i.e., SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30, to lower blood cocaine concentration. The BChE variant polypeptide may be administered in the form of a pharmaceutical composition in which the BChE variant is included with a suitable pharmaceutical carrier. Treatment of a cocaine induced condition using one of the aforementioned BChE variant polypeptides can be done in accordance with Zhan et al., page 2463.

The preferred dose for administration of a butyrylcholinesterase or peptide composition in accordance with the present invention is that amount which will be effective in lowering (−)-cocaione concentration in a patient's bloodstream, and one would readily recognize that this amount will vary greatly depending on the nature of cocaine consumed, e.g., injected or inhaled, and the condition of a patient. An "effective amount" of butyrylcholinesterase mutant or pharmaceutical agent to be used in accordance with the invention is intended to mean a nontoxic but sufficient amount of the agent, such that the desired prophylactic or therapeutic effect is produced. Thus, the exact amount of the enzyme or a particular agent that is required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the condition being treated, the particular carrier or adjuvant being used and its mode of administration, and the like. Similarly, the dosing regimen should also be adjusted to suit the individual to whom the composition is administered and will once again vary with age, weight, metabolism, etc. of the individual. Accordingly, the "effective amount" of any particular butyrylcholinesterase composition will vary based on the particular circumstances, and an appropriate effective amount may be determined in each case of application by one of ordinary skill in the art using only routine experimentation.

A unique method was used to determine potential BChE mutants with projected increased catalytic activity for the hydrolysis of cocaine. The method provides a unique approach which first models the potential BChE mutant interaction with cocaine followed by generating the BChE mutant if the predicted model indicates that the BChE variant should have enhanced catalytic activity. The method includes generating an initial structure of the transition state structure for the rate-determining step for the cocaine hydrolysis catalyzed by a possible BChE mutant. A sufficiently long time molecular dynamics simulation is performed on the transition state structure in water to have a stable molecular dynamics trajectory. The molecular dynamics trajectory is analyzed and the hydrogen binding energies are estimated between the carboxyl oxygen of the (−)-cocaione benzyol ester and the oxygen hole of the possible BChE mutant. If the overall hydrogen binding energy between the carboxyl oxygen of the (−)-cocaione benzyol ester and the possible BChE mutant, in the transition state, is stronger than the overall hydrogen binding energy between the carboxyl oxygen of the (−)-cocaione benzyol ester and the wild-type BChE, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry optimization is performed to refine the molecular dynamics-simulated structure, the hydrogen binding energies are calculated and the energy barrier is evaluated. The QM/MM calculations make the computational predictions more reliable. Finally, the BChE mutant is generated.

With regard to the molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations, the first chemical reaction step of (−)-cocaione hydrolysis catalyzed by butyrylcholinesterase (BChE) mutants and, when needed, other reaction steps are modeled and calculated using molecular dynamics simulations and QM/MM calculations. Following this modeling, mutant BChE’s are created using site-directed mutagenesis followed by protein expression. The aforementioned five mutants were identified by computational analysis and generated by site-directed mutagenesis which have significantly enhanced (−)-cocaione hydrolysis catalytic efficiency compared with wild-type BChE.

In the present method computational analysis in the form of molecular modeling of a potential BChE mutant and MD simulations and QM/MM calculations provide virtual screening of possible BChE mutants which have predicted enhanced catalytic activity for (−)-cocaione. For example, the MD simulations and QM/MM calculations predict which mutation will lead to a more stable transition state for the rate determining...
step compared to the corresponding separated reagents, i.e., free cocaine and free possible mutant BCHE, where the more stable transition state leads to a lower energy barrier and higher predicted catalytic efficiency. Only after the computational analysis predicts enhanced catalytic efficiency, in situ directed mutagenesis conducted on wild-type BCHE nucleic acid sequence to generate a mutant nucleic acid sequence which is then used to express a mutant BCHE protein. The mutant BCHE protein is then used in catalytic assays to determine the catalytic efficiency against (+)-cocaine.

The use of predictive, computational modeling of the present method for identifying mutant BCHE candidates and the resulting mutant BCHE are novel and unexpected over prior conventional methods which will now be readily apparent to one of ordinary skill in the art. Using the present method, most discovered new mutants include a specific mutation (Y332G) on residue #332. No prior BCHE mutant having the Y332G mutation had ever been reported previously; only mutations Y332A and Y332M on residue #332 had been tested previously by other researchers. Prior to the present invention, there was no reason to expect that a mutant including Y332G mutation should be better than the corresponding mutant including Y332A mutation or Y332M. Thus, the present mutants with a Y332G mutation which had enhanced catalytic activity represent a surprising and unexpected result over prior BCHE mutants.

A Y332G mutant (single mutation) was first tested and found that the Y332G mutant had a slightly low (or approximately equal) catalytic efficiency than the wild-type. So, only an appropriate combination of different mutations on different residues could make the enzyme more active. As shown below, the prior art did not reveal that any of the particular combinations tested was expected to have an improved catalytic efficiency. The present method is based on the present unique, extensive computational modeling and simulations of the detailed catalytic mechanism for both the wild-type BCHE and the mutants.

The primary improvement of the present method over the prior art is that high-performance computational modeling and simulations of the detailed catalytic mechanism are performed, which includes modeling how cocaine binds with BCHE and the subsequent structural transformation and chemical reaction process. The prior art only considered the cocaine binding with the enzyme (BCHE) and was unable to examine the detailed catalytic reaction process after the BCHE-cocaine binding. When molecular modeling was limited to studying the BCHE-cocaine binding, one could only design a mutation to improve the BCHE-cocaine binding without knowing whether the mutation will also speed up the subsequent chemical reaction process or not.

To overcome the obstacles of prior challenges using computational techniques such as molecular docking and molecular dynamics simulation previously used by others which were based on an empirical force field which cannot be used to perform necessary reaction coordinate calculations for the catalytic reaction process, a variety of state-of-the-art computational techniques of homology modeling, molecular docking, molecular dynamics, quantum mechanics (QM), and hybrid quantum mechanics/molecular mechanics (QM/MM) were used for the rational design of the BCHE mutants. The computational use of these computational techniques, including QM and QM/MM, led to the study of the detailed reaction coordinate of the BCHE-catalyzed hydrolysis of cocaine which, for the first time, provided the detailed structures of all transition states and intermediates existing in the reaction process and the corresponding energetics. These extensive computational modeling and simulation studies provided for the rational design of possible BCHE mutants that not only can improve the BCHE-cocaine binding, but also can speed up the subsequent chemical reaction process. As a result, one can now quickly discover the BCHE mutants with the significantly improved catalytic efficiency.

In addition, to the differences mentioned above, the present molecular modeling of the BCHE-cocaine binding also differs from the prior modeling. The molecular modeling in the prior art considered only one binding mode for each BCHE-cocaine system, without modeling the possible cocaine rotation in the BCHE active site after the binding. The present method considers two different binding modes for each BCHE-cocaine system and the structural transformation between them: non-preparative and preparative BCHE-cocaine complexes. The present modeling provides more detailed information about the BCHE-cocaine binding and the subsequent structural transformation.

The present method includes molecular dynamics simulations performed on the cocaine binding with both the wild-type BCHE and the mutants whereas prior molecular dynamics simulations were only performed on the cocaine binding with the wild-type BCHE. As is shown below in the following experiments, the computational prediction could be completely wrong without directly modeling and simulating cocaine binding with the proposed mutants.

The present invention will now be discussed with regard to the following non-limiting examples in the form of experiments which are provided to enhance understanding of the present invention but in no way limit its scope or applicability.

EXPERIMENT 1: COMPUTATIONAL STUDY OF COCAINE BINDING WITH WILD-TYPE AND MUTANT BCHE'S. For A328W/Y332G, A328W/Y332A, and A328W/Y332A/Y4198, a detailed computational study of cocaine binding with wild-type and mutant BCHE's starting from the available X-ray crystal structure of wild-type BCHE was performed. The simulated mutants include A328W/Y332G, A328W/Y332A, and A328W/Y332A/Y4198, as simple geometric consideration of the binding site suggests that these mutations could be important for changing the (+)-cocaine rotation from the non-preparative complex to the preparative complex. Wet experimental tests were conducted on the catalytic activity of these mutants for (+)-cocaine in order to verify the computational predictions. All of the obtained results clearly demonstrate that molecular modeling and MD simulations of cocaine binding with BCHE mutants provide a reliable computational approach to the rational design of high-activity mutants of BCHE for the (+)-cocaine hydrolysis 3D model of BCHE. The initial coordinates of human BCHE used in the computational studies came from the X-ray crystal structure deposited in the Protein Data Bank (pdb code: 1P0P). The missing residues (D2, D3, E255, D378, D379, N455, L530, E531, and M532) in the X-ray crystal structure were built using the automated homology modeling tool Modeler disclosed by Sali, A.; Blundell, T. L. J. Mol. Biol. 1990, 212, 403, and Sali, A.; Blundell, T. L. J. Mol. Biol. 1993, 234, 779, herein incorporated by reference, and InsightII software (Accelrys, Inc.) with the default parameters.

Molecular docking. Molecular docking was performed for each non-preparative protein-ligand binding complex. The binding site was defined as a sphere with an approximately 15 Å radius around the active site residue S198. The amino acid residues included in the binding site model are not contiguous in the protein. Cocaine, coordinated as a ligand, was initially positioned at 17 Å in front of S198 of the binding site. Each BCHE-cocaine binding complex was energy-minimized by using the steepest descent algorithm first until the maximum energy derivative is smaller than 4 kcal/mol Å and then the conjugated gradient algorithm until the maximum energy derivative is smaller than 0.001 kcal/mol Å. The energy minimization was followed by a 300 ps molecular dynamics (MD) simulation at T=298 K with a time step of 1 fs. During the energy minimization and MD simulation, only cocaine and
the residues of BChE included in the binding site were allowed to move, while the remaining part of the protein was fixed. The energy-minimization and MD simulation for these processes were performed by using the Amber force field implemented in the Discover_C3 InsightII calculation engine, disclosed by Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, Jr., K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A., \textit{J. Am. Chem. Soc.} 1995, 117, 5179. The non-bonded cut-off method and the dielectric constant were set up to group based (12 Å cut-off distance) and distance dependent, respectively (ε=4r) in accordance with Harvey, S. C. \textit{Proteins} 1989, 5, 78-92, herein incorporated by reference.

Molecular dynamic simulation in water. The initial coordinates used in the MD simulation of the non-prereactive complexes were determined by using the molecular docking procedure described above, whereas the initial coordinates used in the MD simulation of the prereactive complexes were obtained from superimposing backbone of the X-ray crystal structure to that of the previously disclosed simulated prereactive complex of Zhan et al between cocaine and a homology model of wild-type BChE. Each BChE: cocaine binding complex was neutralized by adding two chloride counterions and was solvated in a rectangular box of TIP3P water molecules with a minimum solute-wall distance of 10 Å. The general procedure for carrying out the MD simulations in water is similar to that used in our previously reported other computational studies such as those in Zhan et al and (a) Zhan, C.-G.; Norberto de Souza, O.; Rittenhouse, R.; Ornstein, R. L., \textit{J. Am. Chem. Soc.} 1999, 121, 7279; (b) Koca, J.; Zhan, C.-G.; Rittenhouse, R.; Ornstein, R. L. \textit{J. Comput. Chem.} 2003, 24, 368, herein all incorporated by reference. These simulations were performed by using the Sander module of Amber program as taught by Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham III, T. E.; Wang, J.; Ross, W. S.; Simmerling, C. J.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L.; Vincent, J. J.; Crowley, M.; Tsui, V.; Gohlke, H.; Radmer, R. J.; Duan, Y.; Pitera, J.; Massova, I.; Seibel, G. L.; Singh, U. C.; Weiner, P. K.; Kollman, P. A. (2002), AMBER 7, University of California, San Francisco, herein incorporated by reference. The solvated system was optimized prior to the MD simulation. First, the protein ligand was frozen and the solvent molecules with counterions were allowed to move during a 5000-step minimization with the conjugate gradient algorithm and a 5 ps MD run at T=300 K. After full relaxation and the entire solvated system was energy-minimized, the system was slowly heated from T=10 K to T=300 K in 30 ps before the production MD simulation for 500 ps. The full minimization and equilibration procedure was repeated for each mutant. The MD simulations were performed with a periodic boundary condition in the NPT ensemble at T=300 K with Berendsen temperature coupling and constant pressure (P=1 atm) with isotropic molecule-based scaling disclosed in Berendsen, H. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. \textit{J. Comp. Phys.} 1984, 81, 3684, herein incorporated by reference. The SHAKE algorithm of Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. C. \textit{J. Comp. Phys.} 1977, 23, 327 (herein incorporated by reference) was applied to fix all covalent bonds containing a hydrogen atom, a time step of 2 fs was used, and the non-bond pair list was updated every 10 steps. The pressure was adjusted by isotropic position scaling. The particle mesh Ewald (PME) method of Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T. A.; Lee, H.; Pedersen, L. G. \textit{J. Chem. Phys.} 1995, 98, 10089, herein incorporated by reference, was used to treat long-range electrostatic interactions. A residue-based cutoff of 10 Å was applied to the noncovalent interactions. During the 500 ps production MD simulation, the coordinates of the simulated complex were saved every 1 ps.

Molecular docking and MD simulation procedures described above were performed to study cocaine binding with wild-type BChE and three mutants, i.e., A328W/Y332A, A328W/Y332A/Y419S, and A328W/Y332G. For each protein system (wild-type or mutant BChE), the protein binding with cocaine was considered in both the non-prereactive and prereactive enzyme-substrate complexes.

Most of the MD simulations in water were performed on a supercomputer, Superdome (shared-memory, with 4 nodes and 256 processors), at the Center for Computational Sciences, University of Kentucky. The other computations were carried out on SGI Fuel workstations and 34-processors IBM x335 Linux cluster.

Experimental procedure. Site-directed mutagenesis of human BChE cDNA was performed by the QuikChange method of Braunitzer, J.; Papworth, C.; Greener, A. \textit{Methods Mol. Biol.} 1996, 57, 5731, herein incorporated by reference. Mutations were generated from wild-type human BChE in a pRCECMV expression plasmid in accordance with Xie, W.; Altamirano, C. V.; Bartels, C. F.; Speirs, R. J.; Cashman, J. R.; Lockridge, O. \textit{Mol. Pharmacol.} 1999, 55, 83, all herein incorporated by reference, kindly provided by Dr. Lockridge at University of Nebraska Medical Center. Using plasmid DNA as template and primers with specific base-pair alterations, mutations were made by polymerase chain reaction with Pfu DNA polymerase, for replication fidelity. The PCR product was treated with Dpn I endonuclease to digest the parental DNA template. Modified plasmid DNA was transformed into \textit{Escherichia coli}, amplified, and purified. The DNA sequences of the mutants were confirmed by DNA sequencing. BChE mutants were expressed in human embryonic kidney cell line 293T/17. Cells were grown to 80-90% confluence in 6-well dishes and then transfected by Lipofectamine 2000 complexes of 4 μg plasmid DNA per well. Cells were incubated at 37°C in a CO₂ incubator for 24 hours and cells were moved to 60-mm culture vessels and cultured for four more days. The culture medium [10% fetal bovine serum in Dulbecco’s modified Eagle’s medium (DMEM)] was harvested for a BChE activity assay. To measure cocaine and benzoic acid, the product of cocaine hydrolysis by BChE, we used sensitive radiometric assays based on tolueene extraction of [3H]cocaine labeled on its benzene ring were used in accordance with Masson, P.; Xie, W.; Froment, M.-T.; Levitsky, V.; Fortier, P.-L.; Albaret, C.; Lockridge, O. \textit{Biochim. Biophys. Acta} 1999, 1433, 281, herein incorporated by reference. In brief, to initiate reactions, 100 nCi of [3H]cocaine was mixed with 100 μl of culture medium. Reactions proceeded at 37°C for varying times. Reactions were stopped by adding 300 μl of 0.02 M HCl, which neutralized the liberated benzoic acid while ensuring a positive charge on the residual cocaine. [3H]benzonic acid was extracted by 1 ml of toluene and measured by scintillation counting. Finally, the measured time-dependent radiometric data were fitted to the kinetic equation so that the catalytic efficiency (kcat/Km) was determined.

Depicted in Fig. 1 are plots of some important distances in the MD-simulated (−)cocaine binding with A328W/Y332G BChE versus the simulation time, along with root-mean-square deviation (RMSD) of the coordinates of backbone atoms in the simulated structure from those in the X-ray crystal structure. MD trajectories for other complexes were similar to these two in Fig. 1, although the simulated average distances are different. Summarized in Table 2 are the average values of some important geometric parameters in the simulated complexes.
TABLE 2

<table>
<thead>
<tr>
<th>Binding</th>
<th>RMSD "<D1>,<D2>,<D3>,<D4>,<T> "</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>5.60, 7.64, 7.11, 7.06, 5.18</td>
</tr>
<tr>
<td>Wild-type with (+)-cocaine</td>
<td>5.72, 8.69, 8.70, 7.96, 8.44</td>
</tr>
<tr>
<td>A328W/Y332A</td>
<td>7.18, 8.16, 8.20, 7.06, 5.18</td>
</tr>
<tr>
<td>A328W/Y332G</td>
<td>7.18, 8.16, 8.20, 7.06, 5.18</td>
</tr>
<tr>
<td>A328W/Y332A/Y419S</td>
<td>7.18, 8.16, 8.20, 7.06, 5.18</td>
</tr>
</tbody>
</table>

*Refers to (-)-cocaine binding with wild-type human BChE or (+)-cocaine binding with a mutant BChE, unless indicated otherwise.

*Refers to (+)-cocaine binding with wild-type human BChE.

<\(D\text{1}>,<\!D\text{1}\text{>},<\!D\text{2}>,<\!D\text{3}>,<\!D\text{4}>,<\!T\rangle> \) refer to the average values of the simulated distances between the S198 O atom and the carbonyl carbon of the cocaine benzylox ester in the simulated non-reactive and prereactive BChE–cocaine complexes, respectively. <\!D\text{2}>,<\!D\text{3}>,<\!D\text{4}>,<\!T\rangle> refer to the average values of the simulated distances from the carbonyl oxygen of the cocaine benzylox ester to the NH hydrogen atoms of G116, G117, and A199 residues, respectively. <\!T\rangle> is the average value of the dihedral angle formed by the S198 O atom and the plane of the carboxylate group of the cocaine benzylox ester. See Scheme 2.

The root-mean-square deviation (RMSD) of the coordinates of backbone atoms in the simulated structure from those in the X-ray crystal structure of BChE. "nonpre" and "pre" refer to the non-pre reactive and prereactive BChE–cocaine complexes, respectively.

(-)- and (+)-cocaine binding with wild-type BChE. FIG. 2 shows the binding structures of the simulated non-pre reactive and prereactive complexes of wild-type BChE binding with the two enantiomers of cocaine. In the non-pre reactive complexes with (-)- and (+)-cocaine, the methyl ester group of cocaine is positioned at the top of the H438 backbone, while the cocaine benzylox ester moiety is quasi-parallel to the C=O side chain of S198 with a dihedral angle \(\theta\) of \(-8^\circ\) and \(140^\circ\), respectively.

[Diagram of (-)-cocaine and (+)-cocaine]

Scheme 2. Hydrolysis of (-)-cocaine and (+)-cocaine. Here, \(\theta\) refers to the dihedral angle formed by S198 O and the plane of the carboxylate group of the cocaine benzylox ester as shown in the structure diagram below.

The simulated internuclear distances between the carbonyl oxygen of cocaine benzylox ester group and the NH hydrogen of G116, G117, and A199 are comparable for the two enantiomers. The simulated average distances between the carbonyl carbon of the benzylox ester and S198 O are 5.60 Å and 5.18 Å for (-)- and (+)-cocaine, respectively. Comparing the simulated protein backbone structures to the X-ray crystal structure of Nicolet et al, one can see from FIG. 1 that the RMSD values are all smaller than 1.3 Å for the whole protein structures.

The MD simulations of the prereactive complexes reveal that wild-type BChE binding with (-)-cocaine is essentially the same as the binding with (+)-cocaine in the binding site, except for the different positions of methyl ester group of the substrates. The simulated average distances between the carbonyl carbon of the benzylox ester and S198 O are 3.27 and 3.69 Å for (-)-cocaine and (+)-cocaine, respectively. Moreover, the (+)-cocaine is stabilized more effectively by the formation of strong hydrogen bonds with the backbone NH of residues G116, G117, and A199 as summarized above in Table 2. The cocaine benzylox ester moiety is positioned quasi-parallel to S198 C=O with a dihedral angle \(\theta\) of \(-67^\circ\) and \(-61^\circ\) for (-)- and (+)-cocaine, respectively.

A comparison was made between the currently simulated structures of the BChE-cocaine binding with those simulated previously by using a homology model of BChE and it was noted that two major differences between the two sets of structures. By using the X-ray crystal structure in accordance with Nicolet et al, the acetyl loop is positioned on the top of the cocaine benzylox ester moiety of the cocaine, whereas the acyl loop is far from the cocaine benzylox ester moiety in the structure simulated starting from the homology model of Zhan et al. The RMSD of the coordinates of backbone atoms in the previously simulated prereactive BChE–(-)-cocaine complex from those in the X-ray crystal structure of BChE is ~2.0 Å for the entire protein and ~3.0 Å for the acyl loop. The RMSD value became ~2.4 Å for the entire protein and ~3.3 Å for the acyl loop, when the X-ray crystal structure was replaced by the MD-simulated prereactive BChE–(-)-cocaine complex starting from the X-ray crystal structure. Despite these structural differences, the benzylox ester group of the ligand is still close to the key residues (S197, G116, and G117) in the BChE binding site. Some significant differences are associated with the distances between the S198 O atom and the carbonyl carbon of the cocaine benzylox ester in non-prereactive complexes. The average values of this distance in the non-prereactive complexes were ~9.5 and ~8.5 Å for (-)- and (+)-cocaine, respectively, when a homology model was used. Using the X-ray crystal structure to conduct the analysis, corresponding average values became ~5.6 and ~5.2 Å,
respectively. Therefore, both (−)- and (+)-cocaine became closer to the binding site when the homology model was replaced by the X-ray crystal structure. However, no significant changes of the binding in the pre-reactive complexes were observed when the used homology model was replaced by the X-ray crystal structure. The average values of the simulated distance between the S198 O' atom and the carbonyl carbon of the cocaine benzoyl ester in the pre-reactive complexes are always close to −3.5 Å for both (−)- and (+)-cocaine no matter whether the X-ray crystal structure or homology model of BChE was used as the starting structure. The similar computational results obtained from the use of the X-ray crystal structure and homology model of BChE provides evidence that the fundamental structural and mechanistic insights obtained from the previous computational studies of Zhu et al are reliable, despite the previous simulations were performed by using the homology model when the X-ray crystal structure was not available.

Further, the simulated structures of the non-pre-reactive BChE-cocaine complexes were superimposed with the corresponding pre-reactive complexes. As shown in FIG. 3, the (−)-cocaine rotation in the BChE active site from the non-pre-reactive complex to the pre-reactive complex is hindered by some residues at the positions of Y332, A328, and F329 residues in the non-pre-reactive complex are significantly different from the corresponding positions in the pre-reactive complex, whereas, none of these residues hinder the (+)-cocaine rotation in the BChE active site from the non-pre-reactive complex to the pre-reactive complex because these residues stay in nearly the same positions in the two BChE-(−)-

cocaine complexes.

(−)-cocaine binding with BChE mutants. Now that the (−)-cocaine rotation from the non-pre-reactive complex to the pre-reactive complex has been known to be the rate-determining step of the BChE-catalyzed hydrolysis of (−)-cocaine as shown by Zhan et al, useful BChE mutants should be designed to specifically accelerate the change from the non-pre-reactive BChE-(−)-cocaine complex to the pre-reactive complex. The question is whether MD simulation can be performed to help design BChE mutants that have higher catalytic activity for (−)-cocaine hydrolysis.

In the simulated non-pre-reactive complex, the average distance between the carbonyl carbon of cocaine benzoyl ester and S198 O’ is 7.6 Å for A328W/Y332A BChE and 7.1 Å for A328W/Y332G BChE, as seen in Table 2 above. In the simulated pre-reactive complex, the average values of this important internuclear distance increase 3.87 and 3.96 Å for A328W/Y332A and A328W/Y332G BChE’s, respectively. Compared to the simulated wild-type BChE-(−)-cocaine pre-reactive complex, the average distances between the carbonyl carbon of the cocaine benzoyl ester and S198 O’ in the pre-reactive complex of (−)-cocaine with A328W/Y332A and A328W/Y332G BChE’s are all slightly longer, whereas the average distances between the carbonyl oxygen of the cocaine benzoyl ester and the NH of G116, G117, and A199 residues are all shorter. This provides evidence that (−)-cocaine more strongly bind with A328W/Y332A and A328W/ Y332G BChE’s in the pre-reactive complexes. More importantly, the (−)-cocaine rotation in the active site of A328W/ Y332A and A328W/Y332G BChE’s from the non-pre-reactive complex to the pre-reactive complex did not cause considerable changes of the positions of A332 (or G332), W328, and F329 residues as seen in FIG. 4, compared to the (−)-cocaine rotation in the active site of wild-type BChE. These results provide evidence that A328W/Y332A and A328W/Y332G BChE’s should be associated with lower energy barriers than the wild-type for the (−)-cocaine rotation from the non-pre-reactive complex to the pre-reactive complex. Further, (−)-cocaine binding with A328W/Y332G BChE is very similar to the binding with A328W/Y332A BChE, but the position change of F329 residue caused by the (−)-
cocaine rotation was significant only in A328W/Y332A BChE, thus suggesting that the energy barrier for the (−)-cocaine rotation in A328W/Y332G BChE should be slightly lower than that in A328W/Y332A BChE.

Concerning (−)-cocaine binding with A328W/Y332A/ Y419S BChE, Y419 stays deep inside the protein and does not directly contact with the cocaine molecule. The Y419S mutation was tested because it was initially expected that this mutation would further increase the free space of the active site pocket so that the (−)-cocaine rotation could be easier. However, as seen in Table 2 above, the average distance between the carbonyl carbon of cocaine benzoyl ester and S198 O’ atom in the simulated pre-reactive complex was as long as 5.84 Å. The average distances between the carbonyl oxygen of the cocaine benzoyl ester and the NH hydrolysis atoms of G116, G117, and A199 residues are between 4.56 and 6.97 Å no any hydrogen bond between them. In addition to the internuclear distances, another interesting geometric parameter is the dihedral angle, φ, formed by S198 O’ and the plane of the carbonylate group of the cocaine benzoyl ester. As seen in Table 2, the φ values in the pre-reactive complexes of cocaine with wild-type BChE and all of the BChE mutants other than A328W/Y332A/Y419S BChE all slightly deviate from the ideal value of 90° for the nucleophilic attack of S198 O’ at the carbonyl carbon of cocaine. The φ value in the pre-reactive complex of (−)-cocaine with A328W/Y332A/ Y419S BChE is 164°, which is considerably different from the ideal value of 90°.

Catalytic activity. The aforementioned discussion provides evidence that the energy barriers for the (−)-cocaine rotation in A328W/Y332A and A328W/Y332G BChE’s from the non-pre-reactive complex to the pre-reactive complex, the rate-determining step for the BChE-catalyzed hydrolysis of (−)-
cocaine, should be lower than that in the wild-type BChE. Thus, the MD simulations predict that both A328W/Y332A and A328W/Y332G BChE’s should have a higher catalytic activity for (−)-cocaine hydrolysis. Further, the MD simulations also suggest that the energy barrier for the (−)-cocaine rotation in A328W/Y332G BChE should be slightly lower than that in A328W/Y332A BChE and, therefore, the catalytic activity of A328W/Y332G BChE for the (−)-cocaine hydrolysis should be slightly higher than the activity of A328W/Y332A BChE. In addition, the MD simulations predict that A328W/Y332A/Y419S BChE should have no catalytic activity, or have a considerably lower catalytic activity than the wild-type, for (−)-cocaine hydrolysis because (−)-cocaine binds with the mutant BChE in a way that is not suitable for the catalysis.

The catalytic efficiency (kcat/Km) of A328W/Y332A BChE for (−)-cocaine hydrolysis was reported to be 8.56x 10^5 M^-1 sec^-1, which is 9.39 times of the kcat/Km value (9.11 x 10^5 M^-1 sec^-1) of the wild-type BChE. To examine these theoretical predictions of the relative activity for A328W/Y332G and A328W/Y332A/Y419S BChE’s, a A328W/Y332A, A328W/Y332G, and A328W/Y332A/Y419S BChE was produced through site-directed mutagenesis. To minimize the possible systematic experimental errors of the kinetic data, kinetic studies were performed with all of three mutants under the same condition and compared the catalytic efficiency of the A328W/Y332G and A328W/Y332A/Y419S to that of the A328W/Y332A for (−)-cocaine hydrolysis at benzoyl ester group. Based on the kinetic analysis of the measured time-dependent radiometric data, the ratio of the kcat/
K_M value of A328W/Y332G BChE to the k_cat/K_M value of A328W/Y332A BChE for the (−)-cocaine hydrolysis was determined to be 2.08, or A328W/Y332G BChE has a k_cat/K_M value of −1.78×10^7 M⁻¹ min⁻¹ for the (−)-cocaine hydrolysis. The radiometric data show no significant catalytic activity for A328W/Y332A/Y419S BChE. These experimental data are consistent with the theoretical predictions based on the MD simulations.

Conclusion. Molecular modeling, molecular docking, and molecular dynamics (MD) simulations were performed to study cocaine binding with human butyrylcholinesterase (BChE) and its mutants, based on a recently reported X-ray crystal structure of human BChE. The MD simulations of cocaine binding with wild-type BChE led to average BChE-cocaine binding structures similar to those obtained recently from the MD simulations based on a homology model of BChE, despite the significant difference found at the acyl binding pocket. This confirms the fundamental structural and mechanistic insights obtained from the prior computational studies of Zhan et al based on a homology model of BChE, e.g., the rate-determining step for BChE-catalyzed hydrolysis of biologically active (−)-cocaine is the (−)-cocaine rotation in the BChE active site from the non-prereactive BChE-(−)-cocaine complex to the prereactive complex. The MD simulations further reveal that the (−)-cocaine rotation in the active site of wild-type BChE from the non-prereactive complex to the prereactive complex is hindered by some residues such that the positions of Y332, A328, and F329 residues in the non-prereactive complex are significantly different from those in the prereactive complex. Compared to (−)-cocaine binding with wild-type BChE, (−)-cocaine more strongly bind with A328W/Y332A and A328W/Y332G BChE’s in the prereactive complexes. More importantly, the (−)-cocaine rotation in the active site of A328W/Y332A and A328W/Y332G BChE’s from the non-prereactive complex to the prereactive complex did not cause considerable changes of the positions of A332 or G332, W328, and F329 residues. These results provide evidence that A328W/Y332A and A328W/Y332G BChE’s are associated with lower energy barriers than wild-type BChE for the (−)-cocaine rotation from the non-prereactive complex to the prereactive complex. Further, (−)-cocaine binding with A328W/Y332G BChE is very similar to the binding with A328W/Y332A BChE, but the position change of F329 residue caused by the (−)-cocaine rotation was significant only in A328W/Y332A BChE, thus suggesting that the energy barrier for (−)-cocaine rotation in A328W/Y332G BChE should be slightly lower than that in A328W/Y332A BChE. It has also been demonstrated that (−)-cocaine binds with A328W/Y332A/Y419S BChE in a way that is not suitable for the catalysis.

Based on the computational results, both A328W/Y332A and A328W/Y332G BChE’s have catalytic activity for (−)-cocaine hydrolysis higher than that of wild-type BChE and the activity of A328W/Y332G BChE should be slightly higher than that of A328W/Y332A BChE, whereas A328W/Y332A/Y419S BChE is expected to lose the catalytic activity. The computational predictions are completely consistent with the experimental kinetic data, providing evidence that the used computational protocol, including molecular modeling, molecular docking, and MD simulations, is reliable in prediction of the catalytic activity of BChE mutants for (−)-cocaine hydrolysis.

EXPERIMENT 2: MD SIMULATIONS AND QUANTUM MECHANICAL/MOLECULAR MECHANICAL (QM/MM) CALCULATIONS RELATING TO A 199S/ A328W/Y332G MUTANT (MUTANT 1) (SEQ ID NO: 1)

Generally speaking, for rational design of a mutant enzyme with a higher catalytic activity for a given substrate, one needs to design a mutation that can accelerate the rate-determining step of the entire catalytic reaction process while the other steps are not slowed down by the mutation. Reported computational modeling and experimental data indicated that the formation of the prereactive BChE-(−)-cocaine complex (ES) is the rate-determining step of (−)-cocaine hydrolysis catalyzed by wild-type BChE as disclosed by Sun et al, Zhan et al and Hamza, A.; Cho, H.; Tai, H.-H.; Zhan, C.-G. J. Phys. Chem. B 2005, 109, 4776, herein incorporated by reference, whereas the rate-determining step of the corresponding (+)-cocaine hydrolysis is the chemical reaction process consisting of four individual reaction steps disclosed by Zhan et al and shown in Scheme 3 and Scheme 4 below.
Scheme 3. Schematic representation of BChE-catalyzed hydrolysis of (−)-cocaine. Only QM-treated high-layer part of the reaction system in the QM/MM calculations are drawn. Notation [H] refers to a non-hydrogen atom in the MM-treated low-layer part of the protein and the cut covalent bond with this atom is saturated by a hydrogen atom. The dash lines in the transition state structures represent the transition bonds.

This mechanistic understanding is consistent with the experimental observation of Sun et al, that the catalytic rate constant of wild-type BChE against (+)-cocaine is pH-dependent, whereas that of the same enzyme against (−)-cocaine is independent of the pH. The pH-dependence of the rate constant for (−)-cocaine hydrolysis is clearly associated with the protonation of H438 residue in the catalytic triad (S198, H438, and E325). For the first and third steps of the reaction process, when H438 is protonated, the catalytic triad cannot function and, therefore, the enzyme becomes inactive. The lower the pH of the reaction solution is, the higher the concentration of the protonated H438 is, and the lower the concentration of the active enzyme is. Hence, the rate constant was found to decrease with decreasing the pH of the reaction solution for the enzymatic hydrolysis of (−)-cocaine.

Based on the above mechanistic understanding, the efforts for rational design of the BChE mutants reported in literature have been focused on how to improve the ES formation process. Indeed, several BChE mutants, including A328W, A328W/Y332A, A328W/Y332G, and P227A/S287G/A328W/Y332M, have been found to have a significantly higher catalytic efficiency (kcat/Km) against (−)-cocaine; these mutants of BChE have an approximate 9 to 34-fold improved catalytic efficiency against (−)-cocaine. Experimental observation also indicated that the catalytic rate constant of A328W/Y332A BChE is pH-dependent for both (+)- and (−)-cocaine. The pH-dependence reveals that for both (+)- and (−)-cocaine, the rate-determining step of the hydrolysis catalyzed by A328W/Y332A BChE should be either the first or the third step of the reaction process. Further, if the third step were rate determining, the catalytic efficiency of the A328W/Y332A mutant against (−)-cocaine should be as high as that of the same mutant against (−)-cocaine because the (−)- and (−)-cocaine hydrolyses share the same third and fourth steps (see Scheme 3). However, it has also been observed that the A328W/Y332A mutant only has a 9-fold improved catalytic efficiency against (−)-cocaine, whereas the A328W/Y332A mutation does not change the high catalytic activity against (−)-cocaine. This analysis of the experimental and computational data available in literature clearly shows that the rate-determining step of (−)-cocaine hydrolysis catalyzed by the A328W/Y332A mutant should be the first step of the chemical reaction process. Further, recently reported computational modeling also suggests that the formation of the prereactive BChE-(−)-cocaine complex (ES) is hindered mainly by the bulky side chain of Y332 residue in wild-type BChE, but the hindering can be removed by the Y332A or Y332G mutation. Therefore, starting from the A328W/Y332A or A328W/Y332G mutant, the truly rational design of further mutation(s) to improve the catalytic efficiency of BChE against (−)-cocaine should aim to decrease the energy barrier for the first reaction step without significantly affecting the ES formation and other chemical reaction steps.

The following rational design of a high-activity mutant of BChE against (−)-cocaine is based on detailed computational modeling of the transition state for the rate-determining step (i.e., the first step of the chemical reaction process). Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations were performed to model the protein environmental effects on the stabilization of the transition-state structure for BChE-catalyzed hydrolysis of (−)-cocaine. The simulated and calculated results indicate that the transition-state structure can be stabilized better by the protein environment in A199S/A328W/Y332G mutant of BChE than that in the wild-type. The computational modeling led to a prediction of the higher catalytic efficiency for the A199S/A328W/Y332G mutant against (−)-cocaine. The prediction has been confirmed by wet experimental tests showing that the A199S/A328W/Y332G mutant has a significantly improved catalytic efficiency against (−)-cocaine. All of the obtained results clearly demonstrate that directly modeling the transition-state structure provides a reliable computational approach to the rational design of a high-activity mutant of BChE against (−)-cocaine.

MD simulations. It should be stressed that a critical issue exists with regard to any MD simulation on a transition state. In principle, MD simulation using a classical force field (molecular mechanics) can only simulate a stable structure corresponding to a local minimum on the potential energy surface, whereas a transition state during a reaction process is always associated with a first-order saddle point on the potential energy surface. Hence, MD simulation using a classical force field cannot directly simulate a transition state without any restraint on the geometry of the transition state. Nevertheless, if one can technically remove the freedom of imaginary vibration in the transition state structure, then the number of vibrational freedoms (normal vibration modes) for a nonlinear molecule will decrease from 3N–6. The transition state structure is associated with a local minimum on the potential energy surface within a subspace of the reduced vibrational freedoms, although it is associated with a first-order saddle point on the potential energy surface with all of the 3N–6 vibrational freedoms. Theoretically, the vibrational freedom associated with the imaginary vibrational frequency in the transition state structure can be removed by appropriately freezing the reaction coordinate. The reaction coordinate corresponding to the imaginary vibration of the transition state is generally characterized by a combination of some key geometric parameters. These key geometric parameters are bond lengths of the forming and breaking covalent bonds for BChE-catalyzed hydrolysis of cocaine, as seen in Scheme 3. Thus, one just needs to maintain the bond lengths of the forming and breaking covalent bonds during the MD simulation on a transition state. Technically, one can maintain the bond lengths of the forming and breaking covalent bonds by simply fixing all atoms within the reaction center, by using some constraints on the forming and breaking covalent bonds, or by defining the forming and breaking covalent bonds. It should be pointed out that the only purpose of performing such type of MD simulation on a transition state is to examine the dynamic change of the protein environment surrounding the reaction center and the interaction between the reaction center and the protein environment. For this study, of interest is the simulated structures, as the total energies calculated in this way are meaningless.

The initial BChE structures used in the MD simulations were prepared based on the previous MD simulation in accordance with Hamzi et al. on the prereactive ES complex for wild-type BChE with (−)-cocaine in water by using Amber7 program package. The previous MD simulations on the prereactive BChE-(−)-cocaine complex (ES) started from the X-ray crystal structure of Nicolet et al. deposited in the Protein Data Bank (pdb code: 1P0P). The present MD simulation on the transition state for the first step (TS1) was performed in such a way that bond lengths of the partially formed and
partially broken covalent bonds in the transition state were all constrained to be the same as those obtained from our previous ab initio reaction coordinate calculations on the model reaction system of wild-type BChE in accordance with Zhan et al. The partially formed and partially broken covalent bonds in the transition state will be called "transition" bonds below, for convenience. A sufficiently long MD simulation with the transition bonds constrained should lead to a reasonable protein environment stabilizing the reaction center in the transition-state structure simulated. Further, the simulated TS1 structure for wild-type BChE with (--)caine was used to build the initial structures of TS1 for the examined BChE mutants with (--)caine; only the side chains of mutated residues needed to be changed.

The partial atomic charges for the non-standard residue atoms, including cocaine atoms, in the TS1 structures were calculated by using the RESP protocol implemented in the Antechamber module of the Amber7 package following electrostatic potential (ESP) calculations at ab initio HF/6-31G** level using Gaussian03 program known in the art. The geometries used in the ESP calculations came from those obtained from the previous ab initio reaction coordinate calculations of Zhan et al, but the functional groups representing the oxanyon hole were removed. Thus, residues G116, G117, and A199 were the standard residues as supplied by Amber7 in the MD simulations. The general procedure for carrying out the MD simulations in water is essentially the same as that used in our previously reported other computational studies including Zhan et al, Hanza et al and (a) Zhan, C.-G.; Norberto de Souza, O.; Ritenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc. 1999, 121, 7279, (b) Koca, J.; Zhan, C.-G.; Ritenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc. 2001, 123, 817, (c) Koca, J.; Zhan, C.-G.; Ritenhouse, R. C.; Ornstein, R. L. J. Comput. Chem. 2003, 24, 368, (d) Hamza, A.; Cho, H.; Tai, H.-H.; Zhan, C.-G. Bioorg. Med. Chem. 2005, 13, 4544, herein all incorporated by reference. Each aforementioned starting TS1 structure was neutralized by adding chloride counterions and was solvated in a rectangular box of TIP3P water molecules with a minimum solute-wall distance of 10 Å as described by Jorgensen, W. L.; Chandrasekhar, J.; Madura, J.; Klein, M. L. J. Chem. Phys. 1983, 79, 926, herein incorporated by reference. The total numbers of atoms in the solvated protein structures for the MD simulations are nearly 70,000, although the total number of atoms of BChE and (--)caine is only 8417 (for the wild-type BChE). All of the MD simulations were performed by using the Sander module of Amber7 package. The solvated systems were carefully equilibrated and fully energy minimized. These systems were gradually heated from T=10 K to T=298.15 K in 30 ps before running the MD simulation at T=298.15 K for 1 ns or longer, making sure that a stable MD trajectory was obtained for each of the simulated TS1 structures. The time step used for the MD simulations was 2 fs. Periodic boundary conditions in the NPT ensemble at T=298.15 K with Berendsen temperature coupling and P=1 atm with isotropic molecule-based scaling were applied. The SHAKE algorithm was used to fix all covalent bonds containing hydrogen atoms. The non-bonded pair list was updated every 10 steps. The particle mesh Ewald (PME) method with Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T. A.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 98, 10089, herein incorporated by reference, was used to treat long-range electrostatic interactions. A residue-based cutoff of 10 Å was utilized to the non-covalent interactions. The coordinates of the simulated systems were collected every 1 ps during the production MD stages.

QM/MM calculations. For each TS1 structure examined, after the MD simulation was completed and a stable MD trajectory was obtained, all of the collected snapshots of the simulated structure, excluding those before the trajectory was stabilized, were averaged and further energy-minimized. The energy-minimized average structure (with the transition bonds constrained) was used as an initial geometry to carry out a further geometry optimization by using the ONIOM approach of Dapprich, S.; Komaromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. J. Mol. Struct. (Theochem) 1999, 461, 1-21, herein incorporated by reference, implemented in the Gaussian03 program of Frisch, M. J. et al Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh, Pa., 2003, herein incorporated by reference. Two layers were defined in the present ONIOM calculation: the high layer, as depicted in Scheme 3 above, was calculated quantum mechanically at the ab initio HF/3-21G level, whereas the low layer was calculated molecular mechanically by using the Amber force field as used in our MD simulation and energy minimization with the Amber7 program. The ONIOM calculations at the HF/3-21G: Amber level in this study are a type of QM/MM calculations of Vreven, T.; Morokuma, K. J. Chem. Phys. 2000, 113, 2969-2975 and Frisch, M.; Vreven, T.; Schlegel, H. B.; Morokuma, K. J. Comput. Chem. 2003, 24, 760-769, herein both incorporated by reference. Previous reaction coordinate calculations with an active site model of wild-type BChE demonstrated that the HF/3-21G level is adequate for the geometry optimization of this enzymatic reaction system shown by Zhan et al, although the final energy calculations for calculating the energy barriers must be carried out at a higher level. As depicted in Scheme 3, for all of these QM/MM calculations, the same part of the enzyme was included in the QM-treated high layer. So, the QM-treated high layer included (--)caine, key functional groups from the catalytic triad (S198, H438, and E325), and the three residues, i.e., G116, G117, and 199 (or 199 for a particular mutant, see Scheme 4), of the possible oxanyon hole, whereas the entire enzyme structure of BChE was included in the MM-treated low layer. A language computer program was developed to automatically generate the input files for the ONIOM calculations following the MD simulations and subsequent energy minimizations in order to make sure that the atom types used for all low-layer atoms are the same as what were used in the Amber7. During the TS1 geometry optimization using the two-layer ONIOM, the length of a key transition C—O bond was fixed which dominates the reaction coordinate; all of the other transition bond lengths were relaxed. The C and O atoms in the key transition C—O bond are the carbonyl carbon of (--)caine benzyl ester and the O atom of S198, respectively, according to the previous reaction coordinate calculations with an active site model of wild-type BChE of Zhan et al.

Most of the MD simulations and QM/MM calculations were performed in parallel on an HP supercomputer (Superdome, with 256 shared-memory processors) at the Center for Computational Sciences, University of Kentucky. Some of the computations were carried out on a 34-processors IBM x335 Linux cluster and SGI Fuel workstations.
Gly16 – N-H
Gly17 – N-H
CH$_2$ – O – H
Ser199 – C – N – H

ES

↓

TS1

↓

INT1
Scheme 4. Schematic representation of the first reaction step for (−)-caine hydrolysis catalyzed by a BChE mutant with an A199S mutation.

Experimental materials. Cloned pfu DNA polymerase and Dpn I endonuclease were obtained from Stratagene (La Jolla, Calif.). (−)-caine (50 Ci/mmol) was purchased from PerkinElmer Life Sciences (Boston, Mass.). The expression plasmid pRcCMV was a gift from Dr. O. Lockridge, University of Nebraska Medical Center (Omaha, Neb.). All oligonucleotides were synthesized by the Integrated DNA Technologies, Inc. The QIAprep Spin Plasmid Miniprep Kit and Qiagen plasmid purification kit and QIAquick PCR purification kit were obtained from Qiagen (Santa Clarita, Calif.). Human embryonic kidney 293T/17 cells were from ATCC (Manassas, Va.). Dulbecco’s modified Eagle’s medium (DMEM) was purchased from Fisher Scientific (Fairlawn, N.J.). Oligonucleotide primers were synthesized by the Integrated DNA Technologies and Analysis Facility of the University of Kentucky. 3,3',5,5'-Tetramethylbenzidine (TMB) was obtained from Sigma (Saint Louis, Mo.). Anti-butyrylcholinesterase (mouse monoclonal antibody, Product # HAH002-01) was purchased from AntibodyShop (Gentofte, Denmark) and Goat anti-mouse IgG HRP conjugate from Zymed (San Francisco, Calif.).

Site-directed mutagenesis, protein expression, and BChE activity assay. Site-directed mutagenesis of human BChE cDNA was performed by using the QuikChange method of Braman et al. Mutations were generated from wild-type human BChE in a pRcCMV expression plasmid in accordance with (a) Masson, P.; Legrand, P.; Bartels, C. F.; Froment, M.-T.; Schopfer, L. M.; Lockridge, O. Biochemistry 1997, 36, 2266. (b) Masson, P.; Xie, W.; Froment, M.-T.; Levitsky, V.; Fortier, P.-L.; Albaret, C.; Lockridge, O. Biochim. Biophys. Acta 1999, 1433, 281. (c) Xie, W.; Altimari, C. V.; Bartels, C. F.; Spiris, R. J.; Cashman, J. R.; Lockridge, O. Mol. Pharmacol. 1999, 55, 83. (d) Duyosen, E. G.; Bartels, C. F.; Lockridge, O. J. Pharmacol. Exp. Ther. 2002, 302, 751. (e) Nachon, F.; Nicolet, Y.; Vignie, N.; Masson, P.; Fontecilla-Camps, J. C.; Lockridge, O. Eur. J. Biochem. 2002, 269, 630, herein all incorporated by reference. Using plasmid DNA as template and primers with specific base-pair alterations, mutations were made by polymerase chain reaction with Pfu DNA polymerase, for replication fidelity. The PCR product was treated with Dpn I endonuclease to digest the parental DNA template. Modified plasmid DNA was transformed into Escherichia coli, amplified, and purified. The DNA sequences of the mutants were confirmed by DNA sequencing. BChE mutants were expressed in human embryonic kidney cell line 293T/17. Cells were grown to 80-90% confluence in 6-well dishes and then transfected by Lipofectamine 2000 complexes of 4 µg plasmid DNA per each well. Cells were incubated at 37°C in a CO2 incubator for 24 hours and cells were moved to 60-mm culture vessel and cultured for four more days. The culture medium [10% fetal bovine serum in Dulbecco’s modified Eagle’s medium (DMEM)] was harvested for a BChE activity assay. To measure (−)-caine and benzoic acid, the product of (−)-caine hydrolysis catalyzed by BChE, sensitive radiometric assays were used based on toluene extraction of [3H](−)-caine labeled on its benzene ring in accordance with Sun et al. In brief, to initiate the enzymatic reaction, 100 nCi of [3H](−)-caine was mixed with 100 µl of culture medium. The enzymatic reactions proceeded at room temperature (25°C) for varying time. The reactions were stopped by adding 300 µl of 0.02 M HCl, which neutralized the liberated benzoic acid while ensuring a positive charge on the residual (−)-caine [3H]benzoic acid was extracted by 1 ml of toluene and measured by scintilla-

tion counting. Finally, the measured time-dependent radio-
metric data were fitted to the kinetic equation so that the catalytic efficiency (kcat/KM) was determined along with the use of an enzyme-linked immunosorbent assay (ELISA) described below.

Enzyme-linked immunosorbent assay (ELISA). The ELISA buffers used in the present study are the same as those described in the literature such as (a) Brock, A. L.; Mortensen, V.; Loft, A. G. R.; Nergaard-Pedersen, B. J. Clin. Chem. Clin. Biochem. 1990, 28, 221-224, (b) Khattab, A. D.; Walker, C. H.; Johnston, G.; Siddiqui, M. K.; Sapheir, P. W. Environmental Toxicology and Chemistry 1994, 13, 1661-1667, herein both incorporated by reference. The coating buffer was 0.1 M sodium carbonate/bicarbonate buffer, pH 9.5. The diluent buffer (ELA buffer) was potassium phosphate monobasic/potassium phosphate monohydrate buffer, pH 7.5, containing 0.9% sodium chloride and 0.1% bovine serum albumin. The washing buffer (PBS-T) was 0.01 M potassium phosphate monobasic/potassium phosphate monohydrate buffer, pH 7.5, containing 0.05% (v/v) Tween-20. All the assays were performed in triplicate. Each well of an ELISA microtiter plate was filled with 100 µl of the mixture buffer consisting of 20 µl culture medium and 80 µl coating buffer. The plate was covered and incubated overnight at 4°C to allow the antigen to bind to the plate. The solutions were then removed and the wells were washed four times with PBS-T. The washed wells were filled with 200 µl diluent buffer and kept shaking for 1.5 h at room temperature (25°C). After washing with PBS-T for four times, the wells were filled with 100 µl antibody (1:8000) and were incubated for 1.5 h, followed by washing for four times. Then, the wells were filled with 100 µl goat anti-mouse IgG HRP conjugate complex diluted to a final 1:3000 dilution, and were incubated at room temperature for 1.5 h, followed by washing for four times. The enzyme reactions were started by addition of 100 µl substrate (TMB) solution. The reactions were stopped after 15 min by the addition of 100 µl of 2 M sulfuric acid, and the absorbance was read at 450 nm using a Bio-Rad ELISA plate reader.

Hydrogen bonding revealed by the MD simulations. In accordance with one aspect of the present invention, namely the generation of high-active mutants of BChE against (−)-cocaine, the present invention includes predicting some possible mutations that can lower the energy of the transition state for the first chemical reaction step (TS1) and, therefore, lower the energy barrier for this critical reaction step. Apparently, a mutant associated with the stronger hydrogen bonding between the carbonyl oxygen of (−)-caine benzoate ester and the oxanyon hole of the BChE mutant in the TS1 structure may potentially have a more stable TS1 structure and, therefore, a higher catalytic activity for (−)-caine hydrolysis. Hence, the hydrogen bonding with the oxanyon hole in the TS1 structure is a crucial factor affecting the transition state stabilization and the catalytic activity. The possible effects of some mutations on the hydrogen bonding were examined by performing MD simulations and QM/MM calculations on the TS1 structures for (−)-caine hydrolysis catalyzed by the wild-type and various mutants BChE’s. The MD simulation in water was performed for 1 ns or longer to make sure a stable MD trajectory was obtained for each simulated TS1 structure with the wild-type or mutant BChE. The MD trajectories actually became stable quickly, so we were the H...O distances involved in the potential hydrogen bonds between the carbonyl oxygen of (−)-caine and the oxanyon hole of BChE. Depicted in Fig. 5 are plots of four important H...O distances in the MD-simulated TS1 structure versus the simulation time for (−)-caine hydrolysis catalyzed by A328W/
Y332A or A199S/A328W/332G BChE, along with the root-mean-square deviation (RMSD) of the simulated positions of backbone atoms from those in the corresponding initial structure. Traces D1, D2, and D3 refer to the distances between the carbonyl oxygen of (−)-cocaine and the NH hydrogen of G116, G117, and S199, respectively. Trace D4 is the intermolecular distance between the carbonyl oxygen of (−)-cocaine and the hydroxyl hydrogen of the S199 side chain which exists only in A199S/A328W/332G BChE. RMSD represents the root-mean-square deviation (in Å) of the simulated positions of the protein backbone atoms from those in the initial structure. The H...O distances in the simulated TS1 structures corresponding to the wild-type BChE and the two mutants are summarized in Table 3. The H...O distances between the carbonyl oxygen of (−)-cocaine and the peptide NH hydrogen atoms of G116, G117, and A199 (or S199) of BChE are denoted by D1, D2, and D3, respectively, in Table 2 and FIG. 1. D4 in Table 3 and FIG. 5 refers to the H...O distance between the carbonyl oxygen of (−)-cocaine and the hydroxyl hydrogen of S199 side chain in the simulated TS1 structure corresponding to the A199S/A328W/332G mutant, mutant (1) (SEQ ID NO: 2).

mutant, the simulated average H...O distances with the peptide NH hydrogen of G117 and A199 are 2.35 and 1.95 Å, respectively. These distances suggest a slightly weaker N-H...O hydrogen bond with A199, but a stronger N-H...O hydrogen bond with G117, in the simulated TS1 structure corresponding to the A328W/Y332A mutant. The overall strength of the hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxygen hole of the enzyme is not expected to change considerably when wild-type BChE is replaced by the A328W/Y332A mutant.

However, the story for the simulated TS1 structure associated with the A199S/A328W/Y332G mutant was remarkably different. As one can see from Scheme 4, FIG. 5, and Table 3, when residue #199 becomes a serine (i.e., S199), the hydroxyl group on the side chain of S199 can also hydrogen-bond to the carbonyl oxygen of (−)-cocaine to form an O-H...O hydrogen bond, in addition to the two N-H...O hydrogen bonds with the peptide NH of G117 and S199. The simulated average H...O distances with the peptide NH hydrogen of G117, peptide NH hydrogen of S199, and hydroxyl hydrogen of S199 are 2.21, 1.94, and 2.15 Å, respectively. Due to the additional O-H...O hydrogen bond, the overall strength of the hydrogen bonding with the modified oxygen hole of A199S/A328W/Y332G BChE should be significantly stronger than that of the wild-type and A328W/Y332A BChE’s.

As seen in Table 3, the simulated H...O distance D1 is always too long for the peptide NH of G116 to form a N-H...O hydrogen bond with the carbonyl oxygen of (−)-cocaine. In the simulated TS1 structure corresponding to wild-type BChE, the carbonyl oxygen of (−)-cocaine formed a firm N-H...O hydrogen bond with the peptide NH hydrogen atom of A199 residue; the simulated H...O distance was 1.61 to 2.35 Å, with an average value of 1.92 Å. Meanwhile, the carbonyl oxygen of (−)-cocaine also had a partial N-H...O hydrogen bond with the peptide NH hydrogen atom of G117 residue; the simulated H...O distance was 1.97 to 4.14 Å (the average value: 2.91 Å). In the simulated TS1 structure corresponding to the A328W/Y332A bond, the overall strength of the hydrogen bonding with the modified oxygen hole of A199S/A328W/Y332G BChE was estimated by using the empirical HBE equation implemented in AutoDock 3.0 program suite in accordance with (a) Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19, 1639-1662, and based on the general HBE

TABLE 3

<table>
<thead>
<tr>
<th>Transition State</th>
<th>Method</th>
<th>Distance (Å)</th>
<th>HBE (kal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS1 for (−)-cocaine</td>
<td>MD</td>
<td>Average 4.50</td>
<td>−5.5 (−6.6)</td>
</tr>
<tr>
<td>hydrolysis catalyzed</td>
<td>Maximum</td>
<td>5.37</td>
<td>−6.2 (−4.9)</td>
</tr>
<tr>
<td>by wild-type BChE</td>
<td>Minimum</td>
<td>3.35</td>
<td>−6.2 (−4.9)</td>
</tr>
<tr>
<td></td>
<td>Fluorination</td>
<td>0.35</td>
<td>−6.2 (−4.9)</td>
</tr>
<tr>
<td></td>
<td>QM/MM</td>
<td>4.07</td>
<td>−6.2 (−4.9)</td>
</tr>
<tr>
<td>TS1 for (−)-cocaine</td>
<td>MD</td>
<td>Average 4.35</td>
<td>−3.3</td>
</tr>
<tr>
<td>hydrolysis catalyzed</td>
<td>Maximum</td>
<td>3.22</td>
<td>−3.3</td>
</tr>
<tr>
<td>by A328W/Y332A</td>
<td>Minimum</td>
<td>2.02</td>
<td>−3.3</td>
</tr>
<tr>
<td>by A199S/A328W</td>
<td>Fluorination</td>
<td>0.23</td>
<td>−3.3</td>
</tr>
<tr>
<td>Y332G mutant of BChE</td>
<td>QM/MM</td>
<td>3.19</td>
<td>−3.3</td>
</tr>
<tr>
<td></td>
<td>Fluorination</td>
<td>0.22</td>
<td>−3.3</td>
</tr>
<tr>
<td></td>
<td>QM/MM</td>
<td>4.50</td>
<td>−3.3</td>
</tr>
</tbody>
</table>

*aD1, D2, and D3 represent the internuclear distances between the carbonyl oxygen of cocaine benzyol ester and the NH hydrogen of residues #116 (i.e., G116), #117 (i.e., G117), and #199 (i.e., A199 or S199) of BChE, respectively. D4 is the intermolecular distance between the carbonyl oxygen of cocaine benzyol ester and the hydroxyl hydrogen of S199 side chain in the A199S/A328W/Y332G mutant.

The total HBE value under MD is the average of the HBE values calculated by using the instantaneous distances in all of the snapshots. The value in parenthesis is the total HBE value calculated by using the MD-simulated average distances. The total HBE value under QM/MM was evaluated by using the QM/MM-optimized distances.
equation, \(HBE(r) = 5r e^{-12r^2} - 6e^{-10r^2} \), in which \(r \) is the H...O distance in the considered hydrogen bond and \(e \) is the minimum value of the H...O distance for which the HBE equation can be used. For the calculation, \(r_\text{H...O} = 1.52 \) Å, because it is the shortest H...O distance found in all of our MD simulations. The \(e \) value was determined by using the condition that HBE(\(r \)) = -5.0 kcal/mol when \(r = 1.90 \) Å, herein incorporated by reference. Specifically, for each hydrogen bond with the carbonyl oxygen of (-)-cocaic, a HBE value can be evaluated with each snapshot of the MD-simulated structure. The final HBE of the MD-simulated hydrogen bond is considered to be the average HBE value of all snapshots taken from the stable MD trajectory. The estimated total HBE value for the hydrogen bonds between the carbonyl oxygen of (-)-cocaic and the oxoanion hole in each simulated TS1 structural is given in Table 3.

The HBE for each hydrogen bond was estimated by using the MD-simulated average H...O distance. As seen in Table 3, the total hydrogen-bonding energies (i.e., -4.6, -4.9, and -7.4 kcal/mol for the wild-type, A328W/Y332A, and A199S/A328W/Y332G BChE’s, respectively) estimated in this way are systematically higher (i.e., less negative) than the corresponding total hydrogen-bonding energies (i.e., -5.5, -6.2, and -9.7 kcal/mol) estimated in the aforementioned way. However, the two sets of total HBE values are qualitatively consistent in terms of the relative hydrogen-bonding strengths in the three simulated TS1 structures. In particular, the two sets of total HBE values consistently reveal that the overall strength of the hydrogen bonding between the carbonyl oxygen of (-)-cocaic and the oxoanion hole in the simulated TS1 structure for A199S/A328W/Y332G BChE is significantly higher than that for the wild-type and A328W/Y332A BChE’s.

Hydrogen bonding based on the QM/MM calculations. The above conclusion obtained from the MD simulations was further examined by carrying out QM/MM calculations. Although this enzymatic reaction system is too large to calculate the QM/MM force constant matrix required in the automated search for a first-order saddle point corresponding to TS1, a partial geometry optimization was performed by fixing the length of the transition C—O bond between the carbonyl carbon of (-)-cocaic and the O' atom of S198 in the QM/MM calculation. This transition C—O bond length dominates the reaction coordinate, according to the previous first-principle reaction coordinate calculations, in accordance with Zhan et al., with an active model of wild-type BChE. In the partial geometry optimization, the transition C—O bond length was fixed at that in the TS1 geometry optimized previously by performing the first-principle reaction coordinate calculation with an active site model of wild-type BChE. This partially optimized geometry should be close to the precisely defined TS1 geometry associated with a first-order saddle point on the potential energy surface, particularly, for the hydrogen bonding between the carbonyl oxygen of (-)-cocaic and the oxoanion hole of BChE.

The QM/MM results summarized in Table 3 demonstrate two hydrogen bonds in each of the QM/MM-optimized TS1 structures. Specifically, D2 = 2.21 Å and D3 = 2.05 Å in the optimizations for wild-type BChE; D2 = 2.05 Å and D3 = 2.47 Å in the optimized TS1 structure for the A328W/Y332A mutant; D2 = 2.09 Å, D3 = 1.91 Å, and D4 = 2.59 Å in the optimized TS1 structure for the A199S/A328W/Y332G mutant. Although the QM/MM-optimized individual H...O distances and the estimated HBE values are different from the corresponding values for individual hydrogen bonds, the relative total HBE values (i.e., -4.2, -3.3, and -7.4 kcal/mol for the wild-type, A328W/Y332A, and A199S/A328W/Y332G BChE’s, respectively) estimated from these optimized distances are qualitatively consistent with the corresponding total HBE values (i.e., -4.6, -4.9, and -7.4 kcal/mol) estimated from the MD-simulated average H...O distances.

It should be pointed out that the absolute HBE values estimated in this study are not expected to be accurate, as different computational approaches led different HBE values. Nevertheless, for the purpose of our computational design of a high-activity mutant of BChE, one only needs to know the relative strength of the hydrogen bonding based on the estimated relative total HBE values of different mutants. The three sets of total HBE values (Table 3) estimated from the MD-simulated and QM/MM-optimized H...O distances all consistently demonstrate: (1) the overall strength of hydrogen bonding between the carbonyl oxygen of (-)-cocaic and the oxoanion hole in the TS1 structure for (-)-cocaic hydrolysis catalyzed by A328W/Y332A BChE should be close to that in the TS1 structure for (-)-cocaic hydrolysis catalyzed by wild-type BChE; (2) the overall hydrogen bonding between the carbonyl oxygen of (-)-cocaic and the oxoanion hole in the TS1 structure for (-)-cocaic hydrolysis catalyzed by A199S/A328W/Y332G BChE should be significantly stronger than that in the TS1 structure for (-)-cocaic hydrolysis catalyzed by A328W/Y332A BChE.

Catalytic activity. The computational results discussed above suggest that the transition state for the first chemical reaction step (TS1) of (-)-cocaic hydrolysis catalyzed by the A199S/A328W/Y332G mutant should be significantly more stable than that by the A328W/Y332A mutant, due to the significant increase of the overall hydrogen bonding between the carbonyl oxygen of (-)-cocaic and the oxoanion hole of the enzyme in the TS1 structure. The aforementioned analysis of the literature, namely Sun et al and Hanaza et al, also indicate that the first chemical reaction step associated with TS1 should be the rate-determining step of (-)-cocaic hydrolysis catalyzed by a BChE mutant including Y332A or Y332G mutation, although the formation of the prereactive enzyme-substrate complex (ES) is the rate-determining step for (-)-cocaic hydrolysis catalyzed by wild-type BChE.

This provides evidence of a clear correlation between the TS1 stabilization and the catalytic activity of A328W/Y332A and A199S/A328W/Y332G BChE’s for (-)-cocaic hydrolysis: the more stable the TS1 structure, the lower the energy barrier, and the higher the catalytic activity. Thus, both the MD simulations and QM/MM calculations predict that A199S/A328W/Y332G BChE should have a higher catalytic activity than A328W/Y332A BChE for (-)-cocaic hydrolysis.

The catalytic efficiency (k_cat/K_M) of A328W/Y332A BChE for (-)-cocaic hydrolysis was reported by Sun et al to be -8.6x10^7 M^(-1) min^(-1), which is ~9.4 times of the k_cat/K_M value (~9.1x10^7 M^(-1) min^(-1)) of wild-type BChE. To examine the theoretical prediction of the higher catalytic activity for A199S/A328W/Y332G BChE, A328W/Y332A and A199S/A328W/Y332G mutants of BChE were produced through site-directed mutagenesis. To minimize the possible systematic experimental errors of the kinetic data, kinetic studies were performed with the two mutants and wild-type BChE under the same condition and compared the catalytic efficiency of A328W/Y332A and A199S/A328W/Y332G BChE’s to that of the wild-type for (-)-cocaic hydrolysis at benzoyl ester group. Based on the kinetic analysis of the measured time-dependent radiometric data and the ELISA data, the ratio of the k_cat/K_M value of A328W/Y332A BChE to the k_cat/K_M value of wild-type BChE for (-)-cocaic hydrolysis was determined to be -8.6. The determined catalytic efficiency ratio of -8.6 is in good agreement with the ratio of ~9.4 determined by Sun et al. Further, by using the same experi-
mental protocol, the ratio of the k_{cat}/K_M value of A199S/A328W/Y332G BChE to the k_{cat}/K_M value of A328W/Y332A BChE for (−)-cocaine hydrolysis was determined to be −7.2. These data indicate that the ratio of the k_{cat}/K_M value of A199S/A328W/Y332G BChE to the k_{cat}/K_M value of wild-type BChE for (−)-cocaine hydrolysis should be around 8.6~62 or 7.2~4.8. Thus, A199S/A328W/Y332G BChE has a (65±6)-fold improved catalytic efficiency against (−)-cocaine compared to the wild-type, or A199S/A328W/Y332G BChE has a k_{cat}/K_M value of $(5.9±0.5) \times 10^4$ M$^{-1}$ min$^{-1}$ for (−)-cocaine hydrolysis.

Very recently reported F227A/S287G/A328W/Y332M BChE (i.e., AME-359, k_{cat}/K_M = 3.1 × 104 M$^{-1}$ min$^{-1}$) has a ~34-fold improved catalytic efficiency for (−)-cocaine hydrolysis. AME-359 has the highest catalytic efficiency against (−)-cocaine within all the BChE mutants reported in literature prior to the present study. The catalytic efficiency for our A199S/A328W/Y332G BChE is about two times that of AME-359 against (−)-cocaine.

Conclusion. Molecular dynamics (MD) simulations and hybrid quantum mechanical/molecular mechanical (QM/MM) calculations on the transition state for the first chemical reaction step (TS1) of (−)-cocaine hydrolysis catalyzed by butyrylcholinesterase (BChE) mutants lead to a better understanding of the effects of protein environment on the transition state stabilization. All of the computational results consistently demonstrate that the overall hydrogen bonding between the carbonyl oxygen of (−)-cocaine benzoyl ester and the oxazoline hole of BChE in the TS1 structure for (−)-cocaine hydrolysis catalyzed by A199S/A328W/Y332G BChE should be significantly stronger than that in the TS1 structure for (−)-cocaine hydrolysis catalyzed by the wild-type and A328W/Y332A BChE’s. Thus, both the MD simulations and QM/MM calculations predict that A199S/A328W/Y332G BChE should have a lower energy barrier for the chemical reaction process than, and therefore, a higher catalytic efficiency (k_{cat}/K_M) for (−)-cocaine hydrolysis; A328W/Y332A BChE has been known to have a ~9-fold improved catalytic efficiency for (−)-cocaine hydrolysis. The theoretical prediction has been confirmed by wet experimental tests showing a (65±6)-fold improved catalytic efficiency for A199S/A328W/Y332G BChE against (−)-cocaine compared to the wild-type BChE. The k_{cat}/K_M value determined for A199S/A328W/Y332G BChE is about twice that of F227A/S287G/A328W/Y332M BChE (i.e., AME-359, which has the highest catalytic efficiency within all BChE mutants reported prior to the present study) against (−)-cocaine. The encouraging outcome of this study suggests that the protocol model is a promising approach for rational design of high-activity mutants of BChE as a therapeutic treatment for cocaine abuse.

The following simulation and mutant generation relate to A199S/S287G/A328W/Y332G (mutant 3) as a rational design of a high-activity mutant of BChE against (−)-cocaine based on detailed computational modeling of the transition state for the rate-determining step (i.e., the first step of the chemical reaction process). Molecular dynamics (MD) simulations were performed to model the protein environmental effects on the stabilization of the transition-state structure for BChE-catalyzed hydrolysis of (−)-cocaine as described above for mutant A199S/A328W/Y332G (mutant 1). The simulated results indicate that the transition-state structure can be stabilized much better by the protein environment in A199S/S287G/A328W/Y332G BChE than that in wild-type BChE and in other BChE mutants examined. The computational modeling led to a prediction of the higher catalytic efficiency for the A199S/S287G/A328W/Y332G BChE against (−)-cocaine. The prediction has been confirmed by wet experimental tests showing that the A199S/S287G/A328W/Y332G mutant has a remarkably improved catalytic efficiency against (−)-cocaine. All of the obtained results clearly demonstrate that directly modeling the transition-state structure provides a reliable computational approach to the rational design of a high-activity mutant of BChE against (−)-cocaine.

MD simulations. As with the A199S/A328W/Y332G mutant, when performing any MD simulation on a transition state, in principle, MD simulation using a classical force field (molecular mechanics) can only simulate a stable structure corresponding to a local minimum on the potential energy surface, whereas a transition state during a reaction process is always associated with a first-order saddle point on the potential energy surface.

The initial BChE structures used in the MD simulations were prepared based on our previous MD simulation as above with the prior mutant and the precursor BChE (−)-cocaine complex (ES) structure started from the X-ray crystal structure deposited in the Protein Data Bank (pdb code: 1P0P).

The general procedure for carrying out the MD simulations in water is essentially the same as that used in the computational studies for mutant A199S/A328W/Y332G (mutant 1). Site-directed mutagenesis of human BChE cDNA was performed as described before.

The MD simulation in water was performed as described above, on this mutant. Depicted in FIG. 6 are plots of four important H...O distances in the MD-simulated TS1 structure versus the simulation time for (−)-cocaine hydrolysis catalyzed by A199S/S287G/A328W/Y332G BChE, along with the root-mean-square deviation (RMSD) of the simulated positions of backbone atoms from those in the corresponding initial structure. Traces D1, D2, D3 refer to the distances between the carbonyl oxygen of (−)-cocaine and the NH hydrogen of G116, G117, and S199, respectively. Trace D4 is the internuclear distance between the carbonyl oxygen of (−)-cocaine and the hydroxyl hydrogen of the S199 side chain in A199S/S287G/A328W/Y332G BChE (mutant 3). RMSD represents the root-mean-square deviation (in Å) of the simulated positions of the protein backbone atoms from those in the initial structure.

The H...O distances in the simulated TS1 structures for wild-type BChE and its three mutants are summarized in Table 4. The H...O distances between the carbonyl oxygen of (−)-cocaine and the peptide NH hydrogen atoms of G116, G117, and A199 (or S199) of BChE are denoted by D1, D2, and D3, respectively, in Table 4 and FIG. 6. D4 in Table 4 and FIG. 6 refers to the H...O distance between the carbonyl oxygen of (−)-cocaine and the hydroxyl hydrogen of S199 side chain in the simulated TS1 structure corresponding to the A199S/S287G/A328W/Y332G mutant.
TABLE 4

Summary of the MD-simulated key distances (in Å) and the calculated total hydrogen-bonding energies (HBE, in kcal/mol) between the oxynion hole and the carbonyl oxygen of (-)-cocaaine benzoyl ester in the first transition state (TS1).

<table>
<thead>
<tr>
<th>Transition State</th>
<th>Distancea</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>Total HBEb</th>
</tr>
</thead>
<tbody>
<tr>
<td>TS1 structure for (-)-cocaaine hydrolysis catalyzed by wild-type BChE</td>
<td>Average</td>
<td>4.59</td>
<td>2.91</td>
<td>1.92</td>
<td>-5.5 (-4.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>5.73</td>
<td>4.14</td>
<td>2.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>3.35</td>
<td>1.97</td>
<td>1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluctuation</td>
<td>0.35</td>
<td>0.35</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS1 structure for (-)-cocaaine hydrolysis catalyzed by wild-type BChE</td>
<td>Average</td>
<td>3.62</td>
<td>2.35</td>
<td>1.95</td>
<td>-6.2 (-4.9)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>4.35</td>
<td>3.37</td>
<td>3.02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>2.02</td>
<td>1.78</td>
<td>1.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluctuation</td>
<td>0.23</td>
<td>0.27</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS1 structure for (-)-cocaaine hydrolysis catalyzed by A328W/Y332A mutant of BChE</td>
<td>Average</td>
<td>3.60</td>
<td>2.25</td>
<td>1.97</td>
<td>-6.4 (-5.0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>4.24</td>
<td>3.17</td>
<td>2.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>2.89</td>
<td>1.77</td>
<td>1.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluctuation</td>
<td>0.23</td>
<td>0.24</td>
<td>0.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TS1 structure for (-)-cocaaine hydrolysis catalyzed by A199S/S287G/A328W/Y332G mutant of BChE</td>
<td>Average</td>
<td>4.39</td>
<td>2.60</td>
<td>2.01</td>
<td>1.76</td>
<td>-14.0 (-12.0)</td>
</tr>
<tr>
<td></td>
<td>Maximum</td>
<td>5.72</td>
<td>4.42</td>
<td>2.68</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Minimum</td>
<td>2.87</td>
<td>1.76</td>
<td>1.62</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fluctuation</td>
<td>0.48</td>
<td>0.36</td>
<td>0.17</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

aD1, D2, and D3 represent the internuclear distances between the carbonyl oxygen of cocaine benzoyl ester and the NH hydrogen of residues #116 (i.e., G116), #117 (i.e., G117), and #199 (i.e., A199 or S199) of BChE, respectively. D4 is the internuclear distance between the carbonyl oxygen of cocaine benzoyl ester and the hydroxyl hydrogen of S199 side chain in the A199S/S287G/A328W/Y332G mutant.

bThe total HBE value is the average of the HBE values calculated by using the instantaneous distances in all of the snapshots. The value in parenthesis is the total HBE value calculated by using the MD-simulated average distances.

As seen in Table 4, the simulated H...O distance D1 is always too long for the peptidic NH of G116 to form a N—H...O hydrogen bond with the carbonyl oxygen of (-)-cocaaine in all of the simulated TS1 structures. In the simulated TS1 structure for wild-type BChE, the carbonyl oxygen of (-)-cocaaine formed a firm N—H...O hydrogen bond with the peptidic NH hydrogen atom of A199 residue: the simulated H...O distance (D2) was 1.61 to 2.35 Å, with an average D2 value of 1.92 Å. Meanwhile, the carbonyl oxygen of (-)-cocaaine also had a partial N—H...O hydrogen bond with the peptidic NH hydrogen atom of G117 residue: the simulated H...O distance (D3) was 1.97 to 4.14 Å (the average D3 value: 2.91 Å). The average D2 and D3 values became 2.35 and 1.95 Å, respectively, in the simulated TS1 structure for the A328W/Y332A mutant. These distances suggest a slightly weaker N—H...O hydrogen bond with A199, but a stronger N—H...O hydrogen bond with G117, in the simulated TS1 structure for the A328W/Y332A mutant that the corresponding N—H...O hydrogen bonds for the wild-type. The average D2 and D3 values (2.25 and 1.97 Å, respectively) in the simulated TS1 structure for the A328W/Y332G mutant are close to the corresponding distances for the A328W/Y332A mutant. The overall strength of the hydrogen bonding between the carbonyl oxygen of (-)-cocaaine and the oxynion hole of the enzyme is not expected to change considerably when wild-type BChE is replaced by the A328W/Y332A or A328W/Y332G mutant.

However, the story for the simulated TS1 structure for the A199S/S287G/A328W/Y332G mutant was remarkably different. As one can see from Scheme 5, FIG. 6, and Table 4, when residue #199 becomes a serine (i.e., S199), the hydroxyl group on the side chain of S199 can also hydrogen-bond to the carbonyl oxygen of (-)-cocaaine to form an O—H...O hydrogen bond, in addition to the two N—H...O hydrogen bonds with the peptidic NH of G117 and S199. The simulated average H...O distances with the peptidic NH hydrogen of G117, peptidic NH hydrogen of S199, and hydroxyl hydrogen of S199 are 2.60, 2.01, and 1.76 Å, respectively. Due to the additional O—H...O hydrogen bond, the overall strength of the hydrogen bonding with the modified oxynion hole of A199S/S287G/A328W/Y332G BChE should be significantly stronger than that of wild-type, A328W/Y332A, and A328W/Y332G BChE’s.
Scheme 5. Schematic representation of the transition-state structure for the first reaction step for (−)-cocaine hydrolysis catalyzed by a BChE mutant with an A199S mutation.

To better represent the overall strength of hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxynol hole in a MD-simulated TS1 structure, the hydrogen bonding energy (HBE) associated with each simulated H...O distance was estimated by using the empirical HBE equation implemented in AutoDock 3.0 program suite of (a) Mason, P.; Legrand, P.; Bartels, C. F.; Froment, M.-T.; Schopfer, L. M.; Lockridge, O. Biochemistry 1997, 36, 2266, (b) Mason, P.; Xie, W., Froment, M-T; Levitsky, V.; Fortier, P.-L.; Albaret, C.; Lockridge, O. Biochim. Biophys. Acta 1999, 1433, 281, (c) Xie, W.; Altamirano, C. V.; Bartels, C. F.; Speirs, R. J.; Cashman, J. R.; Lockridge, O. Mol. Pharmacol. 1999, 55, 3, (d) Duyisen, E. G.; Bartels, C. F.; Lockridge, O. J. Pharmacol. Exp. Ther. 2002, 302, 751, (e) Nachon, F.; Nicolet, Y.; Viguie, N.; Mason, P.; Fontecilla-Camps, J. C.; Lockridge, O. Eur. J. Biochem. 2002, 269, 630, herein all incorporated by reference. Specifically, for each hydrogen bond with the carbonyl oxygen of (−)-cocaine, a HBE value can be evaluated with each snapshot of the MD-simulated structure. The final HBE of the MD-simulated hydrogen bond is considered to be the average HBE value of all snapshots taken from the stable MD trajectory. The estimated total HBE value for the hydrogen bonds between the carbonyl oxygen of (−)-cocaine and the oxynol hole in each simulated TS1 structure is also listed in Table 4.

The HBE for each hydrogen bond was estimated by using the MD-simulated average H...O distance. As seen in Table 4, the total hydrogen-bonding energies (i.e., −4.6, −4.9, −5.0, and −12.0 kcal/mol for the wild-type, A328W/Y332A, A328W/Y332G, and A199S/S287G/A328W/Y332G BChE's, respectively) estimated in this way are systematically higher (i.e., less negative) than the corresponding total hydrogen-bonding energies (i.e., −5.5, −6.2, −6.4, and −14.0 kcal/mol) estimated in the aforementioned way. However, the two sets of total HBE values are qualitatively consistent with each other in terms of the relative hydrogen-bonding strengths in the three simulated TS1 structures. In particular, the two sets of total HBE values consistently reveal that the overall strength of the hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxynol hole in the simulated TS1 structure for A199S/S287G/A328W/Y332G BChE is significantly higher than that for wild-type, A328W/Y332A, and A328W/Y332G BChE's.

Catalytic activity. The computational results discussed above provides evidence that the transition state for the first chemical reaction step (TS1) of (−)-cocaine hydrolysis catalyzed by the A199S/S287G/A328W/Y332G mutant should be significantly more stable than that by the A328W/Y332A or A328W/Y332G mutant, due to the significant increase of the overall hydrogen bonding between the carbonyl oxygen of (−)-cocaine and the oxynol hole of the enzyme in the TS1 structure. The aforementioned analysis of the literature of Sun et al. and Hamza et al also indicates that the first chemical reaction step associated with TS1 should be the rate-determining step of (−)-cocaine hydrolysis catalyzed by a BChE mutant including Y332A or Y332G mutation, although the formation of the prerequisite enzyme-substrate complex (ES) is the rate-determining step for (−)-cocaine hydrolysis catalyzed by wild-type BChE. This suggests a clear correlation between the TS1 stabilization and the catalytic activity of A328W/Y332A, A328W/Y332G, and A199S/S287G/A328W/Y332G BChE's for (−)-cocaine hydrolysis: the more stable the TS1 structure, the lower the energy barrier, and the higher the catalytic activity. Thus, the MD simulations predict that A199S/S287G/A328W/Y332G BChE should have a higher catalytic activity than A328W/Y332A or A328W/Y332G BChE for (−)-cocaine hydrolysis.

The catalytic efficiency (k_cat/K_M) of A328W/Y332A BChE for (−)-cocaine hydrolysis was reported to be ~8.6×10^6 M⁻¹ min⁻¹, which is ~9.4 times of the k_cat/K_M value (~9.1×10⁶ M⁻¹ min⁻¹) of wild-type BChE for (−)-cocaine hydrolysis. The catalytic efficiency of A328W/Y332G BChE was found to be slightly higher than that of A328W/Y332A BChE for (−)-cocaine hydrolysis. To examine the theoretical prediction of the higher catalytic activity for A199S/S287G/A328W/Y332G BChE, the A328W/Y332A and A199S/S287G/A328W/Y332G mutants of BChE were produced as previously discussed through site-directed mutagenesis. To minimize the possible systematic experimental errors of the kinetic data, kinetic studies were performed with the two mutants and wild-type BChE: under the same condition and compared the catalytic efficiency of A328W/Y332A and A199S/S287G/A328W/Y332G BChE's to that of the wild-type for (−)-cocaine hydrolysis at benzoyl ester group. Based on the kinetic analysis of the measured time-dependent radiometric data and the ELISA data, the ratio of the k_cat/K_M value
of A328W/Y332A BChE to the k_{cat}/K_M value of wild-type BChE for (−)- cocaine hydrolysis was determined to be 8.6. The determined catalytic efficiency ratio of 8.6 is in good agreement with the ratio of 9.4 determined by Sun et al. Further, by using the same experimental protocol, the ratio of the k_{cat}/K_M value of A199S/S287G/A328W/Y332G BChE to the k_{cat}/K_M value of A328W/Y332A BChE for (−)- cocaine hydrolysis was determined to be 50.6. These data indicate that the ratio of the k_{cat}/K_M value of A199S/S287G/A328W/Y332G BChE to the k_{cat}/K_M value of wild-type BChE for (−)- cocaine hydrolysis should be 50.6×8.6=435 or 50.6×9.4=476. Thus, A199S/S287G/A328W/Y332G BChE has a $-(456±41)$-fold improved catalytic efficiency against (−)- cocaine compared to the wild-type, or A199S/S287G/A328W/Y332G BChE has a k_{cat}/K_M value of $(4.15±0.37)×10^5$ M$^{-1}$ min$^{-1}$ for (−)- cocaine hydrolysis. The catalytic efficiency of A199S/S287G/A328W/Y332G BChE against (−)- cocaine is much higher than that of AME-359 (i.e., F227A/S287G/A328W/Y332M BChE, $k_{cat}/K_M=3.1×10^5$ M$^{-1}$ min$^{-1}$), whose catalytic efficiency against (−)- cocaine is the highest within all of the previously reported BChE mutants) which has a -34-fold improved catalytic efficiency against (−)- cocaine compared to the wild-type BChE.

By using the designed A199S/S287G/A328W/Y332G BChE as an exogenous enzyme in human, when the concentration of this mutant is kept the same as that of the wild-type BChE in plasma, the half-life time of (−)- cocaine in plasma should be reduced from the 45-90 min to only 6-12 seconds, considerably shorter than the time required for cocaine crossing the blood-brain barrier to reach CNS. Hence, the outcome of this study could eventually result in a valuable, efficient anti-cocaine medication.

Conclusion. The transition-state simulations demonstrate that the overall hydrogen bonding between the carbonyl oxygen of (−)- cocaine benzylo ester and the oxanyon hole of BChE in the TS1 structure for (−)- cocaine hydrolysis catalyzed by A199S/S287G/A328W/Y332G BChE should be significantly stronger than that in the TS1 structure for (−)- cocaine hydrolysis catalyzed by the wild-type BChE and other BChE mutants simulated. Thus, the MD simulations predict that A199S/S287G/A328W/Y332G BChE should have a significantly lower energy barrier for the chemical reaction process and, therefore, a significantly higher catalytic efficiency (k_{cat}/K_M) for (−)- cocaine hydrolysis. The theoretical prediction has been confirmed by wet experimental tests showing a $-(456±41)$-fold improved catalytic efficiency for A199S/S287G/A328W/Y332G BChE against (−)- cocaine compared to the wild-type BChE. The k_{cat}/K_M value determined for A199S/S287G/A328W/Y332G BChE is much higher than the k_{cat}/K_M value for AME-359 (i.e., F227A/S287G/A328W/Y332M BChE, whose catalytic efficiency against (−)- cocaine is the highest within all of the BChE mutants reported previously in literature) which has a -34-fold improved catalytic efficiency against (−)- cocaine compared to the wild-type BChE. The outcome of this study provides evidence that the transition-state simulation is a novel and unique approach for rational enzyme redesign and drug discovery.

Although the invention has been described in detail with respect to preferred embodiments thereof, it will be apparent that the invention is capable of numerous modifications and variations, apparent to those skilled in the art, without departing from the spirit and scope of the invention.
aacagaagt tgaaattgatc taaaatgact ggttgctcta gsgagaatga gactgaata 780
atcaggtgtc ttgaaataaa agatccccaa gaaattcttc tgaatagacg atttggtgtc 840
cctattgaga tctcattgtg aagtaaattt ggtcgagccg tgtatgttga tttttcact 900
gacatgccag acatattaact tgaacctggga caatattaaa aaaccagat ttggtgtggg 960
gtaataaag atsagagacg atgtttttta gtctgttttgct cctggtcctt cagcaaagat 1020
aacaatagta tcataactag aaagaatatt caggaaggttt taaatatatt ttttccagga 1080
gtgaaggtgtg ttggaagaagc aatcactcctt ttaccttac caagacgtgtg aatgatcag 1140
agaccgagaa actacggtga ggctttgggt gatgtttgttg gggtattataa ttttttatgc 1200
cctgctctgg agttccacaa gaagttctca gaagttggaa ataaggctctt ttatatcctat 1260
tttgaagacc gatctttcaca acctctggtg ccagaaagga tgtggtgtc gtctggctat 1320
gaaattttag ttgttttttg tttactcttg gaaagagag ataattacac aaaaagcgag 1380
gaaattttga ttagatccat agtagaaaagc tgtgcaaatat ttgaaatta aggaatcaca 1440
aatagacagt cagcagcattt cacaaatgct cctgctctca aagacactga acaaaaaatatat 1500
tcactcttga atacagagtc aacagagaca atcggcaac tacggtctca aacagttgca 1560
ttctgcatcattttttcc aaaaagctcg aaaaatgcaac tgaagagcag 1620
ttggagttga aagcaggtgt ctctctggg taaaaatac aatacagtaa gaaaattcaca 1680
atctggctt atctcagctaa gagaagaatg tgggtgggtg tct 1722

<210> SEQ ID NO 2
<211> LENGTH: 574
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-1 mutant (Al199S/A323W/Y332G) aminio acid sequence modified EChE

<400> SEQUENCE: 2

Glu Asp Asp Ile Ile Ile Ala Thr Lys Asn Gly Lys Val Arg Gly Met 1 5 10 15
Asn Leu Thr Val Phe Gly Gly Thr Val Thr Ala Asp Thr Val Gly Ile Pro 20 25 30
Tyr Ala Gln Pro Pro Leu Arg Gly Leu Arg Phe Lys Lys Pro Gln Ser 35 40 45
Leu Thr Lys Trp Ser Asp Ile Trp Asn Ala Thr Lys Tyr Ala Asn Ser 50 55 60
Cys Cys Gln Asn Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu 65 70 75 80
Met Trp Asn Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Ann 85 90 95
Val Trp Ile Pro Asa Pro Lys Pro Lys Ann Ala Thr Val Leu Ile Trp 100 105 110
Ile Tyr Gly Gly Gly Phe Gln Thr Gly Thr Ser Ser Leu His Val Tyr 115 120 125
Asp Gly Lys Phe Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met 130 135 140
Asn Tyr Arg Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro 145 150 155 160
Glu Ala Pro Gly Gln Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Gln 165 170 175
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: truncated 14-1 (A199S/A328/Y332G) nucleic Acid Sequence for modified BChE corresponding to a.a. residues 66-442

<400> SEQUENCE: 3

aacatagtc aaagtttccc aggttctcat ggtcagaga tgtggaacc cc aacaactgac 60
tctctgaag actgttatga ttaaatgta tggatcctac cccactaacc acaaaaatgc 120
actgtatatga tctggttgggt tttcaaaactg gacatcatac tttacattg 180
tgatgatgca acttgcttcag tccggattgaa aggttttagc tgtgctcaat gaaacttagg 240
gtttgtggcc taggattctt agctttgcca ggaatctctg aggctcagg agaactggt 300
ttattgatg cactcgtgag cccttgtttg cacattgac gctttggtga 360
aatcttcaaa ggtgtacctc tctgtggaga agtggtcggag cagttcgtag tgctgctcat 420
cttcatccttc tggaaagcct ctcattgttc accagagccca tttcctaaag tgggtctctt 480
aatcttctct tgtcggacac atctctttat gaagttagga acagaagctgt gaacttagct 540
aaatgtgaat gtttcttctag agaatgagtag atctgaattt tcaagtgctct tagaatttaa 600
gatcccaag aatatttctc gattgaagca ttctgtgcct atctgtggaa tctttttgca 660
gtaaactcttg tgtccatcctg gatgtttgatat tttccagtctg aatcgtgacag tattctttcttct 720
gaacctggac atataaaaaa aaccacagtt ttgggtgccg tttaataaca gtaggggact 780
tggttttttag tgcttggtgct cttggtcctc agcaagagata acaatgtatc cataactaga 840
aagaatatc acgaaggttt aaaaatatctt ttcttcggag tgagtctcgg tgtaaagggaa 900
tccacttcct tctctacac agaagtctgta gatgtcagaa gactggaa cttcctgtag 960
gctctgttg agtgcttgag gattataaa tccattacgct ctctcttgag cttctacaag 1020
aagttctcag aatggggaaa taattctcttt cttcactatt ttgaacacoct acctcctaaaa 1080
ctctgtggcc cgaatatgat gggagttagt ctgggtcagtc aatattttcttt 1145

<210> SEQ ID NO 4
<211> LENGTH: 375
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: truncated 14-1 mutant (A199S/A328/Y332G) amino acid sequence of modified BChE

<400> SEQUENCE: 4

Asn Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu Met Trp Asn
1 5 10 15

Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn Val Trp Ile
20 25 30

Pro Ala Pro Lys Pro Lys Asn Ala Thr Val Leu Ile Trp Ile Tyr Gly
35 40 45

Gly Gly Phe Glu Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys
50 55 60

Phe Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Asn Tyr Arg
65 70 75 80

Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro Glu Ala Pro
90 95

Gly Asn Met Gly Leu Phe Asp Glu Gln Leu Ala Leu Glu Val Trp Val Gln
105 110

Lys Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val Thr Leu Phe
115 120 125
Gly Glu Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro
130 135 140
Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gin Ser Gly Ser Phe
145 150 155 160
Asn Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Asn Arg Thr
165 170 175
Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Gin Glu Gin Asn Glu Thr Glu
180 185 190
Ile Ile Lys Cys Leu Arg Asn Lys Asp Pro Gin Glu Ile Leu Leu Asn
195 200 205
Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Ser Val Asn Phe Gly
210 215 220
Pro Thr Val Amp Gly Arg Phe Leu Thr Amp Met Pro Asp Ile Leu Leu
225 230 235 240
Glu Leu Gly Gin Phe Lys Lys Thr Gin Ile Leu Val Gly Val Asn Lys
245 250 255
Asp Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly Phe Ser Lys
260 265 270
Asp Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu Gly Leu Lys
275 280 285
Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe
290 295 300
His Tyr Thr Amp Trp Val Asp Gin Arg Pro Gin Asn Tyr Arg Glu
305 310 315 320
Ala Leu Gly Gin Val Val Gly Asp Tyr Asn Phe Ile Cys Pro Ala Leu
325 330 335
Glu Phe Thr Lys Phe Ser Glu Trp Gly Asn Ala Asp Phe Phe Tyr
340 345 350
Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly
355 360 365
Val Met His Gly Tyr Glu Ile
370 375

<210> SEQ ID NO 5
<211> LENGTH: 966
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: 14-1 mutant (A199S/A328W/Y332G) BChE nucleic acid sequence corresponding to a.a. residues 117-438
<400> SEQUENCE: 5

gcgttttccaa ctggaaacatc atctttacat gttttatagt gcgaattttct gcgtttggtt
 60
 gcgaagatt tetggcttc aatgaactat aggttgggtg cccatgatt cttagttttg
 120
caggaatct cttgggttcc aaggaacatg gttttatagc atcaacagtt gcgtttcctg
 180
tggttccaa aaaaatagcc agctttggttg ggaacttctta aagttatatc tttctttgga
 240
gagaattcc cccagacccag ctgctttccc cttggtgtct ctggggccct gcaatctcct
 300
tccttcgag ccctgctgca aatgggtttcc tttattgctc cttggtgtct gcaatctcct
 360
tgagagtaa ggaacagacgt gcggacatctg gtaaatcctg cttggtgtct gcaatctcct
 420
gagagtaa gtaacaagacgt gcggacatctg gtaaatcctg cttggtgtct gcaatctcct
 480
gcgtttgctccctctggcc cagctgagtact tcaatcactg cttggtgtct gcaatctcct
 540
gcgttttccaa ctggaaacatc atctttacat gttttatagt gcgaattttct gcgtttggtt
 600
atattggtgg gttgtaataa agatgaagg gcatgttttt tasctggttg tgctcttgtgctggtgtttttttctagttttaaaatgtcatgagcattcagcgtgttttttgcggtttttttcttttttcttctctctttcttttctctttctt

<210> SEQ ID NO 6
<211> LENGTH: 322
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-1 mutant (A199S/A328W/Y332G) BChE a.a. residues 117-438

<400> SEQUENCE: 6
Gly Phe Glu Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys Phe
1 5 10 15
Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Asn Tyr Arg Val
 20 25 30
Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro Glu Ala Pro Gly
 35 40 45
Asn Met Gly Leu Phe Asp Glu Glu Leu Ala Glu Leu Trp Val Glu Lys
 50 55 60
Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val Thr Leu Phe Gly
 65 70 75 80
Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro Gly
 85 90 95
Ser His Ser Leu Phe Thr Arg Ala Ile Leu Glu Ser Gly Ser Phe Asn
100 105 110
Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Asn ArgThr Leu
115 120 125
Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn Glu Thr Glu Ile
130 135 140
Ile Lys Cys Leu Arg Asn Lys Asp Pro Glu Glu Ile Leu Leu Asn Glu
145 150 155 160
Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Ser Val Asn Phe Gly Pro
165 170 175
Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu Glu
180 185 190
Leu Gly Glu Phe Lys Lys Thr Glu Ile Leu Val Gly Val Asn Lys Asp
195 200 205
Glu Gly Thr Trp Phe Leu Val Gly Ala Pro Gly Asp Ser Lys Asp
210 215 220
Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Glu Glu Gly Leu Lys Ile
225 230 235 240
Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe His
245 250 255
Tyr Thr Asp Val Asp Gly Ala Pro Glu Asn Tyr Arg Glu Ala
260 265 270
Leu Gly Asp Val Val Gly Asp Tyr Asn Phe Ile Cys Pro Ala Leu Glu
275 280 285
Phe Thr Lys Lys Phe Ser Glu Trp Gly Asn Asn Ala Phe Phe Tyr Tyr
290 295 300

Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly Val
305 310 315 320

Met His

<210> SEQ ID NO 7
<211> LENGTH: 1722
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<222> OTHER INFORMATION: 14-2 mutant (A199S/P227A/A320S/Y332G) BChE,
full nucleic acid sequence

<400> SEQUENCE: 7

gaaatgaca tcaaattgc aacaagaatg ggaaagtcga gaggagatgaa ccggacacgtt 60
tttggctgcc ccggacccgc cccctctgga atccctatgc cacaagcacc cccctctgta 120
tctccatcct aacagacca gcccttccag cagccctcag ccggacaaatg 180
tatgcagact tggcagaccc accttcatct cagccctcag gcggcccttc 240
tggttaccc gaggaaacat ccccttcctc at cacctaacc cccgagcctc 300
gacattactc cctggttgc ggcttcagcg ttctggagcg gcgtaacgcct 360
gagcttactt tccttttcct ctcagcttta cagcagatttc cagccctcctc 420
gtatctctg gccctgcag cgcctgcag cgcctgcag cgcctgcag cgcctgcag 480
gagccttcct gcggtaacgc ttctttctct tgcggtaaag gccctgcagc 540
aatatccag ctctggttgc aatagccataa agagcataa ttcctcaccag ctgtaaag 600
gcagcctgct cgcctgcag tcgtattacc cctttctatt tcg ggg 660
atctcttctgc ggctgata gaacctgatc tttgctgatc tttgctgatc tttgctgatc 720
atctcttctgc ggctgata gaacctgatc tttgctgatc tttgctgatc tttgctgatc 780
atctcttctgc ggctgata gaacctgatc tttgctgatc tttgctgatc tttgctgatc 840
atctcttctgc ggctgata gaacctgatc tttgctgatc tttgctgatc tttgctgatc 900
gcagcctgct cgcctgcag tcgtattacc cctttctatt tcg ggg 960
gtataatg cccgccgtttc cccgccgtttc cccgccgtttc cccgccgtttc cccgccgtttc 1020
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1080
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1140
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1200
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1260
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1320
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1380
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1440
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1500
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1560
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1620
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1680
gatagcag atgctccctg tcagccctctg tcagccctctg tcagccctctg tcagccctctg 1740
Glu Asp Asp Ile Ile Ile Ala Thr Lys Asn Gly Lys Val Arg Gly Met
1 5 10 15
Asn Leu Thr Val Phe Gly Gly Thr Val Thr Ala Phe Leu Gly Ile Pro
20 25 30
Tyr Ala Gln Pro Pro Leu Gly Arg Leu Arg Phe Lys Pro Gln Ser
35 40 45
Leu Thr Lys Trp Ser Asp Ile Trp Asn Ala Thr Tyr Ala Asn Ser
50 55 60
Cys Cys Gln Asn Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu
65 70 75 80
Met Trp Asn Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn
85 90 95
Val Trp Ile Pro Ala Pro Lys Pro Lys Asn Ala Thr Val Leu Ile Trp
100 105 110
Ile Tyr Gly Gly Gly Phe Gln Thr Gly Thr Ser Ser Leu His Val Tyr
115 120 125
Asp Gly Lys Phe Leu Ala Arg Val Glu Arg Val Il Val Val Ser Met
130 135 140
Asn Tyr Arg Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro
145 150 155 160
Glu Ala Pro Gly Asn Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Gln
165 170 175
Trp Val Glu Lys Asn Ile Ala Ala Phe Gly Gly Gly Asn Pro Lys Ser Val
180 185 190
Thr Leu Phe Gly Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu
195 200 205
Leu Ser Pro Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser
210 215 220
Gly Ser Ala Asn Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg
225 230 235 240
Asn Arg Thr Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn
245 250 255
Glu Thr Glu Ile Ile Lys Cys Leu Arg Asn Lys Asp Pro Gln Glu Ile
260 265 270
Leu Leu Asn Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Ser Val
275 280 285
Asn Phe Gly Pro Thr Val Asp Gly Phe Leu Thr Asp Met Pro Asp
290 295 300
Ile Leu Leu Glu Leu Gly Phe Lys Thr Glu Ile Leu Val Gly
305 310 315 320
Val Asn Lys Asp Gly Gly Thr Trp Phe Leu Val Gly gly Ala Pro Gly
325 330 335
Phe Ser Lys Asp Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Gln Glu
340 345 350
Gly Leu Lys Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser
355 360 365
Ile Leu Phe His Tyr Thr Aep Trp Val Asp Asp Gln Arg Pro Glu Ann 370 375 380
Tyr Arg Glu Ala Leu Gly Asp Val Val Gly Asp Tyr Aem Phe Ile Cys 385 390 395 400
Pro Ala Leu Glu Phe Thr Lys Lys Phe Ser Glu Trp Gly Asn Ala 405 410 415
Phe Phe Tyr Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu 420 425 430
Trp Met Gly Val Met His Gly Tyr Glu Ile Glu Phe Val Phe Gly Leu 435 440 445
Pro Leu Glu Arg Arg Asp Ann Tyr Thr Lys Ala Glu Glu Ile Leu Ser 450 455 460
Arg Ser Ile Val Lys Arg Trp Ala Ann Phe Ala Lys Tyr Gly Ann Pro 465 470 475 480
Aem Glu Thr Gln Ann Ann Ser Thr Ser Trp Pro Val Phe Lys Ser Thr 485 490 495
Glu Glu Gly Tyr Leu Thr Leu Ann Thr Glu Ser Thr Arg Ile Met Thr 500 505 510
Lys Leu Arg Ala Glu Glu Gly Ser Arg Phe Thr Ser Phe Pro Lys 515 520 525
Val Leu Glu Met Thr Gly Ann Ile Asp Ala Glu Glu Trp Glu Trp Lys 530 535 540
Ala Gly Phe His Arg Trp Ann Ann Tyr Met Met Asp Trp Lys Ann Glu 545 550 555 560
Phe Ann Asp Tyr Thr Ser Lys Gly Glu Ser Cys Val Gly Leu 565 570

<210> SEQ ID NO 9
<211> LENGTH: 1125
<212> TYPE: DNA
<213> ORGANISM: Artificial
<222> FEATURES:
<223> OTHER INFORMATION: 14-2 mutant (A199/F227A/A328W/Y322G) BCHE
nucleic acid sequence for a.a. residues 68-442
<400> SEQUENCE: 9

aacatagac aagctttccc aggttccat ggtagaaggc tggtagaaac cc aacactgac 60
cctcagtgaag aactgttata tctaastgta tggattccag cacttacacc aaaaaatgcc 120
actgtattga ttagattttg ttgctttggt gttcaaaactg gaaactcaaa tttactgtct 180
atatgcagca aagtttctggc tccctgttga aagttcttctag tagttcttctt ggaactatagg 240
gttgagtcgg ctaggtttttg ggaataacccg aagctctccag gaacatgttgg 300
attagttgcac aacagctgcc ctcctgttcg gtcacaaaaa atctagccag cttgggtgga 360
aatcactaaa ggttaactct cttggagagg aagttcggag cagctctcag tagcttctat 420
tgctttcttc ctggagacca tctctgtgtc accagagcgc tttcctcaaa agttctccgt 480
aatgctcttt ggcgcgtcag atctctttat gaagcttagg acacaaagg caagcttctg 540
aatattctgt gttctagag aagaaatgag atcgaattac tattaattt gtagttctct gcctgaaagggc 600
gatcccgac aatcttccct gtaagagctc tttggtgtccc cctatgaggc tctttttgca 660
gttaaacttt tgtggactgt gatggtgtat ttttcactcg acatgccaga catattactc 720
gaacctggag aatttaaaa aaccacagtt tttggtggtg tgttataaaaga tgaaggggac 780
tggttttttg taggtggtgcc ttggctgcttc aacacagata aacatagat mataactagg 840
aaagaacttc aggaagtttt aaaaatat attttttccttggagagcag tgtgtagagt tggaaaggga 900
| Aaa | Ile | Asp | Glu | Ser | Phe | Pro | Gly | Phe | His | Gly | Ser | Glu | Met | Trp | Aaa |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1 | 5 | 10 | 15 |
| Pro | Aaa | Thr | Asp | Leu | Ser | Glu | Asp | Cys | Leu | Tyr | Leu | Aaa | Val | Trp | Ile |
| 20 | 25 | 30 |
| Pro | Ala | Pro | Lys | Pro | Lys | Aaa | Ala | Thr | Val | Leu | Ile | Trp | Ile | Tyr | Gly |
| 35 | 40 | 45 |
| Gly | Gly | Phe | Gln | Thr | Gly | Thr | Ser | Ser | Leu | His | Val | Tyr | Asp | Gly | Lys |
| 50 | 55 | 60 |
| Phe | Leu | Ala | Arg | Val | Glu | Arg | Val | Ile | Val | Ser | Met | Asn | Tyr | Arg |
| 65 | 70 | 75 | 80 |
| Val | Gly | Ala | Leu | Gly | Phe | Leu | Ala | Leu | Pro | Gly | Asn | Pro | Glu | Ala | Pro |
| 85 | 90 | 95 |
| Gly | Asn | Met | Gly | Leu | Phe | Asp | Glu | Gln | Leu | Ala | Leu | Gln | Trp | Val | Gln |
| 100 | 105 | 110 |
| Lys | Asn | Ile | Ala | Ala | Phe | Gly | Gln | Asn | Pro | Lys | Ser | Val | Thr | Leu | Phe |
| 115 | 120 | 125 |
| Gly | Glu | Ser | Gly | Ala | Ser | Val | Ser | Leu | His | Leu | Ser | Pro |
| 130 | 135 | 140 |
| Gly | Ser | His | Ser | Leu | Phe | Thr | Arg | Ala | Ile | Leu | Gln | Ser | Gly | Ser | Ala |
| 145 | 150 | 155 | 160 |
| Aaa | Ala | Pro | Trp | Ala | Val | Thr | Ser | Leu | Tyr | Glu | Ala | Arg | Asn | Arg | Thr |
| 165 | 170 | 175 |
| Leu | Asn | Ala | Lys | Leu | Thr | Gly | Cys | Ser | Arg | Glu | Asn | Glu | Thr | Glu |
| 180 | 185 | 190 |
| Ile | Ile | Lys | Cys | Leu | Arg | Asn | Lys | Asp | Pro | Gln | Ile | Leu | Leu | Asn |
| 195 | 200 | 205 |
| Glu | Asp | Phe | Val | Val | Pro | Tyr | Gly | Thr | Pro | Leu | Ser | Val | Asn | Phe | Gly |
| 210 | 215 | 220 |
| Pro | Thr | Val | Asp | Gly | Asp | Phe | Leu | Thr | Asp | Met | Pro | Asp | Ile | Leu | Leu |
| 225 | 230 | 235 | 240 |
| Glu | Leu | Gly | Gln | Phe | Lys | Lys | Thr | Gln | Ile | Leu | Val | Gly | Val | Asn | Lys |
| 245 | 250 | 255 |
| Asp | Glu | Gly | Thr | Trp | Phe | Leu | Val | Gly | Gln | Ala | Pro | Gly | Phe | Ser | Lys |
| 260 | 265 | 270 |
| Asp | Asn | Ser | Ile | Ile | Thr | Arg | Lys | Glu | Phe | Gln | Gln | Gln | Gly | Leu | Lys |
| 275 | 280 | 285 |
| Ile | Phe | Phe | Pro | Gly | Val | Ser | Glu | Phe | Gly | Lys | Ser | Ile | Leu | Phe |
| 290 | 295 | 300 |
| His | Tyr | Thr | Asp | Trp | Val | Asp | Asp | Gln | Arg | Pro | Glu | Asn | Tyr | Arg | Glu |
| 305 | 310 | 315 | 320 |
Ala Leu Gly Asp Val Val Gly Asp Tyr Asn Phe Ile Cys Pro Ala Leu
325
330
335
Gl u Phe Thr Lys Lys Phe Ser Glu Trp Gly Asn Ala Phe Phe Tyr
340
345
350
Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly
355
360
365
Val Met His Gly Tyr Glu Ile
370
375

<210> SEQ ID NO 11
<211> LENGTH: 966
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-2 murant (A1998/P227A/A328W/Y332G) BChE nucleic acid sequence for residues 117-438

<400> SEQUENCE: 11

tttttacaagt cttgaaactc atctttcaat gtttatagtg ggaaagttct gctcttggtt
60
gaaagttc ttgtagggtc aatgaaactat agggtttggg gctttagatt ctagtttttg
120
ccttagaacat cttgaaactc agggaaacagt gtttatattg atcagacagt gctctttcag
180
ttggttatca aaaaatagac agctcgggtg ggaatctcca aagagttaac tctttttgga
240
gaaagttccg gacacgcttc agttagtcttg catttctttt ctctctggaac caatctttg
300
ttcaccacag cccatttccaa aatgagccct ctaaaaggtc cetttttccct gtaattttg
360
tatgagacga ggaagacagct gttgaacctta gctaatattg aaggttgcttc tctagagaaat
420
gagacagaa taactagtcg ttctagaaat aagatccccc aaggaaattct tctgaatgaa
480
gcatttgcg tccctctagtg gcaaccctggt tctgtaaact tgggctgacc cgttttgggt
540
gttttttcota cttgaatgccc aagacatatta cttgaactgt gcaaaatattt aaaaaaccagc
600
atattggttg gtttattaaat agatgaaaggg acattttttt tagcttttgg ttttcttgcgc
660
ttcagcaag ataaacattg tatctatact aagaaagaat ttcaggaagg tttttttttata
720	ttttttccgg gaggagttgg gttggaagag aatactcccc ttttttattt cacagactgg
780
ttagatgtcc gaggacagtcg gttggaagag aatactcccc ttttttattt cacagactgg
840
aattctacgcc gccttctacc agaagatttt cagattgggg aatatttccc
900
tttttttact atctttgaca ccagttctcc aacactcttg gttcaggtgg atggttggg
960
atgcatt
968

<210> SEQ ID NO 12
<211> LENGTH: 322
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-2 (A1998/P227A/A328W/Y332G) a.a residues 117-438

<400> SEQUENCE: 12

gly Phe Glu Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys Phe
1
5
10
15
Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Aen Tyr Arg Val
20
25
30
Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Aen Pro Glu Ala Pro Gly
35
40
45
Aen Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Gln Trp Val Gln Lys
-continued

<table>
<thead>
<tr>
<th></th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val Thr Leu Phe Gly</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro Gly</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gin Ser Gly Ser Ala Asn</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Asn Arg Thr Leu</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Ala Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn Glu Thr Glu Ile</td>
<td>85</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Ile Lys Cys Leu Arg Asn Lys Asp Pro Gin Glu Ile Leu Leu Asn Glu</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Ser Val Asn Phe Gly Pro</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu Glu</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Leu Gly Gin Phe Lys Lys Thr Gin Ile Leu Val Gly Val Asn Lys Asp</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly Phe Ser Lys Asp</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu Gly Leu Lys Ile</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Phe Phe Pro Gly Val Ser Gly Phe Gly Lys Glu Ser Ile Leu Phe His</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Tyr Thr Asp Trp Val Asp Gin Gin Gin Asp Pro Gin Tyr Arg Gin Ala</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Phe Thr Lys Lys Phe Ser Glu Trp Gly Gin Asn Gin Pro Gin Gin Gin</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Trp Glu Glu Val Gly Val</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>Met His</td>
<td>140</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 13
<211> LENGTH: 1722
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-3 mutant (A1995/G287D/A328K/Y332C) BChE nucleic acid sequence
<400> SEQUENCE: 13

gaagagaca ttacaattgc acaaaagaat ggaaaagtcga gaggagtga 60
cttgagatctt

 ttsgtggca 60
ttcttcggca attcocctatg cacagcccac acccttgtaga 120
tcttgacca aacaagccaca gtctcttgacc asgtggctct atatgggtgaa tgcgcacaac 180
atgcagaaaa cccgtggctgg gcaatatgtc gccttgatgca 240
tgggtagattc cacatgccac gccacagctg cgtatatgatcgtagtgacagtt 300
tgctggagctg acatgctgctg caaatattgc acaaaagaat ggaaagtcga 480
gaggtcccg ggacactggg ttatattgt atcagcttg cttctccagt ggttccaaaaa 540
aatatagcc cccttggcgg aaatctaaaa aggtaactc tttttgaga agatctcggag 600
gcagttccag ttacgctcga ttcttccttc ctgctgaaac gttcagttgc ccaccaag 660
attctgcgaa gtggtctctt taaatgctct ttggygggtaa cattcttta tgaagctagg 720
aaacagacgt tgaactagc taaatgact gttgctcca gagagaatga gactgaaata 780
atcaaggttc ttggaactaa agatccccca gaaccttcc tgaatgaagc attggtgctc 840
cctatggga ctccttttggg ttgaacatgt ttgctggacg tggatgttgga ttttttcact 900
gagatccagc acaacatcact tgaacctgga caatctaaaa aacaaccagat ttgggtggtt 960
gttaaaaag atgaagggac atgggttttt aagctttggg gttctggtcttt cagcaaatgat 1020
aacatagcata ctaactcag aaaaagattt caggaagggatt taaatattaatt tttctcccagga 1080
gtgaagtagt tggtaagagga acatcatccttt ttctttactaa cagacttgggt aagatgcag 1140
agacotgtaa actacotgtga ggcttggggt ggtctggttgag ggattatataa tttratatgc 1200
cctgccttgg aagtttccca gaatttgcctt tgggygggga aatactgcttt ttotaaactc 1260
tttgaacacc gatcttccca actcttgttg ccagataagtg tggattgttg gctatgctt 1320
gaaatgtggt ttggcttccgg tttactcttg gnaaggaagag ataatccaccc aaaaacggag 1380
gaaattttcg ttgagttcag aagtaaaccgg ttggaatatttt tttctgaatata ttggaatccca 1440
aatgtagactc agaaacatag cacaagcttg ggtcttttccca aagacactga aacacaatata 1500
taaactcctg aacagcatct aacaagatc aagcttctttt aagctttggg gaaatgcttt tgggaagtgaa 1560
tttcttggtgct catctttttc aaagagcttg ttggtcgccg gaaataggttta tgaagctcgaas 1620
tgggaagctgg aacagcattt ccatctggag aacatttaa ctgatgcaat gaaaatcaca 1680
tttcagtctcactctagcaca ggaaaaagt tgtgttgggct tc 1722

<210> SEQ ID NO 14
<211> LENGTH: 574
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-3 mutant (A199S/S826Q/A328W/Y332G) BCHE amino acid sequence

<400> SEQUENCE: 14

Glu Asp Asp Ile Ile Ile Ala Thr Lys Aas Gly Lys Val Arg Gly Met
1 5 10 15
Asn Leu Thr Val Phe Gly Gly Gly Thr Val Thr Ala Phe Leu Gly Ile Pro
20 25 30
Tyr Ala Gln Pro Pro Leu Gly Arg Leu Arg Phe Lys Pro Gln Ser
35 40 45
Leu Thr Lys Trp Ser Asp Ile Trp Asn Ala Thr Lys Tyr Ala Aas Ser
50 55 60
Cys Cys Gln Aas Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu
65 70 75 80
Met Trp Aas Pro Aas Thr Asp Leu Ser Glu Aas Cys Leu Tyr Leu Aas
85 90 95
Val Trp Ile Pro Ala Pro Lys Pro Lys Aas Ala Thr Val Leu Ile Trp
100 105 110
Ile Tyr Gly Gly Gly Phe Glu Thr Gly Thr Ser Ser Leu His Val Tyr
115 120 125
Asp Gly Lys Phe Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met
130 135 140
<table>
<thead>
<tr>
<th>Residues</th>
<th>Peptide Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>145-150</td>
<td>Asn Tyr Arg Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro</td>
</tr>
<tr>
<td>165</td>
<td>Glu Ala Pro Gly Asn Met Gly Leu Phe Asp Gin Gin Leu Ala Leu Gin</td>
</tr>
<tr>
<td>185</td>
<td>Trp Val Gln lys Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val</td>
</tr>
<tr>
<td>195</td>
<td>Thr Leu Phe Gly Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu</td>
</tr>
<tr>
<td>210</td>
<td>Leu Ser Pro Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser</td>
</tr>
<tr>
<td>225</td>
<td>Gly Ser Phe Asn Ala Pro Thr Ala Val Thr Ser Leu Tyr Glu Ala Arg</td>
</tr>
<tr>
<td>245</td>
<td>Asn Arg Thr Leu Asn Leu Ala Lys Leu Thr Gln Ser Asp Glu Asn</td>
</tr>
<tr>
<td>260</td>
<td>Glu Thr Glu Ile Ile Lys Cys Leu Arg Asn Lys Asp Pro Gin Glu Ile</td>
</tr>
<tr>
<td>275</td>
<td>Leu Leu Asn Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Gly Val</td>
</tr>
<tr>
<td>290</td>
<td>Asn Phe Gly Pro Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp</td>
</tr>
<tr>
<td>305</td>
<td>Ile Leu Leu Glu Leu Gly Gin Phe Lys Thr Gin Gin Ile Leu Val Gly</td>
</tr>
<tr>
<td>320</td>
<td>Val Asn Lys Gin Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly</td>
</tr>
<tr>
<td>340</td>
<td>Phe Ser Lys Asp Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu</td>
</tr>
<tr>
<td>360</td>
<td>Gly Leu Lys Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser</td>
</tr>
<tr>
<td>375</td>
<td>Ile Leu Phe His Tyr Thr Asp Trp Val Asp Gin Arg Pro Glu Asn</td>
</tr>
<tr>
<td>395</td>
<td>Tyr Arg Glu Ala Leu Gly Asp Val Val Gly Asp Tyr Asn Phe Ile Cys</td>
</tr>
<tr>
<td>400</td>
<td>Pro Ala Leu Glu Phe Thr Lys Phe Ser Glu Trp Gly Asn Asn Ala</td>
</tr>
<tr>
<td>420</td>
<td>Phe Phe Tyr Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu</td>
</tr>
<tr>
<td>435</td>
<td>Trp Met Gly Val Met His Gly Tyr Glu Ile Glu Phe Val Phe Gly Leu</td>
</tr>
<tr>
<td>450</td>
<td>Pro Leu Glu Arg Arg Asn Asn Tyr Thr Lys Ala Glu Ile Leu Ser</td>
</tr>
<tr>
<td>465</td>
<td>Arg Ser Ile Val Lys Arg Trp Ala Asn Phe Ala Lys Tyr Gly Asn Pro</td>
</tr>
<tr>
<td>480</td>
<td>Asn Glu Thr Gin Asn Asn Ser Thr Ser Trp Pro Val Phe Lys Ser Thr</td>
</tr>
<tr>
<td>495</td>
<td>Glu Gin Lys Tyr Leu Thr Leu Asn Thr Glu Ser Thr Arg Ile Met Thr</td>
</tr>
<tr>
<td>510</td>
<td>Lys Leu Arg Ala Gin Gin Cys Arg Phe Trp Thr Ser Phe Phe Pro Lys</td>
</tr>
<tr>
<td>520</td>
<td>Val Leu Glu Met Thr Gin Ile Asp Glu Ala Glu Trp Glu Trp Lys</td>
</tr>
<tr>
<td>540</td>
<td>Ala Gly Phe His Arg Trp Asn Asn Tyr Met Met Asp Trp Lys Asn Gin</td>
</tr>
</tbody>
</table>
Phe Asn Asp Tyr Thr Ser Lys Gln Ser Cys Val Gly Leu

<210> SEQ ID NO 15
<211> LENGTH: 1125
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-3 mutant (A199G/S267Q/A328W/Y332G) BchE
nucleic acid sequence for amino acid residues 68-442

<400> SEQUENCE: 15

aacatagatc aaagttttccc aagcttccat ggaatcagaga tgtggaaacc aacactgac
60
ccgtgtagg acgtggttata tctaaagtga tgtggataccag cactcaaaccc aaaaaatgcc
120
acgtacagtta tgtgggtggt tttcacaactgc gacatcacttc tttcacagtt
180
tatgatgca aaggcttcggg tccggtgtaaa agagttacttg tagtgcacatg gaactatag
240
tgggtggcct tagaactctct gtgggcccag cccacacacttg gctttcaggg
300
atatcctaaata ggttgaatctct cttggggaga aagttcagcc gagcttcattg tagctcagat
420
tgatggctgc tctctgcttc cttgggacaaccag gcctgctgagtat cttgggataa
480
aatcgcgtctt gggcggacag atcccctttta gatcagtagga acacagcttt gaacttagct
540
aatagcatg gttgccctgt aagagcagtag acgtgcttctt tagaactctgc taagaatataa
600
aatctcacca aatctctctt cagacagacg gcttgggttc ccttgcgttc ctctttgctgct
660
taacagcctt gttggtgcttc cttcctgtgc acatggtcact aataacttct
720
gaacctggc aatatttaaa aacccgagatt ttctgggtgtg ttaataaaga tgaagggaca
780
tgtgtttttcg tggggtcttc ccctctgtgc acatagcagtt gctgttttgtac
840
aaagatttt aaggggttt aaaaaatatatt ttctccggaggg ctcagtggagtt gggaagggtctttgctt
900
tccatccttct cttatatctgc aagctgggct gatgcacagc gacagtggagtt gctgctgctgct
960
gcttctttctt cctggcaagag gatggccagc cttctgtttt cttccctttt cttccccttt
1020
aatcaagggg aatctccctt tttaccaatt tcctcagaccg atcctccctg
1080
ttccctgtgc cagactatgt gggagagtgtg catggctatg aatatt
1125

<210> SEQ ID NO 16
<211> LENGTH: 375
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 14-3 mutant (A199G/S267Q/A328W/Y332G) BchE
nucleic acid sequence for residues 68-442

<400> SEQUENCE: 16

Ann Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu Met Trp Ann
1 5 10 15

Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Aen Val Trp Ile
20 25 30

Pro Ala Pro Lys Pro Lys Ann Ala Thr Val Leu Ile Trp Ile Tyr Gly
35 40 45

Gly Gly Phe Gln Thr GlyThr Ser Ser Leu His Val Tyr Asp Gly Lye
50 55 60

Phe Leu Ala Arg Val Gly Arg Val Ile Val Val Ser Met Ann Tyr Arg
65 70 75 80

Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Ann Pro Glu Ala Pro
Gly Asn Met Gly Leu Phe Asp Glu Gln Leu Ala Leu Glu Trp Val Gln 100 105 110
Lys Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val Thr Leu Phe 115 120 125
Gly Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro 130 135 140
Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser Gly Ser Phe 145 150 155 160
Asn Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Asn Arg Thr 165 170 175
Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Ala Asn Glu Thr Glu 180 185 190
Ile Ile Lys Gln Leu Arg Asn Lys Asp Pro Glu Glu Ile Leu Leu Asn 195 200 205
Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Gly Val Asn Phe Gly 210 215 220
Pro Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu 225 230 235 240
Glu Leu Gly Gln Phe Lys Lys Thr Glu Ile Leu Val Gly Val Asn Lys 245 250 255
Asp Glu Gly Thr Trp Phe Leu Val Gly Ala Pro Gly Phe Ser Lys 260 265 270
Asp Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu Glu Lys Leu Lys 275 280 285
Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe 290 295 300
His Tyr Thr Asp Trp Val Asp Asp Gln Arg Pro Glu Asn Tyr Arg Glu 305 310 315 320
Ala Leu Gly Asp Val Val Gly Asp Tyr Asp Phe Ile Cys Pro Ala Leu 325 330 335
Glu Phe Thr Lys Phe Ser Glu Trp Gly Asn Ala Phe Phe Tyr 340 345 350
Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly 355 360 365
Val Met His Gly Tyr Glu Ile 370 375

<210> SEQ ID NO 17
<211> LENGTH: 966
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 34-3 mutant (A199S/D267Q/A329W/Y332G) BchE setino acid sequence for amino acid residues 117-438
<400> SEQUENCE: 17

ggttttcaaa ctgggaatct atctttcat gtttatgatg gcaagtattct ggcctcggggtt 60
gaaagagtt tctgttagttc aatgaactat agggtggcgg cctcctaggct cttagctttg 120
ccagggactt ctgggctcct aggggaacctg gtttatattg atcaacactg ggcctctccag 180
ctgggtcatc aataataagc agcctttggg ggaattccta aaggtgtaac tctcttttgg 240
gaaagttcg gagcaagttc agtttagctg catttgcttt ctoctggaag ccattcatgtg 300
tctcactgag ccattctgcga aagttgcttc ttttaagtgc ctggcggcgtt aacatccttt 360
<table>
<thead>
<tr>
<th>Seq ID No.</th>
<th>Length</th>
<th>Type</th>
<th>Organism</th>
<th>Feature</th>
<th>Other Information</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>322</td>
<td>PRT</td>
<td>Artificial</td>
<td>Feature</td>
<td>14-3 mutant</td>
<td>Gly Phe Gln Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys Phe 1 5 10 15 Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met Aem Tyr Arg Val 20 25 30 Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Aem Pro Glu Ala Pro Gly 35 40 45 Aem Met Gly Leu Phe Aep Glu Gin Leu Ala Leu Gin Trp Val Gin Lye 50 55 60 Aem Ile Ala Ala Phe Gly Gly Asm Pro Lye Ser Ser Thr Leu Phe Gly 65 70 75 80 Glu Ser Ser Gly Ala Ala Ser Ser Leu His Leu Leu Ser Pro Gly 85 90 95 Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gin Ser Gly Ser Phe Aem 100 105 110 Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Aem Arg Thr Leu 115 120 125 Aem Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Aem Glu Thr Glu Ile 130 135 140 Ile Lys Cys Leu Arg Aem Lys Asp Pro Gin Glu Ile Leu Aem Glu 145 150 155 160 Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Gly Val Aem Phe Gly Pro 165 170 175 Thr Val Asp Gly Asp Phe Leu Thr Aep Met Pro Aep Ile Leu Leu Glu 180 185 190 Leu Gly Gin Phe Lys Lye Thr Gin Ile Leu Val Gly Val Aem Lys Aep 195 200 205 Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly Phe Ser Lys Aep 210 215 220 Aem Aem Ser Ile Ile Thr Arg Lys Glu Phe Gin Glu Gly Leu Lys Ile 225 230 235 240 Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe His</td>
</tr>
</tbody>
</table>
--- continued ---

Tyr Thr Asp Trp Val Asp Asp Gln Arg Pro Glu Asn Tyr Arg Glu Ala
265 270
Leu Gly Asp Val Val Gly Asp Tyr Asn Pro Ala Ala Leu Glu
275 280 285
Phe Thr Lys Leu Phe Ser Glu Trp Gly Asn Ala Phe Phe Tyr Tyr
290 295 300
Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly Val
305 310 315 320
Met His

SEQ ID NO: 19
LENGTH: 1722
TYPE: DNA
ORGANISM: Artificial
FEATURE:
OTHER INFORMATION: 12-7 mutant (A1998/P227A/S287G/A328W/Y332G)
BONE nucleic acid sequence

SEQUENCE: 19

gaaagcaca tcataattgc aacaagatca ggaagaatca gaggagtagaa cttgcacagt 60
ttttgtgca cgtaaacagc cttccctgga atgccctatg cacaagccac cttgcgtaga 120
cctggacaa aaaaagcaca gctctgacac aagtgtgctg atatatggga tggcacaaca 180
tatgcaatt cttctgtcga gaacagatag caaagtttta caggcttcca tggatcagag 240
atgtaggaac caaacaagct cctcagtgga gctggtttat aatcaatgtg atcgatttcga 300
gccaccaac caaaaagctg caacctattg atatggtatt atggtgggtg ttcccaacct 360
ggaacatcat cttctacagt ttatgatgcc aagtttctgg cttgggttga aaagttatatt 420
gctggtcaca tgaactataag gttgggtgcc cttgagatta ctagctttga gggatcct 480
gaggttcacg ggaacagatgg tttttttgtg cacaagttggg ctttcctagtg ggtttttttct 540
aataatgcag cttctgttgc aatacaatta aagttatactc ttctttggaga aagttcgcga 600
gcagcttcag ccctggttgc ccctcttatt cttgcgaagcc atctatgtgc cacaagccgg 660
atttggcaca gttggctgcc taatgctct ttgagggtta caatttcctca tgaagtctgcg 720
aaacagaagct tgaacctcgc taaatgtcgt gttgcttcta gagaagatgc gactgcagtt 780
atcagagtgc ttgagattaa gatacccaaa gaaacattte tgaatgagct atttgtgtgc 840
ccctatgga ctttccttggg tgaacacttt gtctgcaccc cgggtgtgtg ttttctcactt 900
gacatggcac acatataact tgaacttgcag caatattaaa aaacccagat ttkgtgggt 960
gttaaaatg atgaagggcc atgggttttta gttgcgggct cttctgctatg cgcagtaatgt 1020
aaccatag tcataactag aaagaatatt cggagagtt ttaaatttt tcctccaggg 1080
gttgagtgtg tgtggagagga atcactcttc ccattttctcca cagactggcg ctatgctagc 1140
agactgtgaac ataactgcca ggccttggtg gatgtgtttt ggagtattaa ttttctatgc 1200
ccctgccctg aggttccaaaa gaggcttcagc gaaggagggc atatatgcttt ttttaactatc 1260
tttgaacaccc gttctcccaaa acctctggtc cccagagttc tggggtgtg gctttctgtc 1320
gaaatgtcgc tgtgcatcct tttctggacc gaaagagagc ataatttcag gaaagccgag 1380
gaatattg tgtgagcctg tgtgaaaggg tgtgctcctg tgggaaata gttggaagca 1440
aatggacttc gagaacatag cacaagctgg cctgtcttca aagcaagtga acaaaaaaat 1500
ctaacattg taacagagtc aacaagataa atagcggacag agagcaggtg tttttttccg 1560
ttctggacat cattttttcc aaagtgcttg gaatgacg gaaatattga tgaagcagaa

tggaggtgag aagcgaggct ccacgcagcttg gaaattcaca tggagactgaa gaaaaatcaaa
ttaacagtt ccaagataaa gaaagaaag tgggtgggttc c

<210> SEQ ID NO 20
<211> LENGTH: 574
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-7 mutant (A199S/F227A/S287G/A329I/Y332G)
BChE amino acid sequence

<400> SEQUENCE: 20

Glu Asp Asp Ile Ile Ile Ala Thr Lys Asn Gly Lys Val Arg Gly Met 1 5 10 15
Asn Leu Thr Val Phe Gly Gly Thr Val Thr Ala Phe Leu Gly Ile Pro 20 25 30
Tyr Ala Gln Pro Pro Leu Gly Arg Leu Arg Phe Lys Pro Gln Ser 35 40 45
Leu Thr Lys Trp Ser Asp Ile Trp Asn Ala Thr Lys Tyr Ala Asn Ser 50 55 60
Cys Cys Gln Asn Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu 65 70 75 80
Met Trp Asn Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn 85 90 95
Val Trp Ile Pro Ala Pro Lys Pro Lys Ala Thr Val Leu Ile Trp 100 105 110
Ile Tyr Gly Gly Gly Phe Gln Thr Gly Thr Ser Ser Leu His Val Tyr 115 120 125
Asp Gly Lys Phe Leu Ala Arg Val Glu Arg Val Ile Val Val Ser Met 130 135 140
Asn Tyr Arg Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro 145 150 155 160
Glu Ala Pro Gly Asn Met Gly Leu Phe Asp Gln Glu Leu Ala Leu Gln 165 170 175
Trp Val Gln Lys Asn Ile Ala Ala Phe Gly Gly Asn Pro Lys Ser Val 180 185 190
Thr Leu Phe Gly Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu 195 200 205
Leu Ser Pro Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser 210 215 220
Gly Ser Ala Asn Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg 225 230 235 240
Asn Arg Thr Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Asp Glu Asn 245 250 255
Glu Thr Glu Ile Ile Lys Cys Leu Arg Asn Lys Asp Pro Glu Gly Glu 260 265 270
Leu Leu Asn Glu Ala Phe Val Pro Tyr Glu Thr Pro Leu Gly Val 275 280 285
Asn Phe Gly Pro Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp 290 295 300
Ile Leu Leu Glu Leu Gly Gln Phe Lys Thr Gin Ile Leu Val Gly 305 310 315 320
Val Asn Lys Asp Glu Gly Thr Trp Phe Leu Val Gly Gly Ala Pro Gly 325 330 335
<210> SEQ ID NO: 21
<211> LENGTH: 1125
<212> TYPE: DNA
<213> ORGANISM: Artificial
<222> OTHER INFORMATION: 12-7 mutant (A199S/P227A/S287G/A328K/Y332G) BCHE nucleic acid sequence for amino acid residues 69-442
<400> SEQUENCE: 21

aacatagtc aagttttcc aggttcccag ggatcagaga tgtggaaccc aaacactgac aacatagtc aagttttcc aggttcccag ggatcagaga tgtggaaccc aaacactgac 60
cctcaagtga agtcgttata tctaaatgta tggattccag caacctaaacc aaaaaaatggc aacatagtc aagttttcc aggttcccag ggatcagaga tgtggaaccc aaacactgac 120
tacctttag ttcctgattt ggtgtgggtg tttcacaactg gacatcatac tttacatgtg tgtgtgcttgtg gttgggtgcc taggggtcac gagaatcttg gagttccagg ggaacatggtg 180
tgggtgcagcc tatgtgacttt gctggtgtaa agagttattg tagtgctcaat gaaactatagg ttgttttcgg catttcatcgg ttcgacaaaa atatagcagc ctttggggtgga 240
ggtggtggggatggtgtttgta tgtgggtgcc taggggtcac gagaatcttg gagttccagg ggaacatggtg 300
ttattttgta caacagttgac cctctctgtcggtgcgaaat aatatgcagc atatatgtttttc ctctgtgagct ttggtgttacg gttggtggtgggatggtgtttgta 360
ggtggtggggatggtgtttgta tgtgggtgcc taggggtcac gagaatcttg gagttccagg ggaacatggtg 420
tttggtgctcttg gccacgagc ttctcaacat tttatcagcagac tttatcagcagac tttatcagcagac tttatcagcagac tttatcagcagac 480
aacatagtc aagttttcc aggttcccag ggatcagaga tgtggaaccc aaacactgac aacatagtc aagttttcc aggttcccag ggatcagaga tgtggaaccc aaacactgac 540
aacatagtc aagttttcc aggttcccag ggatcagaga tgtggaaccc aaacactgac aacatagtc aagttttcc aggttcccag ggatcagaga tgtggaaccc aaacactgac 600
aacatagtc aagttttcc aggttcccag ggatcagaga tgtggaaccc aaacactgac aacatagtc aagttttcc aggttcccag ggatcagaga tgtggaaccc aaacactgac 660
Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Ile Leu Phe
290
295
300
His Tyr Thr Asp Trp Val Asp Asp Glu Arg Pro Glu Asn Tyr Arg Glu
305
310
315
320
Ala Leu Gly Asp Val Val Gly Tyr Asn Phe Ile Cys Pro Ala Leu
325
330
335
Glu Phe Thr Lys Phe Ser Glu Trp Gly Asn Asn Ala Phe Phe Tyr
340
345
350
Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly
355
360
365
Val Met His Gly Tyr Glu Ile
370
375

<210> SEQ ID NO 23
<211> LENGTH: 966
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-7 mutant (A199S/F227A/S287G/A328W/ Y332G)
BChE nucleic acid sequence for amino acid residues 117-438

<400> SEQUENCE: 23

gtatatcact tttatcat gtttatgatg gcagtttacct ctctctctct gggctggggt 60
gaaagagtt tttgattttt tctctctctct ctctctctct ctctctctct ctctctctct 120
ccagatac atcatcctcc agtgccagag gttatagtttt atcaacaggtt ggtctctctct 180
tggtcttatt atctctctct ctctcatctct ctctctctct ctctctctct ctctctctct 240
gaaagatgat ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 300
ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 360
tctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 420

gaaatgctgg gtttatagtttt atcaacaggtt ggtctctctct ctctctctct ctctctctct 480
gaaatgctgg gtttatagtttt atcaacaggtt ggtctctctct ctctctctct ctctctctct 540
gaaatgctgg gttatatatt tctctctctct ctctctctct ctctctctct ctctctctct 600

tctctctctct ctctctctct ctctctctct ctctctctct ctctctctct ctctctctct 660

gaaatgctgg gttatatatt tctctctctct ctctctctct ctctctctct ctctctctct 720

gaaatgctgg gttatatatt tctctctctct ctctctctct ctctctctct ctctctctct 780

gaaatgctgg gttatatatt tctctctctct ctctctctct ctctctctct ctctctctct 840

gaaatgctgg gttatatatt tctctctctct ctctctctct ctctctctct ctctctctct 900

gaaatgctgg gttatatatt tctctctctct ctctctctct ctctctctct ctctctctct 960

atgcat 966

<210> SEQ ID NO 24
<211> LENGTH: 322
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-7 mutant (A199S/F227A/S287G/A328W/ Y332G)
BChE amino acid sequence for residues 117-438

<400> SEQUENCE: 24

Gly Phe Phe Glu Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys Phe
1 5 10 15

<table>
<thead>
<tr>
<th>Leu</th>
<th>Ala</th>
<th>Arg</th>
<th>Val</th>
<th>Glu</th>
<th>Arg</th>
<th>Val</th>
<th>Ile</th>
<th>Val</th>
<th>Val</th>
<th>Ser</th>
<th>Met</th>
<th>Aen</th>
<th>Tyr</th>
<th>Arg</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>25</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Phe</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Pro</td>
<td>Gly</td>
<td>Aen</td>
<td>Pro</td>
<td>Gly</td>
<td>Ala</td>
<td>Pro</td>
<td>Gly</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Aen</td>
<td>Met</td>
<td>Gly</td>
<td>Leu</td>
<td>Phe</td>
<td>Asp</td>
<td>Gin</td>
<td>Gin</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Gin</td>
<td>Trp</td>
<td>Val</td>
<td>Gin</td>
<td>Lys</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Aen</td>
<td>Ile</td>
<td>Ala</td>
<td>Ala</td>
<td>Phe</td>
<td>Gly</td>
<td>Gly</td>
<td>Aen</td>
<td>Pro</td>
<td>Lys</td>
<td>Ser</td>
<td>Val</td>
<td>Thr</td>
<td>Leu</td>
<td>Phe</td>
<td>Gly</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Ser</td>
<td>Ser</td>
<td>Gly</td>
<td>Ala</td>
<td>Ala</td>
<td>Ser</td>
<td>Val</td>
<td>Ser</td>
<td>Leu</td>
<td>His</td>
<td>Leu</td>
<td>Ser</td>
<td>Pro</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>His</td>
<td>Ser</td>
<td>Leu</td>
<td>Phe</td>
<td>Thr</td>
<td>Arg</td>
<td>Ala</td>
<td>Ile</td>
<td>Leu</td>
<td>Gin</td>
<td>Ser</td>
<td>Gly</td>
<td>Ser</td>
<td>Ala</td>
<td>Aen</td>
</tr>
<tr>
<td>105</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Trp</td>
<td>Ala</td>
<td>Val</td>
<td>Thr</td>
<td>Ser</td>
<td>Leu</td>
<td>Tyr</td>
<td>Glu</td>
<td>Ala</td>
<td>Arg</td>
<td>Aen</td>
<td>Arg</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td>115</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>Aen</td>
<td>Leu</td>
<td>Ala</td>
<td>Lys</td>
<td>Leu</td>
<td>Thr</td>
<td>Gly</td>
<td>Cys</td>
<td>Ser</td>
<td>Arg</td>
<td>Glu</td>
<td>Aen</td>
<td>Glu</td>
<td>Thr</td>
<td>Glu</td>
<td>Ile</td>
</tr>
<tr>
<td>130</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>Ile</td>
<td>Lys</td>
<td>Cys</td>
<td>Leu</td>
<td>Arg</td>
<td>Aen</td>
<td>Lys</td>
<td>Aen</td>
<td>Asp</td>
<td>Pro</td>
<td>Gin</td>
<td>Glu</td>
<td>Ile</td>
<td>Leu</td>
<td>Aen</td>
<td>Glu</td>
</tr>
<tr>
<td>145</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Phe</td>
<td>Val</td>
<td>Val</td>
<td>Pro</td>
<td>Tyr</td>
<td>Gly</td>
<td>Thr</td>
<td>Pro</td>
<td>Leu</td>
<td>Val</td>
<td>Gly</td>
<td>Aen</td>
<td>Phe</td>
<td>Gly</td>
<td>Pro</td>
</tr>
<tr>
<td>165</td>
<td>170</td>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Asp</td>
<td>Gly</td>
<td>Asp</td>
<td>Phe</td>
<td>Leu</td>
<td>Thr</td>
<td>Asp</td>
<td>Met</td>
<td>Pro</td>
<td>Asp</td>
<td>Ile</td>
<td>Leu</td>
<td>Leu</td>
<td>Glu</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
<td>Gin</td>
<td>Phe</td>
<td>Lys</td>
<td>Lys</td>
<td>Thr</td>
<td>Gin</td>
<td>Ile</td>
<td>Leu</td>
<td>Val</td>
<td>Gly</td>
<td>Val</td>
<td>Aen</td>
<td>Lys</td>
<td>Aen</td>
</tr>
<tr>
<td>190</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Gly</td>
<td>Thr</td>
<td>Trp</td>
<td>Phe</td>
<td>Leu</td>
<td>Val</td>
<td>Gly</td>
<td>Gly</td>
<td>Ala</td>
<td>Pro</td>
<td>Gly</td>
<td>Phe</td>
<td>Ser</td>
<td>Lys</td>
<td>Aen</td>
</tr>
<tr>
<td>205</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>Aen</td>
<td>Ser</td>
<td>Ile</td>
<td>Ile</td>
<td>Thr</td>
<td>Arg</td>
<td>Lys</td>
<td>Glu</td>
<td>Phe</td>
<td>Gin</td>
<td>Glu</td>
<td>Gly</td>
<td>Leu</td>
<td>Lys</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Phe</td>
<td>Pro</td>
<td>Gly</td>
<td>Val</td>
<td>Ser</td>
<td>Glu</td>
<td>Phe</td>
<td>Gly</td>
<td>Lys</td>
<td>Glu</td>
<td>Ser</td>
<td>Ile</td>
<td>Leu</td>
<td>Phe</td>
<td>His</td>
</tr>
<tr>
<td>240</td>
<td>245</td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td>Thr</td>
<td>Asp</td>
<td>Val</td>
<td>Asp</td>
<td>Gin</td>
<td>Arg</td>
<td>Pro</td>
<td>Glu</td>
<td>Aen</td>
<td>Tyr</td>
<td>Arg</td>
<td>Glu</td>
<td>Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td>275</td>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
<td>Asp</td>
<td>Val</td>
<td>Val</td>
<td>Gly</td>
<td>Tyr</td>
<td>Asn</td>
<td>Phe</td>
<td>Ile</td>
<td>Cys</td>
<td>Pro</td>
<td>Ala</td>
<td>Leu</td>
<td>Glu</td>
<td></td>
</tr>
<tr>
<td>295</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Thr</td>
<td>Lys</td>
<td>Phe</td>
<td>Ser</td>
<td>Glu</td>
<td>Trp</td>
<td>Gly</td>
<td>Aen</td>
<td>Aen</td>
<td>Ala</td>
<td>Phe</td>
<td>Phe</td>
<td>Tyr</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td>320</td>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Glu</td>
<td>His</td>
<td>Arg</td>
<td>Ser</td>
<td>Ser</td>
<td>Lys</td>
<td>Leu</td>
<td>Pro</td>
<td>Trp</td>
<td>Pro</td>
<td>Glu</td>
<td>Trp</td>
<td>Met</td>
<td>Gly</td>
<td></td>
</tr>
<tr>
<td>330</td>
<td>335</td>
<td></td>
</tr>
<tr>
<td>Met</td>
<td>His</td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 25
<211> LENGTH: 1722
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-4 mutant (A199S/F227A/S287Q/A328R/H441D)
BChE nucleic acid sequence

<400> SEQUENCE: 25

```
GAAATGCA TCTAATTCG AACAAAGAT GGAAAGTCG GGAGATGAA CCTGACAGT
```

```
TTTGTGGCA CGTAACACG CCTTCTGGA ATTCCATAG CACAGCCAC TCTTGGTGA
```

```
CCTGATTCA AAACGGACAA GCTCTTGACC AAGTGCTCTG ATATTGGAAG TGCGCAAAAA
```

```
TATGCAATTT CTCTGTGCAC GAACATAGAT CAAAGTCTTC CAGCGTTCC TGGATCGAG
```

```
ATGCGGACC AAAACACTGA CCTCAGTGAA GACTGTTAT ATCTAAATG ATGGATTCC
```
"
gacacctaac caaasaatgc cactgtattg atatggattt atgtgggtcg tttccaaact 360
ggaacacagc cttttactgt ttatgtgacg aagttttctg gtcgggttga aagagttatt 420
gtaatgctaa tgaacttagt ggttgggctgc ctggattct tgaagtttgc aggaaacct 480
gaggtcagc ggaacatggg tttattttgt caacagttgg ctcttcagtg ggttccaaaa 540
aatatagcag ctttttcgag aaactttata agtttacttc tttttggaga aagttcggga 600
gcaagttcag ttagcttgca tttgctttct cctggaagcc atctattgtt caccoagccg 660
atttccgaa atggtgctcc ttaagttcct ttgccggttta ctctctctta tgaagctagg 720
aacagaagct tgaacctagc taatatggaat ggttgctcta gagaatatga gctggaata 780
acataagtgct tcagatctaa agactctccaa gaaattcttc tgaatgagc atttggtgctc 840
ccctatgaga ctctctttgag tgaataaattt ggttctgacg cggagtgtcag ttttcctact 900
 gcagctgacg acatattact tgaaccttgag caatttttaaa aaaccgagat tttggtggtt 960
 tgaataaag atgaagggac atggttattaata gtctatggct gtctgtgctt cagoaaagat 1020
 acacatactgct ctctacactg aaagaattt ccggaagggt ttaaattatttt tttccccgga 1080
 gttagctgtgt ttggagagga atctatcttt tttacatta caagctttggtt agtagtccag 1140
 agacgtgaaaa acaatccttgta ggcctttggtt ggtgttgggtt gggattttataa tttctatgtc 1200
 ctcgctttgag attttcaacgaa gtttctctca gaattggggaa ataaagccttt ttttatctat 1260
 ttctggaaccc gactctccaa acctcttgttg ccgaattgga tggaggtgat gcatagcgtat 1320
 gcacattgat ttggttcttg cttactcttg gaaagaagat aataatcaac aaaaagcagag 1380
 gaatttttga ttagtctactt agtgtggcag tggccaaatgt ttccaaatata tgggaatcca 1440
 aagtgaactc agaacaatag ccacacgctg ctgtctttca aagcactgta acaaaaaat 1500
ctaacctgta atacagagtc aacaagata atagaagaaa tagttgtctca acaagtctgca 1560
 ttctggagct ctttttttctt aacagcttgg gaaatttggc gaaatatttga taagacggaa 1620
tgagagaatc gctcttctgg ccactattgc tgctgaagct cgaatgctca 1680
 ttttaagctttt acaatgcaagc cgggaaagaat tgtgttggtc tc 1722

<210> SEQ ID NO: 26
<211> LENGTH: 574
<212> TYPE: PRT
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-4 mutant (A199S/F227A/S287G/A328W/E441D)

BChE amino acid sequence

<400> SEQUENCE: 26

Glu Asp Asp Ile Ile Ala Thr Tyr Asn Gly Lye Val Arg Gly Met
 1 5 10 15
Asn Leu Thr Val Phe Gly Gly Thr Val Thr Ala Phe Leu Gly Ile Pro
 20 25 30
Tyr Ala Gln Pro Pro Leu Gly Arg Leu Arg Phe Lye Lye Pro Gln Ser
 35 40 45
Leu Thr Lye Try Thr Thr Ser Thr Ser Arg Ala Thr Lye Tyr Ala Asn Ser
 50 55 60
Cys Cys Gln Asn Ile Asp Gln Ser Phe Pro Gly Phe His Gly Ser Glu
 65 70 75 80
Met Thr Asn Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn
 85 90 95
Val Thr Ile Pro Ala Pro Lye Pro Lye Asn Ala Thr Val Leu Ile Thr
Val Leu Glu Met Thr Gly Asn Ile Asp Glu Ala Glu Trp Glu Trp Lys
530 535 540
Ala Gly Phe His Arg Trp Asn Tyr Met Met Asp Trp Lys Asn Glu
545 550 555 560
Phe Asn Asp Tyr Thr Ser Lys Glu Ser Cys Val Gly Leu
565 570

<210> SEQ ID NO 27
<211> LENGTH: 1125
<212> TYPE: DNA
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-4 mutant (A199S/F227A/S287G/A328H/R441D)
BCHE nucleic acid sequence for amino acid residues 68-442

<400> SEQUENCE: 27
aacatagatc aaggttttcc aggccttcct ggtcagagga tgtgaaacc aaacactgac 60
cctcgtaga acgttttata tccaatgtg tggattccag cccctaaacc aaaaaattg 120
tagttggttc tggattctga ttcgcaccgc cggactcttc atgataggtg 180
tatgctggaa gcttgcctgg tgttaagacct cagattcattg ctgggtcctag 240
gggtctcaac tggagttgct ggtggttcag acatctggcc cggatcctgg gcgaccggt 300
tattttgac aacagtttgc ttgctactgg gttccaaaaa atatgctgac accgtgggta 360
aacctttaaa gttgaaacct cttgagagaa aggctggagc cagcctcctg tagctctgct 420
ttccttcct tggaaagcct ttctagtcctt accagacgcc ccctgagaaa gggttctgct 480
aatgtctctt ggctgttacct atcctttttt ggaagtctggc acagactgct tggctattag 540
aatgtcag tggctcctag agaagaattg caaggaataa ttgaagtctg tagaattataa 600
gatctcctcct tttgagggatat ctggactctgc ccgacttggt gcctttcctcg 660
gtaacctcgt gtcgacgcgt ggtggtggat ttctcttcct agctggcaga caattttctc 720
gaacctggac aatttttaaa aaccctactgc tttgtgggtt tttactaaga tggagggaga 780
tggcttttag tcttgtttgg tctggttttc agcagagata ccaatgtatg cattactga 840
aagaacttgg aagaggcttc caagagatgc ttttccaggag tgagaaggtag tgganagggaa 900
tctcaaccttt tcctagcccc gcagctcggta cagccgtaag ccctctctgg 960
gcctgtgggt atgggtggtg gattataaa ttcatagctgc ttcgtgggta cttggctcct 1020
aagttctcag atggtcggaa taatgcttctt ttcattctaa tggacactgg atcctcctaa 1080
cctccctggc cagaattgct gggttgtatg cattggctag acatt 1125

<210> SEQ ID NO 28
<211> LENGTH: 375
<212> TYPE: PRO
<213> ORGANISM: Artificial
<220> FEATURE:
<223> OTHER INFORMATION: 12-4 mutant (A199S/F227A/S287G/A328H/R441D)
BCHE amino acid sequence for residues 68-442

<400> SEQUENCE: 28
Ann Ile Asp Glu Ser Phe Pro Gly Phe His Gly Ser Glu Met Thr Asn
1 5 10 15
Pro Asn Thr Asp Leu Ser Glu Asp Cys Leu Tyr Leu Asn Val Trp Ile
20 25 30
Pro Ala Pro Lys Pro Lys Ann Ala Thr Val Leu Ile Trp Ile Tyr Gly
35 40 45
-continued

Gly Gly Phe Glu Thr Gly Thr Ser Ser Leu His Val Tyr Asp Gly Lys
50 55 60
Phe Leu Ala Arg Val Glu Arg Arg Val Ile Val Val Ser Met Asn Tyro Arg
65 70 76 80
Val Gly Ala Leu Gly Phe Leu Ala Leu Pro Gly Asn Pro Glu Ala Pro
85 90 95
Gly Asn Met Gly Leu Phe Asp Gln Gln Leu Ala Leu Gln Trp Val Gln
100 105 110
Lys Asn Ile Ala Ala Phe Gly Glu Asn Pro Lys Ser Val Thr Leu Phe
115 120 125
Gly Glu Ser Ser Gly Ala Ala Ser Val Ser Leu His Leu Leu Ser Pro
130 135 140
Gly Ser His Ser Leu Phe Thr Arg Ala Ile Leu Gln Ser Gly Ser Ala
145 150 155 160
Asn Ala Pro Trp Ala Val Thr Ser Leu Tyr Glu Ala Arg Asn Arg Thr
165 170 175
Leu Asn Leu Ala Lys Leu Thr Gly Cys Ser Arg Glu Asn Glu Thr Glu
180 185 190
Ile Ile Lys Cys Leu Arg Asn Lys Asp Pro Glu Glu Ile Leu Leu Asn
195 200 205
Glu Ala Phe Val Val Pro Tyr Gly Thr Pro Leu Gly Val Asn Phe Gly
210 215 220
Pro Thr Val Asp Gly Asp Phe Leu Thr Asp Met Pro Asp Ile Leu Leu
225 230 235 240
Glu Leu Gly Gln Phe Leu Lys Thr Gln Ile Leu Val Gly Val Asn Lye
245 250 255
Asp Glu Gly Thr Trp Phe Leu Val Tyr Gly Ala Pro Gly Phe Ser Lye
260 265 270
Asp Asn Asn Ser Ile Ile Thr Arg Lys Glu Phe Glu Glu Gly Leu Lye
275 280 285
Ile Phe Phe Pro Gly Val Ser Glu Phe Gly Lys Glu Ser Asn Leu Phe
290 295 300
His Tyr Thr Asp Trp Val Asp Gly Asp Gln Arg Pro Glu Asn Tyr Arg Glu
305 310 315 320
Ala Leu Gly Asp Val Val Asp Tyr Asp Glu Phe Ile Cys Pro Ala Leu
325 330 335
Glu Phe Thr Lys Phe Ser Glu Trp Gly Asn Ala Phe Phe Tyr
340 345 350
Tyr Phe Glu His Arg Ser Ser Lys Leu Pro Trp Pro Glu Trp Met Gly
355 360 365
Val Met His Gly Tyr Asp Ile
370 375

SEQ ID NO 29
LENGTH: 975
TYPE: DNA
ORGANISM: Artificial
FEATURES:
OTHER INFORMATION: 12-4 mutant (A199S/E227A/S2870/A328W/E441D)
BchE nucleic acid sequence for amino acid residues 117-441
SEQUENCE: 29

gggtttccccaa ctggaacact atctttcatc gttttatgatg gcagttttctt ggtctgggtt 60
gaaagagtt tggtaggtc aaagcatct agggtgggtc ccctaggtat cttagctttg 120
cagagagaatc ctagcgccct acaggaacctg ggtttatagg atcaacagt ggtctttcag 180
<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>10</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly</td>
<td>Phe</td>
<td>Gln</td>
<td>Thr</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>His</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Val</td>
<td>Val</td>
<td>Met</td>
<td>Tyr</td>
</tr>
<tr>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>Arg</td>
<td>Val</td>
<td>Gly</td>
<td>Leu</td>
</tr>
<tr>
<td>50</td>
<td>55</td>
<td>60</td>
<td>65</td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Phe</td>
<td>Gly</td>
</tr>
<tr>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Leu</td>
<td>Ser</td>
<td>Gly</td>
<td>Ala</td>
</tr>
<tr>
<td>85</td>
<td>90</td>
<td>95</td>
<td>100</td>
</tr>
<tr>
<td>Ser</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
</tr>
<tr>
<td>100</td>
<td>105</td>
<td>110</td>
<td>115</td>
</tr>
<tr>
<td>Ala</td>
<td>Pro</td>
<td>Trp</td>
<td>Ala</td>
</tr>
<tr>
<td>120</td>
<td>125</td>
<td>130</td>
<td>135</td>
</tr>
<tr>
<td>Leu</td>
<td>Ala</td>
<td>Lys</td>
<td>Leu</td>
</tr>
<tr>
<td>140</td>
<td>145</td>
<td>150</td>
<td>155</td>
</tr>
<tr>
<td>Thr</td>
<td>Val</td>
<td>Gly</td>
<td>Phe</td>
</tr>
<tr>
<td>160</td>
<td>165</td>
<td>170</td>
<td>175</td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
<td>Phe</td>
<td>Lys</td>
</tr>
<tr>
<td>180</td>
<td>185</td>
<td>190</td>
<td>195</td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
<td>Phe</td>
<td>Lys</td>
</tr>
<tr>
<td>200</td>
<td>205</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The invention claimed is:

1. A butyrylcholinesterase variant peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 8, 14, and 26.

2. A pharmaceutical composition comprising:
 a butyrylcholinesterase variant peptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOS: 2, 8, 14, and 26; and a suitable pharmaceutical carrier.

3. A method of treating a cocaine-induced condition comprising administering to an individual an effective amount of a butyrylcholinesterase variant polypeptide of claim 1 to lower blood cocaine concentration.

4. The method of claim 3, wherein said butyrylcholinesterase variant polypeptide exhibits a one-hundred-fold or more increase in cocaine hydrolysis catalytic efficiency compared to butyrylcholinesterase.

5. A method of treating a cocaine-induced condition comprising administering to an individual an effective amount of a BChE butyrylcholinesterase pharmaceutical composition of claim 2 to lower blood cocaine concentration.
It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Column 99, line 25-27 should read

What is claimed is:

1. A butyrylcholinesterase variant peptide comprising the amino acid sequence of SEQ ID NO 14.

Column 99 lines 28-33 should read

2. A pharmaceutical composition comprising:
a butyrylcholinesterase variant peptide comprising the amino acid sequence of SEQ ID NO 14 and a suitable pharmaceutical carrier.

Column 99 lines 34-35 - Column 100 lines 1-2 should read

3. A method of treating a cocaine-induced condition comprising administering to an individual an effective amount of the butyrylcholinesterase variant polypeptide of claim 1 to lowering blood cocaine concentration.

Column 100 lines 3-4 should read

4. The method of claim 3, wherein said butyrylcholinesterase variant polypeptide exhibits a one-hundred-fold or more increase in cocaine hydrolysis catalytic efficiency compared to wild-type butyrylcholinesterase.

Column 100 lines 5-8 should read

5. A method of treating a cocaine-induced condition comprising administering to an individual an effective amount of the BChE butyrylcholinesterase pharmaceutical composition of claim 2 to lower blood cocaine concentration.

Signed and Sealed this
Fourth Day of January, 2011

David J. Kappos
Director of the United States Patent and Trademark Office