Inter-Code Calibration exercise series#2, Amaryllis results

Tom van Eekelen – LMS
Jean-Marc Bouilly – ASTRIUM
1D/Axis-symmetric/3D finite element code:
- Non-linear structural analysis + thermal + charring-ablation code
- Temperature (T), Pressure (P), density (ρ) and species density (α_i)
- Mesh deformation due to ablation (multiple ablation zones)
- Thermal contact algorithms for contact between:
 - Different ablation zones
 - Support structure and ablation zone
- Multiple boundary condition types:
 - Convection (classical, enthalpy form)
 - flux
 - radiation
- Ablation (imposed boundary condition):
 - Phase change
 - Chemical (explicit ablation speed or Bc' table; $Bc'=Bc'(T,P,Bg')$)
 - Mechanical (erosion; temperature and/or density dependent)
- Fully coupled thermo-mechanical solution (char swell)
Amaryllis Test 2.1

- Comparison Amaryllis:
 - PATO-PAM2 results are “identical”
 - No CMA/FIAT baseline available
- Fine mesh distribution is needed for the gas mass flow, not for temperatures
- Comparison Amaryllis:
 - PATO-PAM2 results are “identical”
 - No CMA/FIAT baseline available
Comparison Amaryllis:
- PATO-PAM2 results are “identical”
- No CMA/FIAT baseline available
- Arrhenius type charring equations
 \[\dot{\rho} = -\sum \Delta \rho^i A_i \rho_v^{1-N_i} (\rho_v - \rho_c)^{N_i-1} (1-\alpha_i)^{N_i} e^{-E_i/RT} \]

 - Generalized densities
 \[\rho = \rho_v - \sum \Delta \rho^i \alpha_i \]

 - Mass balance equations
 \[\nabla (K_p \nabla P) = \dot{\rho} \]
 \[\dot{m}^g = -K_p \nabla P \]

 - Heat balance equation
 \[-\frac{\partial \rho}{\partial t} H_p + \rho c \frac{\partial T}{\partial t} = \nabla (\lambda \nabla T) - \dot{m}^g \cdot \nabla h^g \]
 \[\bar{q} = -\lambda \nabla T \]
- Equivalence with the FIAT formulation.
 - Interpolation
 \[\alpha = \frac{\rho_v - \rho}{\rho_v - \rho_c} \]
 - Capacity
 \[\rho_c = \rho c_v(T) - \alpha(\rho c_v(T) - \rho c_c(T)) \]
 - Pyrolysis heat
 \[H_p = h^g - \frac{\rho_v h_v - \rho_c h_c}{\rho_v - \rho_c} \]
 - Charring
 \[\Delta \rho^i = \frac{\rho_{0_i} - \rho_{r_i}}{\rho_{0_i} - \rho_{r_i}}(\rho_v - \rho_c) \quad A_i = \frac{\Gamma_i (1 - \varphi) B_i \rho_0^{1-N_i} (\rho_{0_i} - \rho_{r_i})^{N_i}}{\Delta \rho^i \rho_v^{1-N_i} (\rho_v - \rho_c)^{N_i-1}} \]

- Difference with the FIAT formulation
 - Interpolation
 - conductivity
 - Mass balance
 - Perfect gas:
 \[K_p = \frac{M^g \beta P}{\mu RT} \quad \beta = \beta_v \frac{\Omega}{\Omega_v} \quad \Omega = \Omega_v + (1 - \Omega_v) \frac{\rho_v - \rho}{\rho_v} \]
 - \(K_p \) interpolation:
 \[K_p(T, \rho) = K_{p_v}(T) - \alpha(K_{p_v}(T) - K_{p_c}(T)) \]