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ABSTRACT OF DISSERTATION 

 

FLAVONOIDS WITH NOVEL NICOTINIC ACTIVITY AS POTENTIAL 
PHARMACOTHERAPIES TO TREAT ETHANOL-INDUCED NEUROTOXICITY 

 

Ethanol causes neurotoxicity via several mechanisms at different points in the 

cycle of dependence, including neuroinflammation and oxidative stress during ethanol 

exposure as well as excitotoxicity during ethanol withdrawal. The primary therapeutic 

implication is that ethanol-induced neurotoxicity requires multifunctional 

pharmacotherapies which reduce all mechanisms. Using an innovative pharmacological 

high throughput screening method on a large plant extract library we discovered 

flavonoids with alpha7 nicotinic acetylcholine receptor (nAChR) activity. In addition to 

their well-known anti-inflammatory and antioxidant properties, this novel activity means 

they can potentially reduce excitotoxicity and therefore makes them ideal for inhibition of 

ethanol-induced neurotoxicity. Rhamnetin, the candidate compound, was first found to 

inhibit lipopolysaccharide induced inflammation in immortalized BV2 microglia, in part, 

via alpha7 nAChRs. We then established an in vitro model of ethanol induced-

neurotoxicity using organotypic hippocampal slice cultures which incorporated both 

neuroinflammatory and excitotoxic components. Neuroinflammation enhanced 

excitotoxicity under control conditions but the reverse was observed during ethanol 

withdrawal. Both mechanisms are important but their interaction is not simple. Finally, 

rhamnetin was evaluated in this model and found to reduce neuroinflammation and 

excitotoxicity associated with ethanol withdrawal. In conclusion, the studies herein 

provide strong evidence for alpha7 nAChRs selective flavonoids as potential 

pharmacotherapies for the treatment of ethanol-induced neurotoxicity and further 

implicate neuroinflammation, excitotoxicity, and their interaction as critical mechanisms 

in this pathology.  

KEYWORDS: ethanol-induced neurotoxicity, neuroinflammation, excitotoxicity, alpha7 

nicotinic acetylcholine receptor, rhamnetin 
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CHAPTER 1.  INTRODUCTION 

1.1 General introduction 

Alcohol dependence arises from a complex interaction of genetics, environment, 

and co-morbid psychiatric conditions and varies greatly between individuals in onset, 

course and duration. It results from the maladaptive and harmful consumption of alcohol 

ultimately leading to clinical impairment or distress as characterized by an increase in 

alcohol consumption, the persistent desire to consume alcohol, failure to cut down or 

control drinking, tolerance to the acute intoxicating effects of alcohol, and signs of 

alcohol withdrawal syndrome [1]. Alcohol dependence is estimated to affect 140 million 

people worldwide resulting in 3.3 million deaths associated with alcohol use every year 

[2]. In the USA, it is estimated to afflict 8.5% of the population [3] resulting in a massive 

medical, societal and economic burden [4].  

Chronic alcohol use ultimately results in significant brain damage and loss as 

measured both post mortem [5] and in vivo using Magnetic Resonance Imaging (MRI) 

[6]. The majority of brain damage associated with alcohol dependence has been 

attributed to liver compromise and malnutrition, specifically thiamine deficiency, both of 

which contribute to the subsequent manifestation of Wernicke encephalopathy (WE) and 

Korsakoff syndrome (KS) [7]. Although WE and KS are well characterized neurological 

disorders with specific brain pathology and behavioral deficit, evidence of brain damage 

in uncomplicated alcoholics (no WE or KS) has also been shown in both post mortem 

and MRI studies [8]. Importantly, chronic alcohol consumption in uncomplicated 

alcoholics not only produces diffuse brain atrophy but also results in cognitive 

impairment [9], specifically memory and executive function deficits [10]. These 

behavioral deficits may, in turn, lead to excessive and chronic alcohol drinking. 

Therefore, alcohol-induced neurodegeneration has been hypothesized to contribute to 
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the progressive loss of control over drinking [11] and to be an integral component of the 

spiral of addiction [12]. In support, a recent prospective study in humans shows that 

volume deficits in specific brain regions were predictive of time to relapse into alcohol 

use [13].  

Given the evidence for neurodegeneration in alcohol dependence, and the 

potential role of such cognitive impairment in promoting ongoing alcohol consumption, 

the development of treatment strategies to attenuate alcohol-induced neurodegeneration 

is imperative. Such a treatment would likely slow or even reverse cognitive impairment 

associated with alcohol use. This would allow an individual greater executive control 

over alcohol consumption and perhaps ultimately lead to recovery. However, with the 

possible exception of acamprosate (see below) there are no current neuroprotective 

pharmacotherapies approved for the treatment of alcohol dependence. Current FDA 

approved pharmacotherapies for alcohol dependence (i.e., disulfiram, naltrexone, and 

acamprosate) are primarily aimed at treating the behavioral manifestation of alcohol 

dependence. Specifically, disulfiram prevents the metabolism of acetaldehyde resulting 

in acute nefarious sensitivity to alcohol. Naltrexone is an opioid receptor antagonist 

which is thought to reduce the hedonic value of alcohol therefore reducing excessive 

drinking and the risk of relapse. Although the specific mechanisms of acamprosate are 

unknown, it is thought to reduce alcohol drinking by restoring balance to γ-aminobutyric 

acid (GABA) and glutamate neurotransmission. Importantly, acamprosate is also thought 

to reduce alcohol dependence in part due to its potential neuroprotective properties [14] 

providing initial support for the efficacy of neuroprotective drugs in the treatment of 

alcohol dependence. 

In sum, alcohol dependence leads to harmful consumption of alcohol which 

results in significant brain damage and consequent cognitive deficits making it more 
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difficult to control alcohol consumption. As such, neuroprotective pharmacotherapies 

have been proposed as a treatment strategy for alcohol dependence and understanding 

the mechanisms of ethanol-induced neurotoxicity is essential for this aim. The following 

section will describe in detail specific mechanisms of ethanol-induced neurotoxicity, as 

well as their possible interactions.  

1.2 Mechanisms of ethanol-induced neurotoxicity 

Ethanol is a small organic molecule that is both hydrophilic and lipophilic, and 

can therefore easily pass through cell membranes and distribute readily throughout the 

entire body. Its small size and physicochemical properties also allow it to interact with a 

wide variety of biological substrates and ethanol therefore exhibits a wide spectrum of 

pharmacological activities. As such, ethanol has long been suspected to induce 

neurotoxicity through a variety of mechanisms which include, but are not limited to, 

oxidative stress, neuroinflammation and excitotoxicity. Importantly, these mechanisms 

are associated with different phases in the cycle of dependence. Ethanol exposure is 

associated with oxidative stress and neuroinflammation, whereas ethanol withdrawal 

(EWD) is associated with excitotoxicity. These mechanisms have been mostly studied 

individually as if they were separate but, in reality, they undoubtedly interact. Indeed, 

changes which occur during ethanol exposure are bound to extend into EWD and 

influence neurotoxicity at that time. The sections below will focus on mechanisms of 

ethanol-induced neurotoxicity during exposure and during EWD as well as their possible 

interactions.  

1.2.1 Oxidative stress 

Oxidative stress occurs in the majority of neurodegenerative diseases and 

manifests when the excessive generation of reactive oxygen species (ROS) surpasses 

endogenous antioxidant mechanisms [15]. In ethanol-induced neurotoxicity, oxidative 
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stress results primarily from the excessive generation of ROS as a consequence of 

ethanol metabolism [16]. The first step in the metabolism of ethanol is its conversion to 

acetaldehyde by alcohol dehydrogenase (ADH). Acetaldehyde is a highly reactive 

molecule which itself forms toxic protein adducts [17] and is in turn metabolized to 

acetate by acetaldehyde dehydrogenase (ALDH). Both metabolic steps rely on 

nicotinamide adenine dinucleotide (NAD) as a cofactor which is converted to its reduced 

form (NADH) in the process. The consequent increase in the NADH:NAD+ ratio 

enhances the mitochondrial electron transport chain which leads to the formation of ROS 

[18]. Excessive ROS can freely react with DNA, proteins and lipids resulting in direct 

structural DNA damage, protein dysfunction and lipid peroxidation, culminating in cell 

death. This has important implications for peripheral tissue damage, particularly in the 

liver, where the majority of ADH and ALDH are found. However, ethanol induces the 

expression of ROS generating cytochrome P450 2E1 (CYP2E1) both in the liver [19] and 

in the brain [20]. In the brain, CYP2E1 is capable of metabolizing ethanol which 

generates ROS [21]. Therefore, although oxidative stress is particularly relevant for 

alcohol liver disease it is also important as a toxic mechanism in the brain. In support, 

potent antioxidants, such as ascorbic acid, thiamine, quercetin [22], cyanidin-3-glucoside 

[23], cannabidoil, butylated hydroxytoluene (BHT), alpha-tocopherol [24, 25] and 

tocotrienol [26] decrease oxidative stress and neurotoxicity in various models of ethanol-

induced neurotoxicity. In sum, ethanol metabolism generates oxidative stress in all cells 

in which it occurs. Therefore, this mechanism of neurotoxicity is particularly relevant 

during ethanol exposure.  

1.2.2 Neuroinflammation 

Neuroinflammation is thought to contribute to a variety of neurodegenerative 

diseases [27] and to a variety of acute neuronal injuries such as stroke [28] and 
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traumatic brain injury [29]. As such, neuroinflammation has also been proposed as a 

potential mechanism of neurotoxicity during ethanol exposure. In fact, research on 

peripheral tissues has long recognized chronic inflammation as an important factor in 

ethanol-induced tissue damage. Chronic ethanol consumption increases the leakiness of 

the gut which results in elevated levels of circulating bacterial endotoxin, 

lipopolysaccharide (LPS) [30]. In turn, LPS activates peripheral immune cells which 

release toxic proinflammatory cytokines. Since ethanol disrupts the blood brain barrier 

(BBB) [31], LPS may enter the central nervous system (CNS) and activate neuroimmune 

cells despite its low permeability under normal physiological conditions [32]. As such, 

postmortem human alcoholic brains exhibit upregulated neuroimmune gene expression 

[33] and increased markers of microglial activation and proinflammatory signaling [34]. 

However, it is still unclear whether this is a result of LPS infiltration in the brain or the 

direct effects of ethanol on neuroimmune cells. Indeed, studies in vitro show that ethanol 

directly activates toll-like receptor 4 (TLR4) in a variety of isolated neuroimmune cells 

[35, 36]. TLR4 is the main receptor for the innate immune system and also the primary 

target for LPS. These studies were extended to isolated microglia where ethanol 

activates TLR4 and induces a proinflammatory response [37, 38]. Moreover, these in 

vitro studies were corroborated in vivo using TLR4 knock-out mice [39]. Interestingly, 

mice chronically force-fed ethanol for 10 days exhibited increased proinflammatory 

signaling in the brain and, more importantly, a sensitized proinflammatory response to a 

subsequent challenge with LPS [40]. Thus, ethanol and increased LPS permeability may 

both be responsible for the excessive proinflammatory signaling observed in the brain 

during ethanol exposure.  

When neuroinflammatory signaling becomes chronic and/or excessive it can 

induce neurotoxicity through a variety of mechanisms, including apoptosis, excitotoxicity, 
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immune activation and oxidative stress [41]. This already suggests significant 

interactions with other mechanisms of ethanol-induced neurotoxicity. However, evidence 

for the direct contribution of neuroinflammation to ethanol-induced neurotoxicity is limited 

and usually involves other mechanisms, such as oxidative stress. For example, 

curcumin [42] and cyanidin-3-glucoside [23], have both been shown to reduce 

neuroinflammation and neuronal damage in rodent neonatal models of ethanol-induced 

neurotoxicity. However, both compounds are known antioxidants [43, 44] and thus their 

anti-inflammatory effects are not necessarily responsible for their neuroprotective 

effects. Similarly, using the Majchrowicz binge ethanol protocol [45], BHT protects 

against ethanol induced brain damage presumably through anti-inflammatory effects as 

it was found to reduce NF-KappaB binding [25]. However, BHT is also known to have 

potent antioxidant properties. The most compelling evidence for the direct contribution of 

neuroinflammation in ethanol-induced neurotoxicity so far is from studies using TLR4 

knockout mice, which are protected against ethanol-induced neuronal damage [39].  

Taken together, ethanol induces proinflammatory signaling during ethanol 

exposure and may cause neurotoxicity at that time. This could be due to the direct 

effects of ethanol on neuroimmune cells and/or the infiltration of LPS into the brain 

through compromised gut and BBB. The combination of these mechanisms is more 

likely but this remains uncertain today. Nevertheless, neuroinflammation is therefore a 

mechanism of neurotoxicity that is particularly relevant during ethanol exposure, but 

given its downstream effects it is likely to affect excitotoxicity during EWD. The work 

presented in this dissertation aims to shed some light on this particular interaction.  

1.2.3 Excitotoxicity 

Ethanol has profound effects on the glutamate system in the CNS, and EWD-

induced excitotoxicity is believed to result from maladaptive alterations to this system 
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that occur during ethanol exposure. Ethanol exposure upregulates the number of N-

methyl-D-aspartate receptors (NMDAR) [46, 47] and/or changes their subunit 

composition [48], resulting in hypersensitive conformations of the receptor [49]. This is 

presumed to occur via homeostatic changes in response to the acute inhibitory effects of 

ethanol at the NMDAR  [50]. In parallel, several lines of investigation have found that 

release of glutamate [51] and polyamines [52] is greater during EWD, potentially 

compounding the effects of functionally up-regulated NMDARs. The overall result is the 

excessive activation of already sensitive NMDARs and the consequent influx of 

excessive calcium (Ca2+) into neurons during EWD.  Indeed, extensive work from our 

laboratory using organotypic rat hippocampal cultures chronically exposed to ethanol 

supports these mechanisms. As such, we have shown that ethanol exposure induces 

glutamate, putrescine and spermidine release in culture media during EWD [52] and 

increases polypeptide expression of mGluR5 and NR1 and NR2B subunits of NMDARs 

[53]. Moreover, EWD induced cytotoxicity is enhanced by co-exposure to spermidine 

[54] and EWD induced Ca2+ can be blocked by NMDAR antagonists [55]. In turn, 

Prendergast et al showed in the same preparations that rapid and significant Ca2+ entry 

occurs during EWD which is followed by excitotoxic cell death [56] and that prolonged 

ethanol exposure was found to significantly reduce immunolabeling of calbindin-D28k, a 

calcium buffering protein, suggesting that the neuronal capacity to buffer excessive Ca2+ 

is also impaired [57]. Aberrant intracellular Ca2+ has, in turn, been proposed to activate 

Ca2+ dependent lytic enzymes, disrupt mitochondrial function ultimately leading to ROS 

generation and neuronal damage [58, 59].  

In support, several in vitro studies using NMDAR antagonists with subtly different 

mechanisms show that blocking these receptors prevents excessive intracellular Ca2+ 

during EWD and consequent neurotoxicity. For example, MK-801 and ifenprodil inhibit 
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neurotoxicity and Ca2+ entry induced by EWD in organotypic hippocampal slices [55]. 

Similarly, memantine was shown to reduce EWD induced neurotoxicity in vitro [60]. 

Moreover, several in vivo studies have shown that NMDAR antagonists can reduce 

seizure activity associated with EWD and the consequent cognitive deficits. As such, 

memantine reduces EWD induced convulsions [60], MK-801 blocks EWD seizures [61] 

and 4 weeks of memantine treatment during EWD completely reverses cognitive deficits, 

as measured by the Morris water maze, 10 weeks after the onset EWD [62].  

Taken together, ethanol exposure produces profound neuroadaptations to the 

glutamate system ultimately resulting in hyperexcitable state which leads to excitotoxicity 

when ethanol is removed. Therefore, this mechanism of neurotoxicity is primarily 

relevant to periods of EWD.  

1.3 Possible interactions 

Clinically, alcohol dependence is a chronic relapsing condition in which repeated 

bouts of ethanol exposure and EWD become cyclical. Therefore, changes occurring 

during ethanol exposure may have important implications for mechanisms of 

neurotoxicity during EWD. Conversely, changes occurring during EWD may also have 

important implications for the mechanisms of neurotoxicity during subsequent ethanol 

exposure.  

1.3.1 Changes during ethanol exposure may affect neurotoxic mechanisms during 

EWD 

Although generation of ROS is primarily a consequence of ethanol metabolism, 

neuroinflammation also leads to ROS generation [63, 64]. Therefore, during ethanol 

exposure, ethanol metabolism and neuroinflammation may act hand in hand to produce 

excessive amounts of ROS. Since excitotoxic injuries also involve the generation of ROS 
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[65], the impact of ROS generation during exposure may extend into EWD and 

contribute to excitotoxicity.  

Changes to neuroimmune signaling induced by ethanol may also have important 

implications for excitotoxicity during EWD. In fact, neuroinflammation has been shown to 

exacerbate excitotoxicity [66] through a variety of mechanisms. For example, activated 

microglia release quinolinic acid [67] and glutamate [68], which are both capable of 

activating the NMDAR. TNF-alpha, one of the main proinflammatory cytokines, 

downregulates EAAT2/GLT1 expression on glia [69], in turn increasing extra-synaptic 

glutamate concentrations. TNF-alpha has also been found to upregulate Ca2+ permeable 

AMPA receptors [70, 71] which may contribute to overall glutamate hyperexcitability. 

Similarly, nitric oxide (NO), another proinflammatory mediator, directly contributes to 

excitotoxicity [72-74] and induces glutamate release from neurons by inhibiting neuronal 

respiration [75]. Therefore, changes in neuroimmune signaling, which tend to be 

prolonged, initiated during ethanol exposure may extend into EWD and enhance 

excitotoxicity.  

The fact that specific mechanisms initiated during ethanol exposure may 

contribute to or enhance neurotoxic mechanisms during EWD does not exclude the fact 

that the opposite may also be true and adaptive changes during ethanol exposure may 

help reduce toxicity during EWD. For example, increased levels of ROS scavenger 

enzymes, including superoxide dismutase and glutathione reductase, have been 

observed in erythrocytes from alcoholic individuals [76]. If similar changes occur in the 

brain this could reduce the ROS-mediated consequences of excitotoxicity in AWD. 

However, evidence for neuroprotective adaptations induced by ethanol exposure is 

limited.  
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1.3.2 Changes during EWD may affect neurotoxic mechanisms during subsequent 

ethanol exposure 

It is clear that changes in oxidative stress and neuroinflammation during ethanol 

exposure are likely to affect excitotoxicity during EWD. However, there is limited 

evidence on the effects of excitotoxicity on oxidative stress and neuroinflammation 

associated with a subsequent exposure to ethanol. This is surprising given the fact that 

EWD is well known to have a kindling effect and repeated EWDs increase in severity 

[77, 78]. Nevertheless, there is some evidence that excitotoxicity may enhance oxidative 

stress and neuroinflammation. As mentioned above, excitotoxicity involves the 

generation of ROS [65] and may add to the pool of reactive species when ethanol 

metabolism is resumed during subsequent ethanol exposure. Additionally, excitotoxicity 

has been shown to induce a delayed proinflammatory response [79] which may affect 

subsequent neuroinflammatory signaling induced by ethanol exposure. The research 

presented in this dissertation focuses primarily on the impact of ethanol exposure during 

EWD and not on the impact of EWD on subsequent exposure. However, repeated EWD 

paradigms, such as in vivo intermittent access to ethanol [80] or in vitro repeated ethanol 

exposure using organotypic cultures [81], may be valuable for evaluating the effects of 

EWD-induced excitotoxicity on oxidative stress and neuroinflammation during 

subsequent ethanol exposure.  

1.4 Therapeutic implications 

As described in the previous section, ethanol causes neurotoxicity via several 

mechanisms at different points in the cycle of dependence and these mechanisms 

undoubtedly interact. Therefore, the primary therapeutic implication is that alcohol-

induced neurodegeneration requires multi-functional pharmacotherapies targeted at 

numerous mechanisms of ethanol-induced neurotoxicity. This has already been 
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recognized for other neurodegenerative diseases, such as Alzheimer’s [82] and 

Parkinson’s disease [83], for which multi-targeted designed drugs are currently being 

developed [84]. Multi-targeted designed drugs entail a single pharmacotherapy that is 

either pharmacologically promiscuous enough to hit numerous targets simultaneously, or 

one that is specific to a single target that is capable of interfering with several 

pathological mechanisms. One such single target is the alpha7 nicotinic acetylcholine 

receptor which has emerged as a pluripotent target for the treatment of 

neurodegenerative diseases [85].  

Nicotinic acetylcholine receptors (nAChRs) form a large heterogeneous family of 

ligand gated cationic receptors by combining 12 different subunits (alpha2-alpha10, 

beta2-beta4) into heteromeric and homomeric pentamers. They are widely and 

differentially expressed in various regions throughout the CNS and serve a variety of 

functions. The major subtypes found in the brain are the alpha4-beta2 heteromeric 

nAChRs and the alpha7 homomeric nAChRs. Alpha7 nAChRs are discreetly distributed 

throughout the CNS and are mainly found in hippocampal, hypothalamic and cerebellar 

neurons as well as the 10th cranial nerve, the vagus (Latin “wanderer”). Moreover, 

alpha7 nAChRs have been found on non-neuronal cells such as macrophages [86], 

astrocytes [87], and microglia [88]. Thus, alpha7 nAChRs are present on neurons and 

neuroimmune cells and the following sections will discuss how their activation has the 

potential to attenuate neuroinflammation and excitotoxicity.  

1.4.1 Alpha7 nAChR activation on microglia reduces neuroinflammation 

The potential role of nAChRs in immune regulation was first described with the 

discovery of the cholinergic anti-inflammatory pathway which involves the vagus nerve 

and its major neurotransmitter, acetylcholine. As such, acetylcholine has been shown to 

inhibit LPS-induced release of proinflammatory cytokines from peripheral macrophages, 
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an effect that could be blocked by alpha-conotoxin [89]. In the same study, the authors 

were able to show that vagal nerve stimulation could rescue animals from a lethal dose 

of LPS, thereby implicating both acetylcholine and the vagus nerve in protection against 

sepsis. Subsequent studies showed that the endogenous target for the anti-inflammatory 

effects of acetylcholine was the alpha7 nAChR making it central in neurological control 

of peripheral inflammation [90]. For example, Wang et al showed in an elegant study 

using alpha7 nAChR specific antisense oligonucleotides, that nicotine inhibits LPS-

induced TNF synthesis in macrophage cultures specifically via alpha7 nAChRs [86]. The 

pivotal role that nAChRs play in control of inflammation may in turn explain the negative 

association of cigarette smoking and the incidence of inflammatory diseases, such as 

ulcerative colitis [91]. Alpha7 nAChRs were then found to not only be important in 

peripheral inflammatory processes but also be important in inflammatory processes in 

the brain. Indeed, alpha7 nAChRs are expressed on microglia and nicotine or 

acetylcholine dose dependently attenuate microglial activation as well as LPS-induced 

TNF-alpha release through an alpha7 nAChR dependent pathway [88]. A number of 

intracellular signaling pathways have been implicated in alpha7 nAChR inflammatory 

modulation, namely reduction of nuclear factor kappa-B (NF-KB) mediated transcription 

[92], inhibition of mitogen-activated protein kinase (MAPK) phosphorylation [88] and 

phosphorylation of protein kinase B (Akt) through phophatidyl-4,5-bisphosphate 3-kinase 

(PI3K) activation [93], but the specific mechanisms remain unclear. Taken together, 

alpha7 nAChRs are central to inflammatory signaling in both the periphery and in the 

CNS and are therefore valuable as pharmacological targets for reducing 

neuroinflammation [94].  
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1.4.2 Alpha7 nAChR activation on neurons reduces excitotoxicity 

The neuroprotective properties of nicotine have been extensively studied in the 

context of neurodegenerative diseases and was probably sparked, in part, by the 

negative association of cigarette smoking with the incidence of AD and PD [95]. As such, 

nicotine has been shown to be neuroprotective in a variety of in vitro and in vivo models 

of neurodegenerative diseases and brain injury (reviewed elsewhere [96]). Specifically, 

nicotinic agonists have been extensively shown to protect neurons from excitotoxic 

injury. For example, the original studies by Akaike et al show that nicotine protects 

cultured cortical neurons against glutamate toxicity [97]. Subsequently, nicotine was 

shown to prevent NMDA-induced toxicity in primary hippocampal neurons specifically via 

alpha7 nAChR activation because the neuroprotective effects of nicotine were blocked 

by methyl-lycaconitine (MLA) [98]. Moreover, similar findings were shown in 

hippocampal slice cultures [99]. Eventually, the neuroprotective effects of nicotine were 

shown to be effective against ethanol-induced excitotoxicity in that nicotine exposure 

attenuates EWD induced neurotoxicity in hippocampal explants [100]. In support, 3-[2,4-

dimethoxybenzylidene]anabaseine (DMXB), a relatively selective agonist for the alpha7 

nAChR, was also shown to inhibit ethanol induced neurotoxicity [101-104]. The specific 

downstream mechanisms responsible for the neuroprotection afforded by alpha7 nAChR 

activation are still uncertain but a few possibilities have been proposed. For example, 

increased intracellular Ca2+ buffering has been proposed as a potential mechanism 

because nicotine treatment significantly increased calbindin-D28k immunoreactivity in 

hippocampal slice cultures [57]. Another possibility is via NMDAR cross-desensitization. 

For example, donepezil hydrochloride, which directly modulates nAChR [105], was found 

to mediate phosphorylation and subsequent internalization of NMDAR subunits NR1 and 

NR2A via alpha7 nAChR activation thereby preventing excitotoxicity [106]. Taken 
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together, alpha7 nAChRs constitute a viable pharmacological target to reduce 

excitotoxicity associated with EWD. In addition, emerging preclinical and clinical studies 

suggests that the cholinergic system may also be a valuable target for reducing ethanol 

drinking behaviors [107].  

1.5 Finding novel alpha7 nAChR selective compounds in plants 

As described in the previous section, alpha7 nAChR selective agonists constitute 

potential pharmacotherapies for the treatment of neurodegenerative diseases by 

attenuating neuroinflammation and excitotoxicity. In fact, there have been considerable 

efforts made towards synthesizing alpha7 nAChR selective ligands in the last decade 

[108] but none have made it to market. Interestingly, most of these synthetic compounds 

are derived from alkaloids originally discovered in plants [109]. Most plant nAChR 

ligands are simple alkaloids like nicotine, anatabine, and lobeline which are either toxic, 

or have abuse liability, due partly to their high affinity and selectivity for alpha4-beta2 

nAChRs [110]. However, not all plant alkaloids have this selectivity and MLA, for 

example, is a relatively selective antagonist for alpha7 nAChRs [111, 112]. This 

suggests that plants may contain novel alpha7 nAChR selective ligands that would have 

therapeutic value for the treatment of neurodegenerative diseases.  

Traditional approaches to plant drug discovery are time consuming and costly 

because they usually require separation and purification of compounds before 

pharmacological evaluation. Moreover, using a single pharmacological screen on plant 

extracts would likely yield extremely high hit rates making it difficult to prioritize one plant 

extract over another. However, applying several pharmacological screens to plant 

extracts circumvents these difficulties and can yield lower hit rates. Thus, to identify 

plants containing alpha7 selective compounds we developed a differential smart 

screening approach that relies on three individual pharmacological screens and applied 
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it to a large plant extract library [113]. In brief, plant extracts were first evaluated for their 

ability to displace a nonsubtype selective nAChR ligand, [3H]-epibatidine, in rat brain 

homogenates to assess the presence of any nAChR activity. Plant extracts that 

displayed nAChR activity were then evaluated and compared simultaneously for their 

ability to displace an alpha4-beta2 selective ligand, [3H]-cytisine, and an alpha7 selective 

ligand, [3H]-MLA. Plant extracts that displaced [3H]-MLA at lower concentrations than 

they displaced [3H]-cytisine were considered likely to contain alpha7-selective 

compounds. Only 8 species displayed this pharmacological signature and Solidago 

nemoralis was chosen for further investigation because this genus has not been 

reported to contain bioactive alkaloids (making it likely that active compounds would be 

novel). Identifying and characterizing the compounds responsible for this activity is a 

primary aim of the current dissertation.  

1.6 Project overview 

This dissertation focuses on the role of neuroinflammation in modulating 

excitotoxicity which occurs during EWD. The primary hypothesis is that enhanced 

neuroinflammation associated with ethanol exposure potentiates excitotoxicity during 

EWD. The primary therapeutic implication is therefore that ethanol neurotoxicity requires 

multi-functional pharmacotherapies that reduce neuroinflammation and excitotoxicity. 

Alpha7 nAChR selective pharmacotherapies have the potential to do both and novel 

compounds from Solidago nemoralis with relative selectivity for this receptor subtype 

were investigated in the work herein.  

The aims of this dissertation are to (1) increase our understanding of the 

interaction between neuroinflammation and excitotoxicity during EWD, (2) identify and 

characterize novel natural products with alpha7 nAChR selective activity and (3) 

evaluate their anti-inflammatory and neuroprotective properties in vitro. Thus, the first 
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chapter explains how we developed an in vitro model of ethanol induced neurotoxicity 

which includes neuroinflammatory and excitotoxic components, the second chapter 

presents the discovery of specific flavonoids with selectivity for alpha7 nAChRs relative 

to alpha4-beta2 and how this activity may contribute to their well-known anti-

inflammatory properties, and in the third chapter we evaluate the candidate flavonoid 

rhamnetin in the model of ethanol induced neurotoxicity described in chapter 1.  

 Primary hypothesis: enhanced neuroinflammation associated with ethanol exposure 

potentiates excitotoxicity during EWD 

 Therapeutic implication: ethanol-induced neurotoxicity requires multi-functional 

pharmacotherapies targeted at reducing neuroinflammation and excitotoxicity 

 Therapeutic target: alpha7 nAChR agonists have the potential to reduce 

neuroinflammation and excitotoxicity 

 Therapeutic aim: to identify and characterize novel alpha7 nAChR selective plant 

natural products 
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CHAPTER 2.  ALTERED RELATION BETWEEN LIPOPOLYSACCHARIDE-INDUCED 

INFLAMMATORY RESPONSE AND EXCITOTOXICITY IN RAT ORGANOTYPIC 

HIPPOCAMPAL SLICE CULTURES DURING ETHANOL WITHDRAWAL 

Manuscript submitted to Alcoholism: Clinical and Experimental Research 

2.1 Introduction 

Ethanol causes neurotoxicity via several mechanisms [114] at different points in 

the cycle of dependence, including ethanol exposure and ethanol withdrawal (EWD). 

Ethanol exposure is generally associated more with oxidative stress [64] and 

neuroinflammation [115] whereas EWD is associated with excitotoxicity [59]. These 

mechanisms have mostly been studied as if they were separate, but the possibility that 

there are important interactions between them has rarely been considered. For example, 

although oxidative stress is most directly a consequence of ethanol metabolism [116], 

the generation of reactive oxygen species is also part of the mechanism of toxicity in 

excitotoxic damage [117]. Therefore, the impact of ethanol metabolism can extend into 

EWD and contribute to oxidative stress produced by excitotoxicity. Similarly, 

neuroimmune signaling changes induced by ethanol exposure may extend into EWD 

and potentiate excitotoxicity observed at that time. In this study we investigate the 

potential interaction between neuroinflammation and excitotoxicity during EWD. A major 

aim is to identify cellular and molecular targets in order to devise novel 

pharmacotherapies for ethanol-induced neurotoxicity. 

The precise mechanisms that cause excitotoxicity during EWD are uncertain, but 

increased activity of the glutamate system is fundamental [118]. Most evidence supports 

two possible mechanisms that are not exclusionary. One is that ethanol exposure 

upregulates the number of N-methyl-D-aspartate receptors (NMDAR) [47] and/or 

changes their subunit composition [48], resulting in hypersensitive conformations of the 
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receptor [49]. The second is that release of glutamate [51] and polyamines [52] is 

greater during EWD, resulting in the overactivation of NMDARs. These mechanisms of 

EWD-induced excitotoxicity are closely interrelated in vivo, but they can be evaluated 

separately ex vivo in cell culture systems such as organotypic hippocampal slice cultures 

(OHSC) [119] where exogenous activation of NMDARs can be used to cause 

neurotoxicity. Studies on OHSC (e.g. [52, 53]) suggest that both the functional 

upregulation of NMDARs and increased release of glutamate and polyamines contribute 

to EWD-induced excitotoxicity in this model. In the current study we focused on NMDAR 

hypersensitivity by activating these receptors with exogenous NMDA during EWD. Many 

previous studies (e.g. [55, 120]) have shown that NMDA-induced toxicity is enhanced 

under EWD conditions.  

None of the above studies exclude other mechanisms, such as 

neuroinflammation, as contributing to excitotoxicity during EWD. In support, it has 

previously been reported that neuroinflammation enhances excitotoxicity in OHSC [121]. 

Therefore, the current study tested the primary hypothesis that ethanol exposure causes 

neuroinflammation, which then potentiates excitotoxicity during EWD.  

To date, research on ethanol exposure and neuroinflammation has focused on 

changes that occur in the presence of ethanol rather than during EWD. Increased 

release of proinflammatory mediators from microglia, the primary immune cells of the 

central nervous system, as a consequence of ethanol exposure is probably fundamental, 

but as with excitotoxicity, two major mechanisms have been proposed for this. One is 

that ethanol exposure results in increased influx of lipopolysaccharide (LPS), a bacterial 

endotoxin, via the gut [30] and blood brain barrier [31], thereby activating microglia 

directly. The second is that ethanol exposure directly affects microglia [38] and 

sensitizes their response to LPS [40]. The possible contribution of these mechanisms is 
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difficult to separate in vivo but, as with excitotoxicity, OHSC can be used to dissect these 

possibilities because exogenous LPS can be used to activate microglia in the culture 

[122].  

To test the primary hypothesis, OHSCs were stimulated to release 

proinflammatory mediators by treatment with exogenous LPS during EWD. If prior 

ethanol exposure sensitizes microglia, OHSC should release greater amounts of 

proinflammatory mediators in response to LPS during EWD. In turn, the enhanced 

proinflammatory response should lead to a further enhancement of excitotoxicity induced 

by an NMDA challenge. The specific prediction to be tested in these experiments is 

therefore that ethanol exposure should result in increased excitotoxicity when OHSC are 

challenged with both LPS and NMDA during EWD. Previous studies have used OHSC to 

study the effects of ethanol on excitotoxicity [123] and neuroinflammation [81] but there 

are no published studies on the interaction between these. 

Microglia have a fundamental role in the hypotheses that connect ethanol-

induced neurotoxicity with neuroinflammation [124]. However, all brain preparations, 

including OHSCs, contain other types of glia, including astrocytes [125] and 

oligodendrocytes [126] as well as microglia [127]. All these cell types may contribute to 

the LPS-induced inflammatory response [128] and modify excitotoxicity. In an attempt to 

address this issue we evaluated the effects of chronic ethanol exposure on cultures in 

which only immortalized microglia of the BV2 cell line are present. We then evaluated 

their subsequent response to LPS during EWD, thereby mirroring the studies on OHSC. 

If ethanol induces direct effects specifically on microglia, and these effects are 

responsible for changes observed in OHSCs, then it should be possible to observe 

similar effects in BV2 cell cultures.  
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Together these studies aim to increase our understanding of the mechanisms 

underlying excitotoxicity associated with EWD. It should be emphasized that OHSC and 

immortalized BV2 microglia are being used to dissect mechanisms of ethanol-induced 

neurotoxicity rather than to “model” all aspects of alcohol-induced neurodegeneration. 

Subsequent studies in vivo will be necessary to confirm the observations in vitro, but the 

culture systems provide a means of identifying specific cell types and molecular targets 

that are of potential value in treating this aspect of alcoholism. 

2.2 Materials and methods 

2.2.1 Organotypic hippocampal slice culture (OHSC) preparation 

OHSC were prepared essentially as described by Stoppini et al. [129]. Briefly, 

hippocampi were aseptically removed from 8-day-old Sprague-Dawley male and female 

rat pups and sliced at a transverse thickness of 200 µm using a McIlwain tissue chopper 

(Campden Instruments Ltd., Lafayette, ID). Slices were transferred to sterile culture 

inserts (4 slices per insert) and placed in 6-well-plates containing culture medium 

(Minimum Essential Medium (Life Technologies Corporation, Grand Island, NY), 200mM 

glutamine (Invitrogen, Carlsbad, CA), 25mM HEPES (ATCC, Manassas, VA), 50uM 

penicillin/streptomycin (ATCC, Manassas, VA), 36mM glucose, 25% (v/v) Hank’s 

buffered salt solution (Gibco BRL, Gaithersburg, MD), 25% heat-inactivated horse serum 

(Sigma, St. Louis, MO)). Cultures were maintained at 37°C in an atmosphere of 5% 

CO2/95% air in 95% humidity for 5 days in vitro (DIV) to allow slices to adhere to the 

insert membrane. The care of animals was carried out in accordance with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH Publications 

No. 80-23, revised 1996), as well as the University of Kentucky’s Institutional Animal 

Care and Use Committee. 
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2.2.2 Ethanol exposure and withdrawal (EWD) 

At 6 DIV, slices were placed in culture media with or without the addition of 

100mM ethanol, incubated for 10 DIV and then subjected to EWD for 24h, 48h or 72h. 

During exposure, the plates were placed in topless polypropylene containers containing 

50mL of 100mM ethanol or dH2O accordingly, and placed inside sealable plastic bags 

filled with 5% CO2, 21% oxygen, and a balance of nitrogen. The ethanol solution was 

used as an evaporating source of ethanol to counter the evaporation of ethanol from the 

culture wells resulting in an average ethanol concentration of 65mM (a concentration 

that approximates 300mg/dL) during the 5 DIV between media changes. At the onset of 

EWD, slices were further separated into groups and treated accordingly: control media, 

5uM NMDA (Sigma Aldrich Co. LCC., St. Louis, MO), 10ug/mL lipopolysaccharide from 

Escherichia coli 026:B6 (LPS, Lot #: 021M4072V; Sigma Aldrich Co. LCC., St. Louis, 

MO) or both NMDA and LPS combined. A single concentration of LPS was used in these 

experiments because in preliminary experiments using a range of concentrations 

(100ng/mL, 1ug/ml and 10ug/mL) 10ug/mL produced measurable release of TNFalpha 

and nitric oxide. Similarly, a single concentration of NMDA was used because previous 

work from our laboratory [52] shows that 5uM NMDA is the lowest concentration to 

consistently produce significant toxicity in OHSC.   

2.2.3 Assessment of toxicity by propidium iodide uptake  

Propidium iodide (PI) is a membrane impermeable, DNA intercalating fluorescent 

molecule that is commonly used in OSHC as a semi-quantitative stain for cellular toxicity 

and has been significantly correlated to other reliable markers of cell death [130]. 

Although there has been extensive work on NMDA and EWD toxicity in OHSC using a 

variety of cell-type specific markers [131], it is uncertain how these markers are affected 
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by LPS in this model. The current study focused on the interaction between NMDA and 

LPS and since PI uptake has been used in OHSC to assess both NMDA [131] and LPS 

[122] induced toxicity separately, it was therefore chosen for the current study to assess 

overall toxicity.  

For 24h EWD, slices were directly challenged in culture media containing 3.74uM 

propidium iodide (PI; Sigma Aldrich Co. LCC., St. Louis, MO). For 48h and 72h EWD, 

slices were originally challenged in culture media without PI and each well was 

supplemented with 10uL of concentrated PI (374uM) to obtain a final concentration of 

3.74uM PI 24h prior to imaging. Slice images were captured using SPOT Advanced 

software (Version 4.0.9; W. Nuhsbaum Inc., McHenry, IL) connected to an inverted Leica 

DMIRB microscope (W. Nuhsbaum Inc.) fitted for fluorescence detection (mercury-arc 

lamp) and connected to a computer via a SPOT 7.2 color mosaic camera (W. Nuhsbaum 

Inc).  PI uptake in the CA1, CA3, and DG cell layers was measured using ImageJ 

software (Version 1.46; National Institute of Health, Bethesda, MD). Background signal 

was subtracted from intensities obtained for each cell layer resulting in specific 

intensities which were used for statistical analysis. These values were then converted to 

% control (no EWD, no NMDA, and no LPS) within each preparation for graphical 

representation and clarity across time points.  

2.2.4 Assessment of inflammatory mediator release 

Once slices were imaged, inserts were discarded and the resulting media was 

collected for assessment of inflammatory mediator release. Nitric oxide (NO) release 

was assessed by the Griess Reagent System (Promega Corporation, Madison, WI) 

according to the manufacturer’s instructions. All samples were assayed in duplicate and 

nitrite content was estimated using a reference NaNO2 standard curve performed with 

each assay. TNF-alpha content was assessed by enzyme linked immunosorbent assay 



23 
 

kit (ELISA; Ready-Set-Go!® ELISA, eBioscience Inc., San Diego, CA) according to the 

manufacturer’s instructions. All samples were assayed in duplicate and TNF-alpha 

content was estimated from a reference TNF-alpha standard curve performed with each 

assay. 

2.2.5 BV2 microglia culture 

BV2 microglia are derived raf/myc-immortalized murine neonatal microglia. They 

were cultured in Dulbecco’s Modified Eagle Medium/Ham’s F12 nutrient mix 

supplemented with 10% fetal bovine serum and antibiotics (penicillin 100U/ml, 

streptomycin 100ug/ml; all from Life Technologies Corp., Grand Island, NY). Cells were 

kept at 37°C in a humidified atmosphere of air and 5% CO2 and propagated in T25 

flasks (Techno Plastic Products AG, Trasadingen, Switzerland) in media with or without 

100mM EtOH in sealable plastic bags as described above to avoid EtOH evaporation. 

They were split every 2-3 days and subjected to EWD after 10 days. During EWD, cells 

were seeded in 24 well plates at densities of 5x105 cells/well, allowed to adhere 

overnight and then challenged with 1µg/mL LPS for 24h. Culture media was collected 

and assessed for inflammatory mediators as described above. Cell viability was 

measured using resazurin salt fluorescence (7-hydroxy-3H-phenoxazin-3-one-10-oxide 

sodium salt; Sigma Aldrich Co. LCC., St. Louis, MO) and normalized to percentage 

control (no LPS group).  

2.2.6 Statistical analysis 

Data were analyzed using IBM Statistical Package for the Social Sciences 

(SPSS) Version 21 (IBM Corporation, Armonk, NY) and graphed using Prism (Graphpad 

Software Inc., La Jolla, CA). PI uptake was measured in three different regions (DG, 

CA3 and CA1). Thus, PI uptake was analyzed by multi-factorial, repeated measures 

analysis of variance (ANOVA) with region as within-subjects variables and sex, EWD, 
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NMDA, and LPS as between-subjects factors. Data were obtained from separate 

preparations for each length of treatment and EWD (24h, 48h, and 72h). Thus, 

preparation and time point were used as covariates to control for differences across 

litters/culture preparations and time of exposure. Significant interactions were further 

investigated at each time point using post hoc pair-wise comparisons using Fisher’s LSD 

test. TNF-alpha and NO release from OHSC were also analyzed by multi-factorial 

ANOVA with the following factors: sex, EWD, NMDA and LPS as well as preparation and 

time point as covariates. Significant interactions were further investigated at each time 

point using post hoc pair-wise comparisons with Tukey’s LSD correction. TNF-alpha and 

NO release from BV2 microglia were analyzed by non-repeated measures two-way 

ANOVA with EWD and LPS as factors followed by Bonferroni post-hoc analyses.  

2.3 Results 

2.3.1 Effects of NMDA, LPS and EWD on cellular damage in OHSC as measured by PI 

uptake 

An overall repeated-measures multi-factorial ANOVA was first performed on PI 

uptake across the treatment groups to assess whether there were any differences in the 

separate regions of the hippocampus and whether there were any sex effects. This 

analysis revealed that sex did not interact with any factors but that there was an effect of 

region and the highest order significant interaction included all factors except for sex 

(region x EWD x NMDA x LPS [F(1.09,1765.03) = 15.02, p < 0.0001] corrected using 

Greenhouse-Geisser). Therefore, subsequent analyses were performed within each 

region at each time point collapsed across sex. Analysis within each region revealed 

minor effects of drug treatment on PI uptake in the DG and CA3 in comparison to those 

observed in the CA1. Therefore, assessment of cellular damage by PI uptake was 

focused on the CA1 region of the hippocampus.  
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2.3.1.1 LPS treatment potentiates NMDA-induced cellular damage under 

control conditions 

Before we could evaluate the combined effects of NMDA and LPS on 

hippocampal damage, we examined the effects of LPS alone under control conditions 

and during EWD. Slices treated with LPS alone under both conditions exhibited a 

speckled pattern of PI uptake throughout the slice that was not observed in untreated 

slices (fig 2.1). However, when quantified in the CA1 region of the hippocampus, it did 

not differ from untreated control or EWD slices (fig. 2.2). Despite no quantifiable effect 

alone, LPS significantly potentiated NMDA-induced damage under control conditions. 

Slices co-exposed to LPS and NMDA exhibited greater PI uptake at all time points in 

comparison to slices treated with NMDA alone (24h = 279%, post hoc [p < 0.01], 48h = 

275%, post hoc [p < 0.0001] and 72h = 201%, post hoc [p < 0.0001], all compared to 

NMDA alone).  

2.3.1.2 EWD potentiates peak NMDA-induced cellular damage 

OHSC treated with NMDA under control conditions exhibited significant cellular 

damage in the CA1 region of the hippocampus as measured by PI uptake (fig. 2.2 - 

222%, post hoc [p < 0.0001] compared to control). When coupled with EWD, PI uptake 

was significantly potentiated at the 24h time point (363%, post hoc [p < 0.0001] 

compared to NMDA). At later time points (48h and 72h), PI uptake for these groups 

remained significantly higher than control (post hoc [p < 0.05] compared to control at 48h 

and 72h) but they were not statistically different from each other. 
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Figure 2.1 Lipopolysaccharide (LPS) potentiates N-methyl-D-aspartate (NMDA) toxicity under control conditions and 

reduces NMDA toxicity during ethanol withdrawal (EWD) 

Representative images of propidium iodide uptake in organotypic hippocampal slice cultures left untreated (control) or 

treated with LPS, NMDA or a combination of both (NMDA+LPS) for 24h under control conditions and under EWD conditions. 
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Figure 2.2 Propidium iodide uptake in the CA1 region of the hippocampus following treatment with lipopolysaccharide 

(LPS), N-methyl-D-aspartate (NMDA) or both.  

Slices were treated with LPS, NMDA or a combination of both (NMDA+LPS) for 24h, 48h  and 72h under control conditions 

(light bars) and under ethanol withdrawal (EWD) conditions (dark bars). Propidium iodide is expressed as percent of 

untreated control (means ± SEM). Dotted line represents untreated control. *p < 0.01 compared to NMDA alone. **p < 0.05 

compared to NMDA alone during EWD. $p < 0.01 compared to NMDA+LPS. n = 64-72 slices for each treatment group 

(untreated, NMDA, LPS, NMDA+LPS), under both control and EWD conditions, at all time points.   
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2.3.1.3 LPS treatment reduces peak NMDA-induced cellular damage during 

EWD 

Despite potentiation of NMDA-induced cellular damage by LPS under control conditions, 

the reverse was observed during peak toxicity under EWD conditions (fig. 1). Slices co-

exposed to NMDA and LPS during EWD exhibited lower PI uptake (278%) than slices 

treated with NMDA alone during EWD (363%, post hoc [p < 0.0001]). This relationship 

was however not observed at later time points. At the 48h and 72h time points, slices co-

exposed to NMDA and LPS during EWD exhibited higher PI uptake (48h = 218% and 

72h = 231%) than slices treated with NMDA alone during EWD (48h = 170%, post hoc [p 

< 0.05] and 72h = 201%, post hoc [p < 0.05]). Interestingly, at the 48h time point, slices 

co-exposed to NMDA and LPS during EWD (218%) exhibited significantly lower PI 

uptake than slices co-exposed to NMDA and LPS under control conditions (275%, post 

hoc [p < 0.01]). 

2.3.2 Effects of NMDA, LPS and EWD on inflammatory mediator release from OHSCs 

An overall statistical analysis on TNF-alpha and NO levels measured in culture 

media was first performed across the treatment groups to assess whether there were 

effects of sex. This analysis revealed that there was no main effect of sex on TNF-alpha 

release [F(1,162) = 3.492, p = 0.063] or NO release [F(1,358) = 0.200, p = 0.655]. 

Therefore, further analyses were performed collapsed across this factor. 

2.3.2.1 EWD reduces LPS-induced proinflammatory mediator release  

LPS treatment induced TNF-alpha release both under control conditions and 

during EWD (fig. 2.3A). However, in comparison to control conditions, the response was 

reduced during EWD (main effect of EWD [F(1,170) = 238.2, p < 0.0001]) at all time 

points (post hoc at 24h, 48h and 72h [p < 0.0001]). Similarly, LPS treatment induced NO  
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Figure 2.3 Release of proinflammatory cytokines from organotypic hippocampal 

slice cultures following treatment with lipopolysaccharide (LPS).  

Samples were collected after 24h, 48h and 72h of LPS treatment under control 

conditions (light bars) or under ethanol withdrawal (EWD) conditions (dark bars) 

and assessed for TNFalpha (A) and NO (B) content. *p < 0.0001 compared to LPS 

alone; n.d. not detected. n = 16-18 samples for each treatment group (untreated, 

LPS), under both control and EWD conditions at all time points.   
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release under control conditions and during EWD (fig. 2.3B - main effect of LPS 

[F(1,374) = 1508.1, p < 0.0001]). However, in comparison to control conditions, this 

effect was also reduced by EWD (EWD x LPS interaction [F(1,374) = 42.7, p < 0.0001]) 

at least at earlier time points (post hoc at 24h and 48h [p < 0.0001]). At the 72h time 

point, NO release from EWD slices normalized to control condition levels and there was 

no significant difference at that time (post hoc at 72h [p = 0.689]). 

2.3.2.2 NMDA treatment does not induce proinflammatory mediator release and 

does not interact with the response to LPS   

Under control conditions, NMDA alone did not induce TNF-alpha release (TNF-

alpha not detected) and had no effect on LPS-induced TNF-alpha release. There were 

no statistical differences between TNF-alpha levels measured in media from slices co-

exposed to NMDA and LPS and slices treated with LPS alone (post hoc at 24h [p = 

0.133], at 48h [p = 0.647] and at 72h [p = 0.167]). The same pattern was observed in 

slices undergoing EWD. There were no statistical differences between TNF-alpha levels 

measured in media from slices co-exposed to NMDA and LPS and slices treated with 

LPS alone during EWD (post hoc at 24h [p = 0.142], 48h [p = 0.471] and 72h [p = 

0.315]). Similar results were observed for NO release under control conditions (no main 

effect of NMDA [F(1,374) = 0.487, p = 0.486]; no NMDA x LPS interaction [F(1,374) = 

0.331, p = 0.566]) and during EWD (no EWD x NMDA interaction [F(1,374) = 0.196, p = 

0.658]; no EWD x NMDA x LPS interaction [F(1, 374) = 0.844, p = 0.359]).  

2.3.3 Effects of LPS and EWD on inflammatory mediator release from BV2 microglia 

BV2 microglia exposed to ethanol for 10 days did not exhibit morphological 

changes compared to control cultures. Additionally, cell viability, as measured by 

resazurin fluorescence did not differ between ethanol exposed and control cultures 

during these experiments. LPS treatment induced release of TNF-alpha and NO under 
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both control and EWD conditions (fig. 2.4). BV2 microglia undergoing EWD exhibited a 

reduction in LPS-induced release of NO compared to controls (main effect of EWD [F(1, 

36) = 214.1, p < 0.0001]). On the other hand, BV2 microglia undergoing EWD exhibited 

a potentiated release of TNF-alpha induced by LPS compared to control conditions 

(main effect of EWD [F(1, 22) = 19.46, p < 0.001).  
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Figure 2.4 Release of proinflammatory cytokines from BV2 microglia following 

treatment with LPS.  

Samples were collected after 24h of LPS treatment under control conditions (light 

bars) or under ethanol withdrawal (EWD) conditions (dark bars) and assessed for 

TNF-alpha (A) and NO (B) content. *p < 0.05 compared to LPS alone; n.d. not 

detected. Treatment groups were run in quadruplicates.   
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2.4 Discussion 

The present studies were undertaken to test the hypothesis that ethanol 

exposure causes neuroinflammation which in turn potentiates excitotoxicity associated 

with EWD. Specifically, following ethanol exposure, OHSC were treated with NMDA, 

LPS, or the combination of both and evaluated for toxicity (PI uptake) and release of 

proinflammatory mediators (TNF-alpha and NO).  

Prior to testing the effects of NMDA and LPS during EWD, we established their 

combined effects under control conditions. Our original prediction for this set of 

experiments was that LPS would potentiate NMDA toxicity. Zou and Crews used 

hippocampal-entorhinal cortical slices (similar to OHSC) to show that TNF-alpha 

potentiates glutamate toxicity [121] suggesting that neuroinflammation enhances 

excitotoxicity. We were able to corroborate and support these findings using NMDA as 

the excitotoxic insult and LPS as the inflammatory stimulus. LPS treatment alone did not 

produce quantifiable toxicity as measured by PI uptake but OHSC co-exposed to NMDA 

and LPS exhibited significantly more toxicity than cultures treated with NMDA alone (fig. 

1). 

Numerous mechanisms have been proposed for the potentiation of excitotoxicity 

by neuroinflammation [66]. Of particular interest to this study, NO and TNF-alpha 

released from immune cells have been found to contribute to excitotoxic injury by 

increasing extra-synaptic glutamate. In co-culture experiments, NO released from 

astrocytes and microglia has been shown to induce glutamate release from neurons by 

inhibiting neuronal respiration [75]. In parallel, TNF-alpha has been shown to  down-

regulate glutamate reuptake by decreasing EAAT2/GLT1 expression on glia [69]. In our 

study, release of TNF-alpha and NO was induced by LPS and their presence in culture 

media could explain LPS-enhanced NMDA toxicity. As an alternative explanation, 
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activated microglia have been shown to release quinolinic acid [67] and glutamate [68], 

both of which activate NMDARs. Therefore, LPS activation of microglia may have 

increased the overall concentration of NMDAR agonists in the culture media thereby 

potentiating NMDA-induced toxicity. The precise mechanisms by which LPS enhances 

NMDA toxicity in the current study remain uncertain at this stage. This set of 

experiments supports the fact that neuroimmune signaling induced by LPS is capable of 

potentiating NMDAR mediated excitotoxicity and this might have important implications 

for neurotoxicity associated with EWD. For example, if release of NO and TNF-alpha 

elicited by LPS is enhanced during EWD, this may further potentiate excitotoxicity 

observed at that time.  

Many previous studies [55, 120] using OHSC have shown that NMDA-induced 

toxicity is enhanced during EWD and we were able to replicate these findings in the 

current study. NMDA treatment alone produced robust toxicity and this was significantly 

potentiated during EWD. Since NMDA toxicity is enhanced by LPS under control 

conditions and NMDA toxicity is also enhanced by EWD, we predicted that NMDA 

toxicity would be further enhanced by LPS under EWD conditions. Furthermore, this was 

predicted to be accompanied by a greater release of proinflammatory mediators induced 

by LPS because ethanol exposure has been shown to sensitize the inflammatory 

response to LPS [40]. The results do not support these predictions. During peak EWD, 

co-exposure to LPS reduced NMDA toxicity (fig. 1) and LPS-induced release of 

proinflammatory mediators was reduced (fig. 2) at that time. Therefore, in OHSC, 

ethanol exposure resulted in a desensitized response to LPS and the effects of LPS on 

NMDA toxicity are reversed during EWD.  

A potential explanation for the desensitization to LPS following ethanol exposure 

is by a mechanism similar to endotoxin tolerance. Endotoxin tolerance occurs when 



 

35 
 

immune tissues or cells are chronically exposed to an inflammatory stimulus resulting in 

a desensitized response to subsequent challenges with the same stimulus [132]. For 

example, Antonietta Ajmone-Cat et al. [133] show in an elegant study that when OHSC 

are treated repeatedly with LPS, the cultures exhibit a reduced inflammatory response to 

a subsequent challenge. This is presumably the result of persistent activation of the 

primary molecular target for LPS, toll-like receptor 4 (TLR4). Ethanol has been shown to 

directly activate TLR4 on isolated astrocytes [36] and microglia [38]. In our study, it is 

therefore possible that ethanol persistently activated TLR4 resulting in tolerance to a 

subsequent challenge with LPS during EWD. In support, ethanol pretreatment has been 

found to produce tolerance to a subsequent LPS challenge in human monocytes and 

immortalized macrophages [134].  

The desensitized inflammatory response to LPS following ethanol exposure is 

however not sufficient to explain the reversed effects of LPS on NMDA toxicity during 

EWD. TNF-alpha and NO are still present in culture media and should still be capable of 

enhancing excitotoxicity. Therefore, other changes to OHSC induced by ethanol must 

have had to occur for LPS to reduce NMDA toxicity during EWD. Marshall et al recently 

reported that in rats exposed to a 4-day binge ethanol paradigm, microglia are partially 

activated and exhibit an anti-inflammatory phenotype [135]. This phenotype has been 

extensively demonstrated to be neuroprotective against a variety of neurotoxic stimuli 

[136, 137]. In our study, ethanol exposure may have produced preparations containing 

anti-inflammatory and neuroprotective microglia which could explain the apparent 

neuroprotection by LPS against NMDA toxicity during EWD. This interpretation has 

important implications for the role microglia may play in neurotoxicity associated with 

EWD. Therefore, we investigated how ethanol exposure affects the response to LPS on 

microglia specifically.  
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If the neuroimmune changes induced by ethanol in OHSC are specific to 

microglia, we should observe similar effects on the response to LPS in BV2 microglia 

cultures exposed to ethanol. In OHSC, both TNF-alpha and NO release elicited by LPS 

were reduced following ethanol exposure. Similarly, in BV2 microglia, LPS-induced NO 

release was reduced following ethanol exposure. However, LPS-induced TNF-alpha 

release was increased following ethanol exposure (fig. 3). Accordingly, following ethanol 

exposure, BV2 microglia exhibit an unusual inflammatory phenotype. Understanding 

microglial activation and the resulting phenotype is still an ongoing area of research and 

a plethora of activation states have been identified and are still being characterized [138, 

139]. In the current experiments, NO is reduced and TNF-alpha is increased following 

ethanol exposure, which is not characteristic of traditional classical and/or alternative 

activations but instead could suggest another activation state such as an 

immunoregulatory phenotype [140]. However, additional markers need to be measured 

to fully characterize the activation state of microglia in these experiments. Nevertheless, 

the discrepancy between results obtained from OHSC and those obtained from BV2 

microglia suggests that other cell types are involved in the neuroimmune changes 

induced by ethanol in the slice cultures. For example, astrocytes are present in OHSC 

[125] and they have been shown to be activated by ethanol acutely [36]. Prolonged 

ethanol exposure may have changed their neuroimmune phenotype and contributed to 

the overall anti-inflammatory phenotype exhibited by the slices. However, additional 

studies are necessary to fully characterize neuroimmune changes to all cell types in 

OHSC, including microglia, astrocytes, oligodendrocytes and neurons, following ethanol 

exposure.  

OHSC used in these studies are taken originally from neonatal rats at postnatal 

day 8 and, although they are not analyzed until 16, 17 or 18 DIV, the effects of ethanol 
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on these cultures is almost certainly relevant to effects on the developing brain. Indeed, 

we have previously used these preparations to study the sensitivity of different 

developmental stages to the effects of excitotoxicity during EWD [141]. Additionally, 

others [81] have used similar cultures to study the contribution of neuroinflammation on 

ethanol-induced neurotoxicity specifically during brain development. Their data focused 

on the role of increased phospholipase A2 activation in neuroinflammation in adolescent 

cultures, a change that we have previously reported in adult brain [142]. The current 

studies therefore provide further support that changes to the glutamate and 

neuroimmune systems may contribute to ethanol related toxicity in the developing brain. 

Furthermore, they suggest that the therapeutic targets identified in this research may be 

relevant to ethanol-induced neurotoxicity at different developmental ages. 

In summary, in OHSC, LPS enhances NMDA toxicity under control conditions but 

the reverse is observed during EWD. In addition, ethanol exposure results in a 

desensitized inflammatory response to LPS. The primary hypothesis is therefore not 

supported by the data. Furthermore, the specific role of microglia in neuroimmune 

changes induced by ethanol in this model remains uncertain but data obtained from BV2 

microglia suggest that other cell types are important for these changes in OHSC. This 

has important implications for the treatment of ethanol-induced neurotoxicity because, 

following ethanol exposure, the neuroimmune system may be endogenously protective 

against excitotoxicity associated with EWD. Additionally, a comprehensive 

understanding of the effects of ethanol on all neuroimmune cell types is necessary to 

decide which cellular targets to engage. These studies do not invalidate 

neuroinflammation or excitotoxicity as potential targets for the treatment of ethanol 

induced neurodegeneration but illustrate the necessity to clearly assess the extent, 
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importance and interaction between these mechanisms when using models of ethanol 

induced neurotoxicity.  
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CHAPTER 3.  A NICOTINIC RECEPTOR-MEDIATED ANTI-INFLAMMATORY EFFECT 

OF THE FLAVONOID RHAMNETIN IN BV2 MICROGLIA 

Published paper: Lutz J.A., Kulshrestha M., Rogers D.T., Littleton J.M. A nicotinic 

receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia. 

Fitoterapia 2014; 98c: 11-21. 

3.1 Introduction 

In the last decade, plant natural products have emerged as a valuable source for 

neuroprotective compounds [143]. Polyphenols (flavonoids, anthocyanins, chalcones, 

curcuminoids, stilbenoids) in particular have been widely investigated in this area [144] 

and they generally not only exhibit great antioxidant properties [145] but they also exhibit 

potent anti-inflammatory properties [146]. Therefore, they have come to light as valuable 

multifunctional compounds targeting two neurotoxic mechanisms (oxidative stress and 

neuroinflammation) associated with neurodegeneration.  

Neuroinflammation has become known as a central mechanism of 

neurodegeneration in diseases such as Alzheimer’s disease [147], Parkinson’s disease 

[148] or ethanol induced neurotoxicity [34]. It is mediated primarily by microglia, the 

resident immune cells of the central nervous system (CNS). As a result of acute 

neuronal damage, microglia become alternatively activated resulting in tissue repair and 

clean-up [149]. However, when the neuronal insult becomes chronic, as observed in 

neurodegenerative diseases, microglia become classically activated ultimately leading to 

additional toxicity [27]. Therefore, the primary aim when targeting neuroinflammation is 

inhibiting the neurotoxic effects of classical microglial activation. Common, well-known 

anti-inflammatory drugs, such as ibuprofen, have been suggested for the treatment of 

neurodegenerative diseases [150]. However, the discovery of novel anti-inflammatory 
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compounds specific to neuroinflammation has become pivotal in discovering effective 

treatments for neurodegeneration. 

Nicotinic acetylcholine receptors (nAChRs) are emerging as very interesting 

molecular targets for attenuating neuroinflammation specifically. The homomeric alpha7 

nAChR subtype in particular is heavily implicated both in the vagus nerve anti-

inflammatory cholinergic pathway [151] and in brain tissues [94]. Wang et al [86] show in 

an elegant study using an alpha7 nAChR specific antisense oligonucleotide that nicotine 

inhibits tumor necrosis factor synthesis in activated macrophage cultures through alpha7 

nAChRs activation. This finding was then extended to microglia where nicotine and 

acetylcholine attenuate both microglial activation and LPS-induced tumor necrosis factor 

alpha (TNF-alpha) release in a dose dependent manner through an alpha7 nAChR 

dependent pathway [88]. Therefore, an alpha7 nAChR selective agonist would be 

valuable for targeting neuroinflammation specifically. Moreover, it could have the 

potential to inhibit excitotoxicity, another primary mechanism of injury observed in 

neurodegeneration [98]. 

Although there has been considerable effort toward synthesizing alpha7 nAChR 

selective ligands in the last decade [108], few of them have made it to market. 

Interestingly, most of these synthetic compounds are derived from alkaloids originally 

discovered primarily in plants [109]. The majority of these are toxic or have abuse liability 

(like nicotine) due partly to their high affinity for alpha4-beta2 nAChRs [110], the other 

major nAChR subtype in the brain. However, not all plant alkaloids have this selectivity. 

Thus, methyllycaconitine (MLA) is a relatively selective ligand for the alpha7 nAChR 

subtype that is isolated from the seeds of Delphinium brownii, a North American 

wildflower [112]. MLA has been used extensively in research for the study of alpha7 

nAChRs but presents little therapeutic use as it is an antagonist [111]. With the 
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exception of nicotine [152], few of these plant metabolites have been tested against 

neuroinflammation. However, plants may contain novel, non-toxic, and alpha7 nAChR 

selective agonists that would have therapeutic value for the treatment of 

neurodegenerative diseases by attenuating neuroinflammation.  

In order to find plants containing metabolites with selective activity at alpha7 

nAChRs we developed a differential screening approach and applied this to a large 

native plant species extract library [113]. These extracts were first screened for the 

presence of metabolites which bound to nAChRs in rat brain homogenates using a non-

subtype selective ligand, [3H]-epibatidine. Of the 1000 extracts tested, about 350 

species showed significant displacement of this ligand suggesting that metabolites which 

interact with nAChRs are common in this sample. Extracts from these 350 species were 

then compared for their ability to displace an alpha7 selective ligand, [3H]-MLA, or an 

alpha4-beta2 selective ligand, [3H]-cytisine, from rat brain homogenates. Extracts which 

displaced the alpha7 selective ligand at lower concentrations than they displaced the 

alpha4-beta2 selective ligand were considered likely to contain compounds with relative 

selectivity for alpha7 nAChRs. The great majority of plant extracts showed the reverse 

selectivity, suggesting that the majority of plant metabolites in this library are, like 

nicotine, relatively selective for alpha4-beta2 nAChRs. However, 8 species extracts 

showed relative selectivity for alpha7 nAChRs [113] and these are now under 

investigation to determine the active metabolites which they contain.  

One of the first sources of alpha7 selective binding activity to be investigated was 

Solidago nemoralis which, to our knowledge, has not been reported to contain bioactive 

alkaloids, the major class of natural products from plants which act on nAChRs. Assay-

guided fractionation followed by preparative HPLC and mass spectrometry identified 

specific methyl-quercetin derivatives as responsible for the displacement of [3H]-MLA 
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binding. This was surprising for two reasons. First, similar flavonoids are widespread in 

plants, so it seemed likely that many other plant species should contain alpha7 selective 

binding activity based on this type of compound. However, our identification of S. 

nemoralis as “positive” was based not only on binding to alpha7 nAChRs, but also on the 

relative absence of binding to alpha4-beta2 nAChRs. Since alkaloids which bind to 

alpha4-beta2 nAChRs are widespread in plants [113] this activity will mask the presence 

of alpha7 selective compounds in many species. Thus it may be precisely because S. 

nemoralis contains no bioactive alkaloids that we were able to identify the active 

flavonoids in this species using our differential screen. The second surprising aspect of 

this discovery is that flavonoids have never previously been reported to interact directly 

with nAChRs. However, closely following our observation, electrophysiological studies 

indicated that quercetin has co-agonist effects on the alpha7 nAChR expressed in 

Xenopus oocytes [153]. This activity of flavonoids at alpha7 nAChRs is potentially 

important in several of their known therapeutic effects. For example, flavonoids have 

been extensively investigated for their anti-inflammatory properties peripherally [154] 

and in the CNS [155] as well as for their neuroprotective effects in models of 

neurodegeneration [156]. Many of these effects could be mediated through alpha7 

nAChRs but this has never previously been investigated. It will depend on which specific 

flavonoids have this activity, and the extent to which alpha7 nAChRs are involved in the 

pathological response. The main aim of this study is therefore to assess the alpha7 

nAChR selectivity of a small library of pure flavonoids and whether this activity translates 

to enhanced anti-inflammatory properties on activated microglia.  
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3.2 Materials and methods 

3.2.1 Chemicals, reagents and kits 

Methanol, hexane, chloroform, ethyl acetate, butanol, lipopolysaccharide (LPS) 

from Escherichia coli serotype 026:B6 (Lot# 021M4072V), (-)-nicotine, 

methyllycaconitine citrate salt hydrate (MLA) from Delphinium brownii seeds, 

mecamylamine hydrochloride and 7-hydroxy-3H-phenoxazin-3-one-10-oxide sodium salt 

(resazurin) were purchased from Sigma-Aldrich (St Louis, MO, USA). Astragalin, 

baicalein, catechin, daidzin, daidzein, delphinidin, genistein, isoquercitrin, isorhamnetin, 

malvidin, petunidin-3-glycoside, quercetagetin, quercetin, rhamnetin, sakuranetin, 

spiraeoside and tamarixetin (Fig. 1) were purchased from Chromadex (Irvine, CA, USA). 

[3H]-MLA (~60Ci/mmol), [3H]-cytisine (~16Ci/mmol) and [3H]-epibatidine (~30Ci/mmol) 

were purchased from American Radiolabeled Chemicals, Inc. (St. Louis, MO, USA). 

Antibiotics (10000U/mL penicillin and 10000ug/mL streptomycin), 2.5% trypsin (10X), 

fetal bovine serum (FBS), Dulbeccos’ Modified Eagle Medium (DMEM), DMEM:Nutrient 

mixture F-12 (DMEM/F-12) and Hanks Balanced Salt Solution (HBSS) were purchased 

from Life Technologies Corporation (Grand Island, NY, USA). Griess reagent system 

was purchased from Promega Corporation (Madison, WI, USA). TNF-alpha ELISA 

Ready-SET-Go!® was purchased from eBioscience Inc. (San Diego, CA, USA).  

3.2.2 Solidago nemoralis extraction and chemical identification 

3.2.2.1 Assay guided fractionation 

The aerial parts of Solidago nemoralis, including stems and flowers, were dried, 

ground and suspended in methanol for 24 hours. The methanol extract was decanted 

and the resulting plant material was re-suspended in fresh methanol for another 24 

hours. Methanol extracts were then pooled and dried in a rotary evaporator. The dry 
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methanol extract was re-suspended in water and subsequently extracted in hexane, 

chloroform, ethyl acetate and butanol. Resulting fractions were assayed for [3H]-MLA 

displacement on rat hippocampal membranes (see below).  

3.2.2.2 Preparative high performance liquid chromatography (HPLC) 

Preparative HPLC was performed with a Waters XBridge preparative c18 column 

(5µm particles, 19x150mm) and a gradient analysis method (flow rate= 7mL/min) where 

methanol was gradually increased and water proportionally decreased. Detection was 

performed with the Waters 2998 photodiode array detector and fractions were collected 

with the Waters 2767 sample manager. Resulting fractions were assayed for [3H]-MLA 

displacement on rat hippocampal membranes (see below).  

3.2.2.3 Electrospray ionization mass spectrometry (ESI-MS/MS) 

Preparative HPLC samples were dried and re-suspended in methanol/MilliQ 

water and analyzed at the University of Kentucky Mass Spectrometry Facility using ESI-

MS/MS in both positive and negative ion ESI modes. 

3.2.3 Radioligand binding studies 

3.2.3.1 Rat brain membrane preparation 

Hippocampal and cortical tissues were removed from adult male Sprague-

Dawley rats (225-250g) and homogenized in sucrose buffer (0.32 M sucrose, 1mM 

EDTA, 0.1mM phenylmethylsulfonyl fluoride, 0.01% w/v sodium azide, pH adjusted to 

7.4), centrifuged at 1,000g for 10min at 4°C and the supernatant reserved on ice. The 

pellet was re-suspended and centrifuged once more at 1,000g for 10min at 4°C. The 

supernatant was combined with the previously reserved supernatant and centrifuged at 

50,000g for 10min at 4°C. The resulting supernatant was discarded and the pellet 
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washed twice by re-suspension and centrifugation in binding buffer (50mM Tris, 144mM 

NaCl, 1.5mM KCl, 2mM CaCl2, 1mM MgSO4.7H2O, 20mM HEPES, pH adjusted to 7.4) 

at 50,000g for 10min at 4°C. Total protein content was measured using the Bicinchoninic 

Acid Kit (Sigma-Aldrich), adjusted to 3mg/ml protein and frozen at -80°C for future 

experimentation.  

3.2.3.2 General radioligand binding method 

Solutions to be tested were mixed with membranes (final protein content = 

1mg/ml) and radioligand (2nM [3H]-MLA or 2nM [3H]-cytisine for displacement studies) 

in individual wells on 96 well plates. Reactions were allowed to reach equilibrium (2h-3h) 

and the plates were harvested by vacuum filtration onto GF/B filter plate (Perkin Elmer 

Inc., Waltham, MA, USA) followed rapidly by 3 washes with 50mM Tris-HCl buffer (pH 

adjusted to 7.4). Filter plates were dried overnight and scintillation counting was 

performed for 2min per well in a Packard TopCount® NXTTM microplate scintillation and 

luminescence counter following the addition of 35µL scintillation fluid (Microscint 20, 

Packard Inc) to each filter well. For each assay plate, non-specific binding was 

measured in the presence of excess nicotine (300µM final concentration) and specific 

binding was calculated by subtracting non-specific binding from total binding of 

radioligand alone. Specific binding in the presence of competitors was converted to 

percentage of total specific binding of radioligand alone 

3.2.3.3 Pure flavonoid competition binding experiments 

Flavonoids were solubilized at high concentration (100mM) in 100% DMSO and 

diluted in binding buffer to obtain stock solutions of 30µM. The stock solutions were 

subjected to 1:10 serial dilutions to obtain a wide range of flavonoid concentrations. 
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Using the general radioligand binding method described above, flavonoids were 

assessed for [3H]-cytisine and [3H]-MLA displacement.  

3.2.4 BV2 microglia studies 

3.2.4.1 BV2 microglia cell culture 

BV2 murine microglia (kindly provided by Dr. Linda Van Eldik) were cultured in 

DMEM/F-12 supplemented with 10% FBS and antibiotics (penicillin 100U/ml, 

streptomycin 100ug/ml). Cells were kept at 37°C in a humidified atmosphere of air and 

5% CO2. For membrane preparation and RLB studies, cells were propagated in T75 

flasks, harvested by cell scraping upon confluency, centrifuged (1200 rpm, swinging 

bucket) for 4 min, re-suspended in sucrose buffer and frozen for future use. Membranes 

were then prepared as described above for animal tissue. Membranes were adjusted to 

a final concentration of 3mg/ml and frozen at -80°C for future experimentation. For LPS 

elicited inflammatory mediator release, cultured cells were detached upon confluency 

with 0.25% trypsin (2min at 37°C), seeded in 24 well plates at densities of 5x105 

cells/well and allowed to adhere overnight. Cells were then pretreated with test 

compounds (serum-free media) for 1h and subjected to LPS challenge (10µg/ml in 

serum-free media) for 24h.  

3.2.4.2 Saturation binding with BV2 membranes 

Using the general radioligand binding method described above, saturation 

binding experiments were undertaken as follows: BV2 membranes were mixed in 

individual wells of a 96 well plate with increasing concentrations of radioligand ([3H]-MLA 

and [3H]-epibatidine) in the presence or absence of excess nicotine (300µM). Specific 

binding at each concentration was calculated by subtracting non-specific binding to total 

binding. 
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3.2.4.3 Measurement of cell viability, nitric oxide (NO) content and TNF-alpha 

release 

Cell-free culture supernatants were collected, assayed for nitrite content 

immediately to avoid the effects of freeze-thawing [157] and subsequently frozen for 

future TNF-alpha content analysis. Each well was then filled with fresh media containing 

100µM resazurin and allowed to incubate for 4h. Fluorescence (Excitation = 560nm, 

emission = 590nm) was then measured using a Wallac 1420 VICTOR plate reader 

(PerkinElmer, MA, USA) and cell viability was normalized to percentage control (no LPS 

group). Nitrite levels were measured using the Griess Reagent System (Promega) in 

accordance with the manufacturer’s instructions. Briefly, 50µL of experimental samples 

were plated in a 96 well plate, 50µL sulphanilamide and 50µL N-1-

napthylethylenediamine dihydrochloride were then added sequentially with a 5min 

incubation interval. Absorbance was measured at 550nm using a Wallac 1420 VICTOR 

plate reader (PerkinElmer, MA, USA) and the amount of nitrite was calculated from a 

NaNO2 standard curve. TNF-alpha levels were measured by ELISA using the READY-

SET-GO! Mouse TNF-alpha kit (eBioscience, CA, USA) in accordance to the 

manufacturer’s instruction. When necessary, sample dilutions were performed in order to 

fall within the concentration range of the standard curve.  

3.2.5 Statistical analysis and graphical presentation 

Statistical analysis and graphical presentation were done in GraphPad Prism 4.03 for 

Windows (GraphPad Software, CA, USA). Displacement binding data was fitted with 

non-linear regression using the sigmoidal dose-response with variable slope and with 

the top and bottom constrained at 100% and 0% respectively. Binding parameters were 

extrapolated from the curves and flavonoids were ranked in ascending pIC50 values for 

prioritization into functional studies. For saturation binding experiments, total and specific 
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binding were fitted with a one site binding hyperbola and non-specific binding was fitted 

linearly. Binding parameters were extrapolated from specific binding. For dose response 

curves in functional assays, inflammatory mediator release (NO or TNF-alpha) was 

normalized by cell viability when statistical differences were found in cell viability 

between treatment groups by one way ANOVA. Two non-linear regression models 

(sigmoidal dose-response and sigmoidal dose-response with variable slope) were then 

compared using an F-test prior to fitting. Response parameters were extrapolated from 

the best fit. IC50 values were statistically compared using unpaired t-tests on the 

corresponding pIC50 values.  
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Figure 3.1 Pure flavonoids screened for [3H]-MLA displacement in rat 

hippocampal membranes 
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3.3 Results 

3.3.1 [3H]-MLA displacing fractions from Solidago nemoralis contain methyl-quercetin 

derivatives 

Solidago nemoralis was previously identified as containing selective binding 

activity for the alpha7 nAChR relative to beta2-containing nAChRs using our radioligand 

binding differential smart screen [113]. Therefore, we sought to identify the compound(s) 

responsible for this activity using [3H]-MLA displacement guided fractionation, pHPLC 

and ESI-MS/MS. [3H]-MLA displacement on Solidago nemoralis extract solvent 

partitions indicated that the activity was in the ethyl acetate. Further separation of the 

ethyl acetate fraction using preparative HPLC yielded a single [3H]-MLA displacing 

fraction. This fraction was sent for ESI-MS/MS analysis which produced 3 major peaks 

at m/z787, m/z657 and m/z515. Based on a literature search, their fragmentation 

patterns are indicative of three distinct compounds: a quercetin derivative, a 

quercetagetin derivative and a dicaffeoylquinic acid (Table 1). 

Table 3.1 MS/MS fragments of major MS peaks and compound identification from 

the literature 

M+ Fragments Compound ID Citations 

787 641, 479, 317,302 Methyl-quercetin triglycoside [158, 159] 

657 495, 333 Methyl-quercetagetin diglycoside  [160, 161] 

515 353 Dicaffeoylquinic acid  [162] 

 

A small library of pure dicaffeoylquinic acid derivatives was compiled and tested 

for [3H]-MLA displacement. None of the compounds tested displaced [3H]-MLA (data not 

shown) suggesting that the nAChR activity present in the extract is attributable to the 

methyl-quercetin derivatives identified. We were unable to purify large enough amounts 



 

51 
 

of the active fractions for definitive identification using NMR. Instead, we compiled a 

small library of pure flavonoids to be screened for [3H]-cytisine and [3H]-MLA 

displacement.  

3.3.2 Flavonoids differentially displace [3H]-MLA from hippocampal rat membranes 

Pure flavonoids were tested for their ability to displace [3H]-cytisine and [3H]-

MLA from rat cortical and hippocampal membranes respectively. Most compounds 

tested did not displace [3H]-cytisine or did so minimally preventing the extrapolation of 

any kind of binding parameters from fitted displacement curves. However, the majority of 

compounds tested, but not all, dose dependently inhibited specific [3H]-MLA binding 

resulting in a wide range of IC50 values (Table 2). Therefore, [3H]-MLA displacement is 

not a general property of flavonoids and while some structures displace [3H]-MLA 

(rhamnetin, spiraeoside, quercetagetin), others do not (genistein, daidzein, sakuranetin). 

The lack of [3H]-cytisine displacement, a ligand selective for beta2-containing nAChRs, 

in conjunction with the differential displacement of [3H]-MLA observed suggests that 

these compounds may be more selective for alpha7 nAChRs than for alpha4-beta2 

nAChR.  

3.3.3 BV2 microglia exhibit functional nicotinic acetylcholine receptors 

Microglial cultures purified from rat brain express functional nAChRs and 

activation of the alpha7 subtype exerts anti-inflammatory effects [163]. However, and as 

far as the authors know, there is only indirect evidence in the literature for the presence 

of functional nicotinic receptors in the BV2 immortalized microglial cell line [164, 165]. 

Therefore, we sought to evaluate the presence of functional nAChRs in BV2 by 

identifying membrane expressed nAChR with [3H]-MLA saturation binding on BV2 

membranes and by assessing the functional anti-inflammatory effects of nicotine on LPS 

stimulated live cells.  
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Table 3.2 [3H]-MLA displacement parameters of pure flavonoids from hippocampal 

rat membranes 

Flavonoid pIC50 IC50 (µM) Subclass 

Rhamnetin 5.953 ± 0.15 1.11 Flavonol 

Spiraeoside 5.078 ± 0.13 8.35 Flavonol 

Quercetin 4.940 ± 0.05 11.4 Flavonol 

Quercetagetin 4.846 ± 0.21 14. 2 Flavonol 

Isoquercitrin 4.667 ± 0.22 21.5 Flavonol 

Isorhamnetin 4.332 ± 0.17 46.5 Flavonol 

Baicalein 4.18 ± 0.09 66.1 Flavonol 

Malvidin 4.046 ± 0.11 90.0 Anthocyanidin 

Daidzin 3.922 ± 0.20 119.8 Isoflavone 

Tamarixetin 3.623 ± 0.23 238.4 Flavonol 

Astragalin 3.305 ± 0.78 495.6 Flavonol 

Petunidin-3-glucoside 2.464 ± 0.95 3434 Anthocyanidin 

Catechin 0.3036 ± 1.7 497100 Flavan-3-ol 

Delphinidin 0.8436 ± 4.1 6976000 Anthocyanidin 

Genistein N/A N/A Isoflavone 

Daidzein N/A N/A Isoflavone 

Sakuranetin N/A N/A Flavanone  

 

We obtained evidence for [3H]-MLA specific binding in BV2 microglia 

membranes. However, we were unable to reach saturation, and thus extrapolate binding 

parameters, due to a low apparent affinity. The low affinity of [3H]-MLA (nM range) [166] 

relative to that of [3H]-epibatidine (pM range) [167] for alpha7 nAChRs and the expenses 
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associated with carrying out [3H]-MLA saturation binding prompted the alternative use of 

[3H]-epibatidine.  BV2 microglia membranes were found to be saturable with [3H]-

epibatidine (Fig. 2 – Bmax = 121.2fmol/mg protein; Kd = 6.5nM) indicating that nicotinic 

binding sites are present on BV2 membranes. 
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Figure 3.2: [3H]-epibatidine saturation binding on BV2 membranes 

BV2 membranes were incubated with increasing concentrations of [3H]-

epibatidine in the presence or absence of 300µM nicotine. Specific binding was 

calculated by subtracting non-specific binding from total binding. Non-specific 

binding was fit with linear regression while total and specific binding were fit with 

non-linear one site binding hyperbola.  

 

In cultured BV2 cells, nicotine dose dependently inhibited LPS elicited release of 

NO with a maximal inhibition of ~20% (Fig. 3). Furthermore, this effect was blocked by 

10µM mecamylamine, a non-selective nicotinic antagonist, suggesting that nicotinic 
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receptors present on BV2 microglia are functional and can be pharmacologically 

manipulated. 
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Figure 3.3 Inhibition of NO release from LPS stimulated BV2 microglia by nicotine 

BV2 microglia were pretreated for 1h with increasing concentrations of nicotine 

and subsequently challenged with 10µg/ml LPS for 24h. Culture media was 

collected and assayed for nitrite content using the Griess reaction. NO release is 

expressed as percentage of NO release from LPS alone. * p<0.001 compared to 

LPS alone and Nic+MEC by Tukey’s multiple comparison test following a one-way 

ANOVA. 

3.3.4 [3H]-MLA displacement predicts functional anti-inflammatory nicotinic mediated 

effects 

To assess the functional significance of [3H]-MLA displacement studies, 

rhamnetin, which potently displaces [3H]-MLA with the lowest IC50, and sakuranetin, 
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which does not displace [3H]-MLA and therefore constitutes a structurally related 

negative control, were tested for their anti-inflammatory properties on LPS stimulated 

BV2 microglia. Flavonoids are well known to be anti-inflammatory in this cell line [168, 

169]. Therefore, to evaluate the contribution of putative nicotinic activity, their effects 

were blocked with MLA. 

3.3.4.1 Rhamnetin is anti-inflammatory and benefits from a nicotinic mediated 

mechanism 

Rhamnetin dose dependently inhibited NO (IC50 = 26.3µM) and TNF-alpha 

(IC50 = 28.7µM) release (Fig. 4 & Fig. 5). The addition of MLA increased the IC50s for 

both inhibition of NO release (IC50 = 33.1µM) and inhibition of TNF-alpha release (IC50 

= 105.3µM) although this did not reach statistical significance (t(6) = 0.94, p = 0.37 for 

NO; t(6) = 1.3, p = 0.22 for TNF-alpha). Furthermore, close examination of the 

concentration response curves without MLA revealed Hill coefficients of 3.0±0.9 and 

3.5±4.1 respectively (Table 3). The addition of MLA decreased the Hill coefficients to 

1.6±0.4 for inhibition of NO release and the concentration response curve for inhibition of 

TNF-alpha release best fit the sigmoidal dose response model with no variable slope 

(F(1,16) = 2.14, p = 0.16). These data collectively suggest that rhamnetin mediates its 

anti-inflammatory effects in part through nAChRs. 
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Figure 3.4 Concentration response curves for the inhibition of NO release by 

rhamnetin 

BV2 microglia were pretreated with increasing concentrations of rhamnetin, in the 

absence (A) or presence (B) of 10µM MLA for 1h and subsequently challenged 

with 10µg/ml LPS for 24h. Culture media was collected and assayed for nitrite 

content using the Griess reaction. NO release is expressed as percentage of NO 

release from LPS alone. 
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Figure 3.5 Concentration response curves for the inhibition of TNF-alpha release 

by rhamnetin  

BV2 microglia were pretreated with increasing concentrations of rhamnetin, in the 

absence (A) or presence (B) of 10µM MLA for 1h and subsequently challenged 

with 10µg/ml LPS for 24h. Culture media was collected and assayed for TNF-alpha 

content by ELISA. TNF-alpha release is expressed as percentage of TNF-alpha 

release from LPS alone. 
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Table 3.3 Concentration response curve parameters for the inhibition of NO 

release and TNF-alpha release by rhamnetin 

* best fit the sigmoidal dose response curve with no variable slope 

Rhamnetin IC50 (µM) pIC50 Hill slope 

NO release 26.3 4.579 ± 0.03 -3.0 ± 0.9 

     + MLA (10µM) 33.1  4.48 ± 0.10 -1.6 ± 0.4  

TNF-alpha release 28.7 4.541 ± 0.06 -3.5 ± 4.1 

     + MLA (10µM) 105.3 3.978 ± 0.41 -1.0* 

 

3.3.4.2 The anti-inflammatory activity of sakuranetin does not benefit from a 

nicotinic mediated mechanism  

Sakuranetin dose dependently inhibited NO (IC50 = 85.8µM) and TNF-alpha 

(IC50 = 158µM) release (Fig. 6 & Fig. 7), albeit with lower relative potency compared to 

rhamnetin. Close examination of the dose response curves indicated Hill coefficients at 

unity (Table 4) since both curves fit the sigmoidal dose response model with no variable 

slope (F(1,16) = 0.0009, p = 0.97 for NO; F(1,16) = 3.5, p = 0.07 for TNF-alpha). The 

addition of MLA had no effect on the anti-inflammatory properties of sakuranetin. 

However, the addition of a below threshold concentration of nicotine (1µM) decreased 

IC50s for both NO (IC50 = 16.9µM) and TNF-alpha inhibition (IC50 = 22.3µM). The 

difference was found to be statistically significant for NO (t(6) = 2.9, p < 0.05) but not for 

TNF-alpha inhibition (t(6) = 1.2, p = 0.25). Furthermore, the Hill coefficients were 

significantly increased to 2.2±0.3 for inhibition of NO release (F(1,16) = 15.54, p < 0.01) 

and 2.7±1.0 for inhibition of TNF-alpha release (F(1,16) = 6.7, p < 0.05). These data 

suggest that sakuranetin does not mediate its anti-inflammatory effects through nAChRs 
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but that a below threshold concentration of nicotine can enhance its pharmacological 

profile. 
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Figure 3.6 Concentration response curves for the inhibition of NO release by 

sakuranetin  

BV2 microglia were pretreated with increasing concentrations of sakuranetin, in 

the absence (A) or presence (B) of 1µM nicotine for 1h and subsequently 

challenged with 10µg/ml LPS for 24h. Culture media was collected and assayed for 

nitrite content using the Griess reaction. NO release is expressed as percentage 

of NO release from LPS alone. 
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Figure 3.7 Concentration response curves for the inhibition of TNF-alpha release 

by sakuranetin 

BV2 microglia were pretreated with increasing concentrations of sakuranetin, in 

the absence (A) or presence (B) of 1µM nicotine for 1h and subsequently 

challenged with 10µg/ml LPS for 24h. Culture media was collected and assayed for 

TNF-alpha content by ELISA. TNF-alpha release is expressed as percentage of 

TNF-alpha release from LPS alone. 
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Table 3.4 Concentration response curve parameters for the inhibition of NO 

release and TNF-alpha release by sakuranetin 

* best fit the sigmoidal dose response curve with no variable slope 

Sakuranetin IC50 (µM) pIC50 Hill slope 

NO release 85.8 4.06 ± 0.24 -1.0* 

     + Nicotine (1µM) 16.9 4.77 ± 0.04 -2.2 ± 0.3 

TNF-alpha release 158.0 3.80 ± 0.67 -1.0* 

     + Nicotine (1µM) 22.3 4.65 ± 0.06 -2.7 ± 1.0 

 

3.4 Discussion 

Preliminary studies in our laboratory using a radioligand binding differential smart 

screen on a large plant extract library found that Solidago nemoralis extracts produce 

selective [3H]-MLA displacement relative to [3H]-cytisine displacement suggesting it 

contains compounds selective for the alpha7 nAChR [113]. Chemical analysis of a semi-

pure [3H]-MLA displacing fraction indicated the presence of methyl-quercetin-like 

flavonoids and a dicaffeoylquinic acid. Lack of [3H]-MLA displacement from a small 

library of pure dicaffeoylquinic acid derivatives suggested that flavonoids may be 

responsible for the nAChR activity of the plant extract. Thus, the present studies were 

conducted to test the hypothesis that specific flavonoid structures selectively bind alpha7 

nAChR relative to alpha4-beta2 nAChRs. Therefore, pure flavonoids were evaluated for 

their ability to displace [3H]-MLA, a relatively selective ligand for the alpha7 nAChR, and 

[3H]-cytisine, selective for beta2-containing nAChRs. Our original predictions were that 

some flavonoids would displace [3H]-MLA only, some flavonoids would displace [3H]-

cytisine only and some would displace both with varying degrees of potency.  
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Specific flavonoid structures, such as rhamnetin, specifically displaced [3H]-MLA 

dose dependently while other specific structures, such as sakuranetin, did not. 

Therefore, [3H]-MLA displacement is not a general property of flavonoids despite 

structural similarities. For example, rhamnetin only has 2 additional hydroxyl groups (3-

hydroxyl and 3’-hydroxyl) and an unsaturated B ring in comparison to sakuranetin. 

Interestingly, it appears that flavonols, as a specific subclass, exhibit overall more potent 

[3H]-MLA displacement in comparison to other subclasses such as anthocyanidins, 

isoflavones and flavan-3-ols. Therefore, flavonol specific functional groups, such as 4-

carbonyl group and 3-hydroxyl group, which are inexistent in other classes, may be 

contributing to selective [3H]-MLA displacement. Despite relatively low potencies for 

[3H]-MLA displacement, those for rhamnetin, spiraeoside, and quercetin for example,  

fall within the same range as concentrations of flavonoids reported in plasma following 

dietary supplementation [170] and reported anti-inflammatory potencies in vitro [171]. 

Therefore, specific structures displace [3H]-MLA specifically at physiological relevant 

concentrations. On the other hand, none of the flavonoids tested appeared to displace 

[3H]-cytisine. Collectively, these results support our hypothesis that certain flavonoid 

structures specifically bind alpha7 nAChRs relative to alpha4-beta2 nAChRs. A recent 

report by Lee et al [153] shows that quercetin is capable of enhancing acetylcholine 

induced inward currents through human alpha7 nAChRs expressed on xenopus oocytes, 

potentially through interaction with the Ca2+ binding site. Therefore, we cannot exclude 

the possibility that flavonoids may displace [3H]-MLA non-specifically through an 

allosteric mechanism at the Ca2+ binding site. In turn, this could explain the lack of [3H]-

cytisine displacement as beta2-containing nAChR are less permeable to Ca2+ than 

alpha7 nAChRs [172]. Nevertheless, [3H]-MLA displacement may have functional 

significance for the anti-inflammatory properties of these flavonoids which may translate 

to added value as pharmacotherapies for neuroinflammation specifically. Therefore, we 
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decided to evaluate and compare rhamnetin and sakuranetin as prototypical [3H]-MLA-

displacing and non-[3H]-MLA-displacing flavonoids against LPS elicited inflammatory 

mediator release from BV2 microglia.  

Flavonoids are plant secondary metabolites that are involved in attracting 

pollinators,  deterring herbivorous insects, and allelopathy [173]. They are found in a 

variety of plant species as well as throughout the human diet in foods such as fruits and 

vegetables, tea, and cocoa and have been described for their various health benefits 

[174]. Sakuranetin is the major flavonoid found in rice [175] and it has been primarily 

studied for its anti-inflammatory [176], anti-diabetic [177], and anti-bacterial [178] 

properties. Rhamnetin is found in most buckthorns (rhamnus genus) [179] and has been 

primarily studied for its anti-cancer [180], antioxidant [181] and anti-inflammatory 

properties [171]. Thus, both rhamnetin and sakuranetin have been found to be anti-

inflammatory. Therefore, we hypothesized that rhamnetin, which displaces [3H]-MLA, 

would benefit from enhanced anti-inflammatory effects, via a nicotinic mediated 

mechanism, in comparison to sakuranetin, which does not displace [3H]-MLA. The anti-

inflammatory properties of both compounds were evaluated by their ability to dose 

dependently inhibit NO and TNF-alpha release from LPS stimulated BV2 microglia. 

Additionally, to assess their putative nicotinic activity, they were pharmacologically 

manipulated with nicotinic agonists and antagonists. We predicted that (1) rhamnetin 

would be more potent than sakuranetin, (2) rhamnetin would be partially inhibited by 

nAChR antagonists and (3) sakuranetin would become more potent with the addition of 

nAChR agonists.  

Prior to examining the anti-inflammatory properties of rhamnetin and sakuranetin, 

BV2 microglia were validated for cell surface presence of functional nAChRs. There is 

little evidence in the literature for functional nAChRs in this cell line. Mencel et al [165] 
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report that the alpha7 nAChR subtype can be detected by western blot in BV2 microglia 

lysates. However, no pharmacological manipulation of the nicotinic receptors in BV2 

microglia has been reported to date despite an attempt to block the anti-inflammatory 

effects of donepezil with MLA and DHBE in these cells, which did not produce an effect 

[164]. In our hands, BV2 microglia membranes exhibited [3H]-MLA specific binding and 

were saturable with [3H]-epibatidine. Furthermore, nicotine was found to inhibit NO 

release from LPS stimulated cells. Therefore, the BV2 microglia cell line appears to have 

functional nAChRs that can be pharmacologically manipulated to produce anti-

inflammatory effects.  

Rhamnetin and sakuranetin both dose-dependently inhibited NO and TNF-alpha 

release with relatively similar potencies but close examination of their concentration-

response curves revealed differences in IC50s and Hill coefficients. Rhamnetin exhibited 

lower IC50s and higher Hill coefficients than sakuranetin. Additionally, pharmacological 

blockade of rhamnetin with MLA increased IC50s and decreased Hill coefficients. 

Furthermore, a non-effective concentration of nicotine (1µM) was able to decrease IC50s 

and increase Hill coefficients for sakuranetin. The Hill coefficient, first described by 

Archibald Hill in 1910 [182], is a well known parameter in the field of biochemistry where 

it is extensively used to describe cooperative binding of a ligand or substrate to a 

receptor or enzyme. However, in the fields of cellular biology, it is used to describe the 

ultrasensitivity of a system, such as a signal transduction pathway [183]. In our study, 

the Hill coefficient is simply used to quantify the steepness of the concentration response 

curves. The difference between the steepness of the slope for rhamnetin and 

sakuranetin suggests that there may be different anti-inflammatory mechanisms at work. 

Moreover, the fact that this can be manipulated by nAChR antagonists (for rhamnetin) 

and agonists (for sakuranetin) suggests that the difference between the two flavonoids 
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resides in the difference in alpha7 nAChR agonist activity. These data collectively 

support our hypothesis that [3H]-MLA-displacing flavonoids benefit from a nicotinic 

mediated anti-inflammatory mechanism.  

The alpha7 nAChR selective activity of rhamnetin has important implications not 

only for enhancement of anti-inflammatory effects but also for its potential as an alpha7 

nAChR selective agonist. Indeed, activation of the alpha7 nAChR selectively has the 

potential to inhibit excitotoxicity mediated through NMDA receptors. Nicotine has been 

found to be neuroprotective against NMDA induced excitotoxicity through alpha7 nAChR 

activation both in rat primary hippocampal cultures [98] and hippocampal slice cultures 

[99]. This activity of nicotine has been proposed as an explanation for the negative 

association of cigarette smoking with the incidence of AD and PD [95]. Therefore, 

rhamnetin, as an alpha7 nAChR selective agonist would not only attenuate 

neuroinflammation but also inhibit excitotoxicity simultaneously. Together with its well-

known antioxidant properties, rhamnetin is potentially a multifunctional neuroprotective 

agent that can simultaneously attenuate neuroinflammation, oxidative stress and 

excitotoxicity observed in neurodegenerative diseases.  
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CHAPTER 4.  THE DIETARY FLAVONOID RHAMNETIN INHIBITS BOTH 

INFLAMMATION AND EXCITOTOXICITY DURING ETHANOL WITHDRAWAL IN RAT 

ORGANOTYPIC HIPPOCAMPAL SLICE CULTURES 

Manuscript in preparation 

4.1 Introduction 

Alcohol-induced neurodegeneration has a complex etiology involving several 

neurotoxic mechanisms [114], including neuroinflammation [115] and excitotoxicity [59]. 

These two mechanisms have been studied extensively and are both thought to 

significantly contribute to ethanol-induced neurotoxicity. This suggests the need to 

develop therapeutic strategies that can reduce both these pathological mechanisms. 

One such strategy is by pharmacologically targeting the alpha7 nicotinic acetylcholine 

receptor (nAChR).  

The alpha7 nAChR has recently emerged as a pharmacological target for the 

treatment of neurodegenerative disorders as it is expressed on both neurons and 

neuroimmune cells [87, 184] and can be activated to attenuate excitotoxicity and 

neuroinflammation. For example, nicotine has been found to reduce excitotoxic injury 

induced by NMDA on hippocampal neurons and this effect was blocked by 

methyllycaconitine (MLA), an alpha7 nAChR selective antagonist [98]. In parallel, 

nicotine has been found to attenuate proinflammatory signaling induced by 

lipopolysaccharide (LPS) on primary microglia cultures, an effect that was significantly 

blocked by alpha-bungarotoxin, another alpha7 nAChR selective antagonist [163]. In 

support, DMXB, a relatively alpha7 selective nAChR agonist, has been found to protect 

neocortical neurons from glutamate toxicity [185] and to inhibit LPS-induced TNF-alpha 

release from cultured microglia [186]. Taken together, an alpha7 nAChR selective 
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agonist should act on neurons and microglia simultaneously to reduce excitotoxicity and 

neuroinflammation.  

In order to discover novel alpha7 nAChR selective natural products, we 

developed a differential pharmacological high throughput screen and applied it to a large 

Kentucky plant extract library of about 1000 different species [187]. Interestingly, we 

discovered that Solidago nemoralis extracts exhibited selectivity for alpha7 nAChRs 

relative to alpha4-beta2 nAChRs, the other major nAChR subtype in the brain, and that 

the compounds responsible for this activity were methyl-quercetin derivatives [188]. 

Moreover, by screening a pure flavonoid library we discovered that specific flavonoids, 

such as rhamnetin, were able to selectively displace alpha7 nAChR selective [3H]MLA 

whereas related structures, such as sakuranetin, do not. Rhamnetin and sakuranetin 

were compared for their anti-inflammatory properties against LPS induced inflammatory 

release from immortalized BV2 microglia and rhamnetin was found to inhibit the 

response in part via alpha7 nAChRs [188]. In sum, rhamnetin is capable of reducing 

neuroinflammation but also has the potential to reduce excitotoxicity by activating alpha7 

nAChRs and therefore constitutes a good therapeutic candidate to reduce ethanol-

induced neurotoxicity.  

In the current study, rhamnetin is evaluated for its anti-inflammatory and potential 

neuroprotective properties in a recently developed model of in vitro ethanol-induced 

neurotoxicity which includes neuroinflammatory and excitotoxic component.  This model 

takes advantage of organotypic hippocampal slice cultures (OHSC) that contain both 

neurons and neuroimmune cells [125-127] and on which drugs can be directly applied to 

brain tissue without pharmacokinetic confounds. Previous studies from our laboratory 

have shown that OHSC express alpha7 nAChR, as measured by [125I]alpha-

bungarotoxin autoradiography [99], and that nicotine exposure reduces NMDA receptor 
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mediated excitotoxicity under control conditions [189] and during ethanol withdrawal 

(EWD) [100]. These studies focused on excitotoxicity and we therefore added a 

neuroinflammatory component by applying exogenous LPS in conjunction with NMDA 

during EWD. As such, this model is well suited to evaluate the potential anti-

inflammatory and neuroprotective properties of natural products such as rhamnetin. The 

anti-inflammatory effects of rhamnetin can be assessed on LPS-induced inflammatory 

mediator release and the neuroprotective effects of rhamnetin can be assessed on 

NMDA-induced toxicity, both under control conditions and during EWD. In addition, the 

overall effects of rhamnetin can be evaluated on both outcome measures simultaneously 

when OHSC are exposed to both LPS and NMDA.  

In the original studies, we found that while LPS enhanced NMDA toxicity under 

control conditions, the reverse was observed during EWD. Additionally, prior ethanol 

exposure reduced subsequent inflammatory response to LPS. These data suggest that 

changes to neuroimmune processes induced by ethanol exposure may be protective 

against excitotoxicity during EWD. Additional experiments on BV2 microglia exposed to 

the same ethanol regimen suggested that ethanol exposure induces a non-classical 

microglial phenotype that may be neuroprotective. In support, Marshall et al report that in 

rats exposed to a 4-day binge ethanol paradigm, microglia are partially activated and 

take on an anti-inflammatory phenotype [135]. Exposure to flavonoids and alpha7 

nAChR agonists has been shown to induce similar changes in microglia. For example, 

luteolin, another plant derived flavonoid with a very similar structure to rhamnetin, has 

been shown to induce global transcriptome changes in microglia indicative of an anti-

inflammatory and neuroprotective phenotype [190]. Similarly, AR-R 17779, an alpha7 

nAChR selective agonist, polarizes primary microglial cultures towards the reparative 

Mox phenotype [191]. Therefore, it is unclear how rhamnetin exposure will affect 
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neuroimmune changes induced by ethanol and how those changes in turn affect 

excitotoxicity during EWD.  

Based on the anti-inflammatory effects of rhamnetin on BV2 microglia [188], this 

compound is predicted to reduce LPS-induced inflammatory mediator release under 

control conditions. However, whether rhamnetin (1) retains anti-inflammatory properties 

during EWD, (2) inhibits NMDA toxicity under control conditions, or (3) prevents 

enhanced NMDA toxicity during EWD remains to be established.  The hypothesis is that 

rhamnetin will reduce LPS-induced inflammatory mediator release and NMDA-induced 

toxicity under control conditions and during EWD in hippocampal slice cultures. These 

studies are designed to test this hypothesis in order to establish whether rhamnetin and 

similar dietary flavonoids have potential value in the prevention and/or treatment of 

alcohol-induced neurodegeneration. 

4.2 Materials & methods 

4.2.1 Organotypic hippocampal slice culture (OHSC) preparation 

OHSC were prepared essentially as described by Stoppini et al. [129]. Briefly, 

hippocampi were aseptically removed from 8-day-old Sprague-Dawley male and female 

rat pups and sliced at a transverse thickness of 200 µm using a McIlwain tissue chopper 

(Campden Instruments Ltd., Lafayette, ID). Slices were transferred to sterile culture 

inserts (4 slices per insert) and placed in 6-well-plates containing culture medium 

(Minimum Essential Medium (MEM; Life Technologies Corporation, Grand Island, NY), 

200mM glutamine (Invitrogen, Carlsbad, CA), 25mM HEPES (ATCC, Manassas, VA), 

50uM penicillin/streptomycin (ATCC, Manassas, VA), 36mM glucose, 25% (v/v) Hank’s 

buffered salt solution (HBSS; Gibco BRL, Gaithersburg, MD), 25% heat-inactivated 

horse serum (HIHS; Sigma, St. Louis, MO)). Cultures were maintained at 37°C in an 

atmosphere of 5% CO2/95% air in 95% humidity for 5 days to allow slices to adhere to 
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the insert membrane. The care of animals was carried out in accordance with the 

National Institutes of Health Guide for the Care and Use of Laboratory Animals (NIH 

Publications No. 80-23, revised 1996), as well as the University of Kentucky’s 

Institutional Animal Care and Use Committee. 

4.2.2 Ethanol exposure, rhamnetin exposure and ethanol withdrawal (EWD) 

At 6 days in vitro, slices were placed in culture media with or without the addition 

of 100mM ethanol, incubated for 10 days and then subjected to EWD for 24h. During 

exposure, the plates were placed in topless polypropylene containers containing 50mL 

of 100mM ethanol or dH2O accordingly, and placed inside sealable plastic bags filled 

with 5% CO2, 21% oxygen, and a balance of nitrogen. The ethanol solution is used as 

an evaporating source of ethanol to counter the evaporation of ethanol from the culture 

wells resulting in an average ethanol concentration of 65mM during the 5 days between 

media changes. At 11 days in vitro, slices were sub-cultured into their respective culture 

media (control and ethanol), further subdivided and exposed to control media or media 

supplemented with rhamnetin (25uM/100uM) for the last 5 days of ethanol exposure.  At 

the onset of EWD, slices were separated into treatment groups with or without rhamnetin 

and challenged accordingly: control media, 5uM NMDA (Sigma Aldrich Co. LCC., St. 

Louis, MO), 10ug/mL lipopolysaccharide from Escherichia coli 026:B6 (LPS, Lot #: 

021M4072V; Sigma Aldrich Co. LCC., St. Louis, MO) or both NMDA and LPS combined.  

4.2.3 Assessment of toxicity by propidium iodide uptake  

Propidium iodide (PI - Sigma Aldrich Co. LCC., St. Louis, MO) is a membrane 

impermeable, DNA intercalating fluorescent molecule that is commonly used in OSHC 

as a semi-quantitative stain for cellular toxicity and has been significantly correlated to 

other reliable markers of cell death [130]. It has been extensively used to screen 

neuroprotective compounds in OHSC [119] and we previously used it to evaluate the 
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combined effects of NMDA and LPS during EWD [in preparation]. Therefore, PI was 

chosen to evaluate the neuroprotective properties of rhamnetin in this study. During 

EWD, slices were treated in culture media containing 3.74uM PI. Slice images were 

captured using SPOT Advanced software (Version 4.0.9; W. Nuhsbaum Inc., McHenry, 

IL) connected to an inverted Leica DMIRB microscope (W. Nuhsbaum Inc.) fitted for 

fluorescence detection (mercury-arc lamp) and connected to a computer via a SPOT 7.2 

color mosaic camera (W. Nuhsbaum Inc).  PI uptake in the CA1, CA3, and DG cell 

layers was measured using ImageJ software (Version 1.46; National Institute of Health, 

Bethesda, MD). Background signal was subtracted from intensities obtained for each cell 

layer resulting in specific intensities which were used for statistical analysis. These 

values were then converted to % control (no EWD, no NMDA, and no LPS) within each 

preparation for graphical representation.  

4.2.4 Assessment of inflammatory mediator release 

Once slices were imaged, inserts were discarded and the resulting media was 

collected for assessment of inflammatory mediator release. Nitric oxide (NO) release 

was assessed by the Griess Reagent System (Promega Corporation, Madison, WI) 

according to the manufacturer’s instructions. Briefly, samples were mixed sequentially 

with sulfanilamide and N-1-napthylethylenediamine dihydrochloride and incubated for 

5min. Absorbance was measured at 550nm using a Wallac 1420 VICTOR plate reader 

(PerkinElmer, MA, USA). All samples were assayed in duplicate and nitrite content was 

estimated using a reference NaNO2 standard curve performed with each assay. 

TNFalpha content was assessed by enzyme linked immunosorbent assay kit (ELISA; 

Ready-Set-Go!® ELISA, eBioscience Inc., San Diego, CA) according to the 

manufacturer’s instructions. Briefly, samples were pipetted on 96-well plates coated with 

rat anti-TNFalpha antibodies and detected using the sandwich method (anti-TNFalpha 
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primary antibody, avidin-HRP linked secondary antibody and tetramethylbenzidine 

substrate). All samples were assayed in duplicate and TNFalpha content was estimated 

from a reference TNFalpha standard curve performed with each assay. 

4.2.5 Statistical analysis 

Data were analyzed using IBM Statistical Package for the Social Sciences 

(SPSS) Version 21 (IBM Corporation, Armonk, NY) and graphed using Prism (Graphpad 

Software Inc., La Jolla, CA). TNFalpha and NO release were analyzed by multi-factorial 

analysis of variance (ANOVA) with EWD, NMDA, LPS and rhamnetin as fixed factors. 

Data were obtained from different preparations so preparation was used as a covariate 

to control for differences across litters/culture preparations. Post hoc analyses were 

conducted using Fisher’s least significant difference (LSD) test with a level of 

significance set at p<0.05. PI uptake was measured in three different regions (DG, CA3 

and CA1). Thus, PI uptake was analyzed by multi-factorial, repeated measures ANOVA 

with region as within-subjects variables, EWD, NMDA, LPS and rhamnetin as between-

subjects factors, and preparation as a covariate. Post hoc analyses were conducted 

using Fisher’s least significant difference (LSD) test with a level of significance set at 

p<0.05. 

4.3 Results 

Overall multi-factorial ANOVAs on NO release and TNFalpha release revealed 

that the highest order interactions included all factors except NMDA (for NO release: 

EWD x LPS [F(1,502) = 103.6, p < 0.001]; EWD x rhamnetin [F(2,502) = 7.6, p < 0.01]; 

LPS x rhamnetin [F(2,502) = 28.1, p < 0.001]; for TNFalpha release: EWD x rhamnetin 

[F(2,237) = 5.6, p < 0.01]). Therefore, differences in inflammatory mediator release 

between different treatment groups, excluding NMDA groups, were compared post hoc 

where indicated. The repeated-measures multi-factorial ANOVA on PI uptake revealed a 
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main effect of region ([F(1.2,2545.9) = 102.01, p < 0.001] corrected using Greenhouse-

Geisser). This effect was mainly driven by differences in the CA1 region of the 

hippocampus where toxicity was most significant compared to DG and CA3. Therefore, 

assessment of cellular damage was focused on the CA1. A multi-factorial ANOVA on PI 

uptake in the CA1 revealed that the highest order interaction included all factors (EWD x 

NMDA x LPS x rhamnetin [F(2,2101) = 6.7, p < 0.01]). Therefore, differences in PI 

uptake between the different treatment groups were compared post hoc where indicated.   

4.3.1 Rhamnetin inhibits LPS-induced inflammatory mediator release but has no effect 

on NMDA-induced toxicity under control conditions 

The anti-inflammatory and neuroprotective properties of rhamnetin were first 

evaluated under control conditions. Both 25uM and 100uM rhamnetin equally inhibited 

inflammatory mediator release induced by LPS (Fig. 4.1) but it did not afford 

neuroprotection against NMDA toxicity under these conditions (Fig. 4.2). TNFalpha and 

NO levels measured in media from cultures treated with LPS and rhamnetin were 

significantly lower than those measured in media from cultures treated with LPS alone 

(post hoc p < 0.0001). As in the original studies, under control conditions, LPS treatment 

potentiated NMDA-induced PI uptake (post hoc p < 0.05). 25uM or 100uM rhamnetin 

had no effect on NMDA-induced toxicity. Moreover, despite its anti-inflammatory effects, 

rhamnetin had no effect on toxicity induced by NMDA and LPS in combination.  
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Figure 4.1 Rhamnetin is anti-inflammatory under control conditions 

Slices were treated with lipopolysaccharide (LPS) in the absence (white bars) or 

presence (grey bars) of rhamnetin (25uM and 100uM), culture media was collected 

after 24h and assayed for TNFalpha (A) and NO (B) content. * p<0.001 compared to 

LPS alone, n/d not detected. Data are expressed as percent release induced by 

LPS alone (means ± SEM). n > 12 samples for each treatment group. 
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Figure 4.2 Rhamnetin is not neuroprotective under control conditions 

Slices were treated with lipopolysaccharide (LPS) and/or N-methyl-D-aspartate 

(NMDA) in the absence (white bars) or presence (grey bars) of rhamnetin (25uM 

and 100uM) and PI uptake was measured after 24h. * p<0.05 compared to NMDA 

alone, n/s no significant difference with equivalent treatment group (LPS, NMDA, 

NMDA+LPS) in the absence of rhamnetin. Data are expressed as percent of 

untreated control (means ± SEM). Dotted line represents untreated control. n > 27 

for each treatment group.  
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4.3.2 Effects of EWD on LPS-induced inflammatory mediator release and NMDA-

induced toxicity 

As in the original studies, EWD reduced the release of inflammatory mediators 

induced by LPS in comparison to control (Fig. 4.3). TNFalpha and NO levels measured 

in media from EWD cultures treated with LPS were significantly lower than LPS control 

levels (post hoc p < 0.001). In addition, EWD enhanced NMDA-induced toxicity and the 

effects of LPS on NMDA-induced toxicity were reversed under these conditions (Fig. 

4.4). EWD cultures treated with NMDA exhibited significantly more PI uptake than 

NMDA controls (post hoc p < 0.001) and EWD cultures treated with a combination of 

NMDA and LPS exhibited significantly less PI uptake than EWD cultures treated with 

NMDA alone (post hoc p < 0.01).  

  



 

77 
 

 

 

 

C
o
n
tr

o
l

L
P

S

C
o
n
tr

o
l

L
P

S

0

10

20

30

40

50

60

70

80

90

100

110

Control

EWD

*

T
N

F
a
lp

h
a
 r

e
le

a
s
e
 (

%
 L

P
S

)

A

 

C
o
n
tr

o
l

L
P

S

C
o
n
tr

o
l

L
P

S

0

10

20

30

40

50

60

70

80

90

100

110

Control

EWD

*

N
it
ri

te
 r

e
le

a
s
e
 (

%
 L

P
S

)

B

 

 

Figure 4.3 Ethanol withdrawal (EWD) reduces lipopolysaccharide (LPS) induced 

proinflammatory release from organotypic hippocampal cultures 

Slices were treated with LPS under control conditions (empty bars) and during 

EWD (dashed bars), culture media was collected after 24h and assayed for 

TNFalpha (A) and NO (B) content. *p<0.001 compared to LPS alone. Data are 

expressed as percent release induced by LPS alone (means ± SEM).  n > 27 for 

each treatment group.  
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Figure 4.4 Effects of ethanol withdrawal (EWD) on toxicity induced by N-methyl-D-

aspartate (NMDA) and/or lipopolysaccharide (LPS) in organotypic hippocampal 

cultures 

Slices were treated with LPS and/or NMDA under control conditions (empty bars) 

or during EWD (dashed bars) and PI uptake was measured after 24h. *p<0.05 

compared to NMDA alone; $p<0.01 compared to NMDA+EWD. Data are expressed 

as percent of untreated control (means ± SEM). Dotted line represents untreated 

control. n > 117 for each treatment group.  
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4.3.3 Rhamnetin inhibits LPS-induced inflammatory mediator release and NMDA-

induced toxicity during EWD 

The anti-inflammatory and neuroprotective properties of rhamnetin were 

evaluated under EWD conditions. Despite the fact that the response to LPS is reduced 

during EWD, both 25uM and 100uM rhamnetin further inhibited inflammatory mediator 

release during EWD (Fig. 4.5). TNFalpha and NO levels measured in media from EWD 

cultures treated with LPS and rhamnetin were significantly lower than those measured in 

media from cultures treated with LPS alone (post hoc p < 0.001). Moreover, both 25uM 

and 100uM reduced NMDA-induced toxicity during EWD (Fig. 4.6). PI uptake in slices 

treated with NMDA and rhamnetin was significantly lower than in slices treated with 

NMDA alone under these conditions (post hoc p < 0.001). However, rhamnetin had no 

effect on toxicity induced by NMDA and LPS in combination during EWD.  
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Figure 4.5 Rhamnetin is anti-inflammatory during ethanol withdrawal (EWD) 

Slices were treated with lipopolysaccharide (LPS) in the absence (white dashed 

bars) or presence (grey dashed bars) of rhamnetin (25uM and 100uM), culture 

media was collected after 24h and assayed for TNFalpha (A) and NO (B) content. 

*p<0.01 compared to LPS+EWD; $p<0.001 compared to EWD alone. Data are 

expressed as percent release induced by LPS alone under control conditions 

(means ± SEM). n > 11 samples for each treatment group. 
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Figure 4.6 Rhamnetin is neuroprotective against N-methyl-D-aspartate (NMDA) 

toxicity during ethanol withdrawal (EWD) 

Slices were treated with lipopolysaccharide (LPS) and/or NMDA in the absence 

(white dashed bars) or presence (grey dashed bars) of rhamnetin (25uM and 

100uM) and PI uptake was measured after 24h. *p<0.001 compared to 

NMDA+EWD; $p<0.001 compared to EWD alone, n/s no significant difference with 

equivalent treatment group in the absence of rhamnetin. Data are expressed as 

percent of untreated control (means ± SEM). Dotted line represents untreated 

control. n > 45 for each treatment group.   
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4.3.4 100uM rhamnetin spontaneously induces NO release and toxicity during EWD 

Interestingly, 100uM rhamnetin interacted with ethanol exposure and/or EWD to 

spontaneously induce NO release and toxicity (Fig. 4.7). NO levels measured in media 

from EWD cultures treated with 100uM rhamnetin was significantly higher than NO 

measured in media from EWD control cultures (post hoc p < 0.001). Similarly, PI uptake 

was significantly higher in slices treated with 100uM rhamnetin compared to EWD 

control slices (post hoc p < 0.001). On the other hand, 25uM rhamnetin did not interact 

with EWD and levels of NO release in media or PI uptake in EWD cultures treated with 

this concentration of rhamnetin did not differ from EWD controls.  
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Figure 4.7 High concentration of rhamnetin induces spontaneous NO release and 

toxicity during ethanol withdrawal (EWD) 

Slices were subjected to EWD in the absence (white dashed bars) or presence 

(grey dashed bars) of rhamnetin (25uM and 100uM). (A) Culture media was 

collected after 24h and assayed for NO content. *p<0.001 compared to EWD alone. 

Data are expressed as percent release induced by LPS alone (means ± SEM). n > 

12 for each treatment group. (B) PI uptake was measured after 24h. *p<0.001 

compared to EWD alone. Data are expressed as percent of untreated control 

(means ± SEM). Dotted line represents untreated control.  n > 47 for each 

treatment group.  
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4.4 Discussion 

The present studies were undertaken to evaluate the anti-inflammatory and 

potentially neuroprotective properties of rhamnetin, a dietary flavonoid, in an in vitro 

model of ethanol-induced neurotoxicity that includes both neuroinflammatory and 

excitotoxic components. Specifically, OHSC were pretreated with rhamnetin for 5 days 

before initiating EWD, at which point cultures were challenged with NMDA and/or LPS. 

In the original studies that characterized this model, we found that EWD enhances 

NMDA toxicity, but that the release of inflammatory mediators in response to LPS is 

reduced. The interactions between NMDA and LPS in OHSC during EWD are complex 

and the impact of natural anti-inflammatory flavonoids, such as rhamnetin, on these 

responses is currently unknown.  

We have previously shown that rhamnetin is anti-inflammatory in LPS-stimulated 

immortalized BV2 microglia [188]. Thus, we originally predicted that rhamnetin would 

inhibit LPS-induced proinflammatory mediator release under control conditions and 

during EWD. The results support both predictions. Rhamnetin reduced LPS elicited 

TNFalpha and NO release under control conditions (fig. 1) as well as during EWD (fig. 

5). Flavonoids have been extensively studied for their anti-inflammatory properties [192]  

and have been proposed as treatments for neuroinflammatory disorders [155]. The 

current study supports the potential use of dietary flavonoids such as rhamnetin to 

reduce neuroinflammation and suggests that they may also be effective in reducing 

neuroinflammation during EWD. 

In addition to evaluating the anti-inflammatory effects of rhamnetin, the current 

study aimed to assess its potential for reducing excitotoxicity during EWD. We have 

previously shown that rhamnetin has agonist activity at alpha7 nAChRs [188] and this 

predicts that the flavonoid should reduce NMDA toxicity both under control conditions 
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and during EWD. In support, nicotine exposure reduces excitotoxic injury in OHSC under 

control conditions [189] and during EWD [100] most probably via alpha7 nAChRs [99]. In 

the current study, rhamnetin reduced NMDA-induced toxicity during EWD (fig. 6), but 

was inactive under control conditions (fig. 2). The lack of effect under control conditions 

is surprising because flavonoids are well known for their antioxidant properties [193] and 

they have been shown to be protective against a variety of excitotoxic insults by 

reducing oxidative stress [194-196]. However, the neuroprotective effects of rhamnetin 

during EWD suggest that the mechanism of enhanced excitotoxicity following ethanol 

exposure is a target for rhamnetin. The specific mechanism targeted remains unknown 

but these data suggest that dietary flavonoids such as rhamnetin have the potential to 

reduce excitotoxicity during EWD. 

The current study also aimed to evaluate the impact of rhamnetin on the 

combined effects of NMDA and LPS. Rhamnetin afforded no protection against the 

combined insults under control conditions (fig. 2) or during EWD (fig. 6). The 

mechanisms by which rhamnetin reduce inflammatory responses are not certain. Our 

previous studies on BV2 cells suggest that direct effects via alpha7 nAChR is one 

component. However, changes in microglial phenotype may play a prominent role here. 

As mentioned in the introduction, microglia exposed chronically to flavonoids and alpha7 

nAChR agonists have been shown to shift towards an anti-inflammatory and 

neuroprotective phenotype [190, 191]. From our previous studies it was apparent that 

chronic exposure to ethanol also produced changes in microglia towards a 

neuroprotective phenotype and similar conclusions have been reached by others using 

an in vivo model [135]. It is therefore likely that the interactions between ethanol, 

flavonoids, and alpha7 nAChR agonists on microglial phenotype are complex and it will 

be necessary to explore these in order to explain the results obtained here.  
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Throughout the current study, 25uM and 100uM rhamnetin were tested. Both 

concentrations were equipotent at inhibiting LPS-induced inflammatory mediator release 

under control conditions and during EWD as well as against NMDA toxicity during EWD. 

However, exposure to 100uM rhamnetin spontaneously induced NO release and toxicity 

during EWD (fig. 7). The mechanism is unknown but this effect confounds interpretation 

of results on NO and PI uptake with 100uM rhamnetin during EWD on slices treated with 

NMDA and/or LPS. This interaction is a potential concern for the proposed use of this 

class of flavonoids in preventing ethanol-induced neurotoxicity and suggests a potential 

shift in their therapeutic index following ethanol exposure given the fact that 100uM 

rhamnetin had no toxic effect under control conditions. However, given the fact that 

flavonoids are absorbed in the low uM range in animals [170], concentrations as high as 

100uM are unlikely to achieved in vivo and the lower concentration of 25uM rhamnetin, 

which was just as anti-inflammatory and neuroprotective as 100uM, had no effect on 

spontaneous NO release or toxicity.  Similar toxicity issues have been reported for 

quercetin, another flavonoid structurally related to rhamnetin, at high concentrations 

(40uM) despite being protective at lower concentrations (5uM) against amyloid beta 

induced toxicity in cultured neurons [197]. 

In summary, rhamnetin reduced LPS induced inflammation both under control 

conditions and during EWD, as well as preventing EWD-enhanced excitotoxicity. 

However, rhamnetin did not reduce excitotoxicity under control conditions and had no 

effect on the combined effects of NMDA and LPS. Thus, the results support only some 

of our original predictions. However, the current study shows that rhamnetin (1) retains 

its anti-inflammatory effects during EWD and (2) specifically targets a mechanism by 

which ethanol exposure enhances excitotoxicity during EWD. As such, rhamnetin is anti-

inflammatory and neuroprotective during EWD. Therefore, rhamnetin and dietary 
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flavonoids with similar pharmacology have potential value in the treatment of ethanol-

induced neurotoxicity.  
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CHAPTER 5.  OVERALL CONCLUSIONS 

5.1 Review 

Alcohol-induced neurodegeneration has a complex etiology involving several 

mechanisms of toxicity, including oxidative stress, neuroinflammation and excitotoxicity. 

All have been extensively studied individually and all are thought to significantly 

contribute to this pathology. However, in order to develop effective pharmacotherapies 

against alcohol-induced neurodegeneration, it is now crucial to investigate the 

interactions between individual mechanisms. Moreover, this suggests the need for multi-

functional pharmacotherapies that can reduce all pathological mechanisms 

simultaneously. Thus, the purpose of the current dissertation was to increase our 

understanding of the effects of neuroinflammation on excitotoxicity during ethanol 

withdrawal (EWD) as well as evaluate if novel flavonoids with alpha7 nAChR activity are 

suitable candidates for reducing ethanol-induced neurotoxicity.  

 Aim 1: Determine the effects of LPS-induced neuroinflammatory signaling on NMDA-

induced toxicity following ethanol exposure in organotypic hippocampal slice cultures 

(OHSC - Chapter 2) 

The primary hypothesis for this study was that ethanol exposure enhances 

neuroinflammatory signaling which, in turn, potentiates excitotoxicity during EWD. 

However, despite the fact that neuroinflammatory signaling enhances excitotoxicity 

under control conditions, the reverse is observed during EWD. This is accompanied by a 

desensitized inflammatory response following ethanol exposure. Moreover, BV2 

microglia exposed to ethanol exhibit an unusual phenotype that may be 

immunoregulatory. Therefore, the results do not support the hypothesis and instead 

suggest that, in OHSC, changes to neuroinflammatory signaling induced by ethanol 

exposure are protective against excitotoxicity during EWD.  
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Aim 2: Identify and characterize plant natural products with alpha7 nAChR activity 

(Chapter 3) 

The primary hypothesis for this study was that specific flavonoids selectively bind 

to alpha7 nAChR (relative to alpha4-beta2 nAChR) and this activity enhances their anti-

inflammatory properties. Some flavonoids, such as rhamnetin, were found to specifically 

displace [3H]-MLA whereas others, such as sakuranetin, did not. When comparing 

rhamnetin and sakuranetin for inhibition of LPS-induced inflammatory mediator release 

from BV2 microglia, rhamnetin was found to benefit from an alpha7 nAChR mediated 

effect whereas sakuranetin did not. The results support the original hypothesis and 

suggest that flavonoids with alpha7 nAChR activity, such as rhamnetin, have the 

potential to reduce neuroinflammation and excitotoxicity associated with ethanol-induced 

neurotoxicity.  

Aim 3: Evaluate the anti-inflammatory and neuroprotective properties of rhamnetin 

following ethanol exposure in OHSC (Chapter 4) 

The primary hypothesis for this study was that rhamnetin reduces 

neuroinflammatory signaling and excitotoxicity under control conditions and during EWD. 

Rhamnetin was found to inhibit neuroinflammatory signaling under control conditions 

and during EWD, and inhibit excitotoxicity during EWD but not under control conditions. 

Moreover, rhamnetin had no effect on the combination of neuroinflammatory and 

excitotoxic insults either under control conditions or during EWD. These results support, 

in part, the original hypothesis and suggest that rhamnetin has potential value in 

reducing neuroinflammation and excitotoxicity during EWD.  
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5.2 Discussion 

In the last couple of decades, flavonoids have attracted a lot of attention as 

potential treatments for neurodegenerative diseases. This has most likely been fueled by 

the fact that oxidative stress and neuroinflammation are central pathological 

mechanisms in a great majority of neurodegenerative disorders and as such, flavonoids 

constitute good drug candidates to reduce both. In fact, flavonoids have been 

extensively shown to be protective in a variety of preclinical models of 

neurodegeneration (see below) and this has been generally ascribed to their antioxidant 

and anti-inflammatory activities. However, flavonoids are not all equally potent 

neuroprotectants despite having equivalent antioxidant and/or anti-inflammatory 

properties. This suggests that other pharmacological activities may be important. As 

such, flavonoids have been shown to directly and indirectly affect a variety of 

pharmacological targets in the CNS and the work presented herein adds to their rich 

pharmacology.  

 Flavonoids modulate GABA receptors with reports dating back to 1983 

(reviewed elsewhere [198]) which may explain their well accepted anxiolytic effects 

[199]. Flavonoids are well characterized cholinesterase inhibitors and are therefore 

being developed as pharmacotherapies for the treatment of Alzheimer’s disease 

(reviewed elsewhere [200]). Considerable evidence shows that flavonoids have specific 

effects on the glutamate system and that this contributes to their ability to reduce 

excitotoxicity (see below). Some reports indicate that they interact with the dopamine 

transporter [201-203] and this activity may contribute to their neuroprotective effects in 

preclinical models of Parkinson’s disease [204, 205]. Inhibitory effects on the serotonin 

5-HT3(A) receptor have also been reported [206]. Therefore, flavonoids constitute a 

great source of bioactive compounds with a rich structural and pharmacological diversity. 
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However, this implies that the pharmacology of each specific structure needs to be well 

characterized depending on their intended use.  

The original discovery that rhamnetin has potential alpha7 nAChR agonist activity 

(chapter 3) implied that in addition to its antioxidant [181] and anti-inflammatory 

properties [171] this flavonoid would also potentially inhibit excitotoxicity. In fact, 

flavonoids have been extensively shown to reduce excitotoxicity. However, these studies 

primarily focus on their direct and indirect effects on the glutamate system and do not 

suggest nAChR mediated effects. For example, epigallocatechin-3-gallate normalizes 

glutamate and glycine release from hippocampal and cortical neurons following ischemic 

injury [207], puerarin inhibits aspartate and glutamate release induced by ischemia in 

rats [208], myricetin reduces glutamate-induced intracellular Ca2+ entry in cultured 

neurons by inhibiting the phosphorylation of NR1 subunits thus reducing NMDA receptor 

function [209], apigenin directly inhibits NMDA receptors in cultured cortical neurons 

[210], and quercetin inhibits glutamate evoked inward currents in xenopus oocytes 

expressing the human AMPA receptor [211]. This again illustrates their pharmacological 

diversity and points to potential future lines of investigation to explain the results 

obtained in chapter 4 (see below).  

Before evaluating the neuroprotective effects of rhamnetin, its anti-inflammatory 

properties were characterized on LPS-stimulated BV2 microglia. We compared the anti-

inflammatory effects of rhamnetin and sakuranetin and found that their concentration 

response curves clearly differed in steepness at the point of inflection of the sigmoidal 

function. This phenomenon can be calculated when fitting the data using non-linear 

regression by adding a variable slope parameter to the sigmoidal equation. This 

parameter is commonly calculated in binding experiments to evaluate cooperative 

binding of a ligand to a receptor. In binding experiments, this parameter is commonly 
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known as the Hill coefficient because it was originally defined by Archibald Hill when he 

discovered the cooperative binding nature of oxygen to hemoglobin. In contrast, in the 

current study, the sigmoidal function with variable slope is used to fit the effects of a drug 

on a biological response. Therefore, differences in the steepness of the slope for the 

anti-inflammatory effects of rhamnetin and sakuranetin suggest that there are 

differences in their anti-inflammatory mechanisms. Moreover, the fact that this parameter 

can be manipulated by nAChR antagonists (for rhamnetin) and agonists (for 

sakuranetin) suggests that the difference resides in their activity at nAChRs. Taken 

together, these results suggest that rhamnetin benefits from an alpha7 nAChRs 

mediated anti-inflammatory mechanism whereas sakuranetin does not. In support, 

similar studies to the ones performed with BV2 microglia (saturation binding and 

flavonoid anti-inflammatory studies) were undertaken on RAW 264.7 macrophages, a 

cell line derived from peripheral macrophages, on which we found no evidence of 

nAChRs, and no differences were observed between rhamnetin and sakuranetin (data 

not shown). Moreover, closely following the completion of these studies, quercetin 

(which differs from rhamnetin by a single hydroxyl group) was thoroughly evaluated for 

its effects on acetylcholine induced inward currents in xenopus oocytes expressing 

various nAChRs [212-214]. Interestingly, quercetin was found to enhance acetylcholine 

induced inward currents through alpha7 nAChRs by binding to its Ca2+ binding site [153] 

thus suggesting a positive allosteric mechanism of action. In our studies, given the 

intrinsic anti-inflammatory activity of rhamnetin, it is difficult to definitively characterize its 

mechanism of drug action at alpha7 nAChRs. As such, we attempted to further 

characterize the binding of rhamnetin to alpha7 nAChRs using single molecule 

fluorescence correlation spectroscopic methods in collaboration with Dr. Chris Richards 

(University of Kentucky, College of Arts and Sciences, Department of Chemistry). 

Unfortunately, despite the fact that rhamnetin had the desired  fluorescence spectrum to 



 

93 
 

run these experiments, when diluted at single molecule concentrations, rhamnetin could 

not be detected. Moreover, ligands with this sort of modest affinity are very difficult to 

evaluate using this system.  Therefore, we were unable to run these experiments. 

Nevertheless, the BV2 microglia data suggest potential agonist activity for rhamnetin at 

alpha7 nAChRs and additional studies are required to elucidate its mechanism of drug 

action.  

Before evaluating rhamnetin for its neuroprotective and anti-inflammatory 

properties, we developed a model of ethanol-induced neurotoxicity in vitro which 

included an excitotoxic and neuroinflammatory component (chapter 2). Current evidence 

suggests that alcohol dependence ultimately results in neuroinflammation which 

contributes to alcohol-induced neurodegeneration (see section 1.2.2). However, alcohol 

dependence is a chronic relapsing disorder and as such, the onset of neuroinflammation 

is not likely to be sudden. Therefore, the timing and the nature of changes to 

neuroimmune cells induced by ethanol are likely to be important for disease progression. 

However, to date, they remain largely unknown. Moreover, it is unclear how these 

changes interact with other pathological mechanisms during EWD. The results 

presented in chapter 2 show that, in OHSC, following ethanol exposure, 

neuroinflammatory processes are protective against NMDA receptor mediated 

excitotoxicity during EWD (fig. 2.1). Moreover, following ethanol exposure, OHSC exhibit 

a desensitized response to LPS (fig. 2.2). The specific mechanisms for these effects 

remain uncertain but results from BV2 microglia exposed to the same paradigm suggest 

that ethanol polarizes microglia towards an immunoregulatory phenotype [140]. 

Similarly, in rats exposed to a modified Marjchowicz 4-day ethanol binge, microglia 

become partially activated and exhibit an anti-inflammatory and neuroprotective 

phenotype [135]. Thus, collectively these studies suggest that ethanol exposure induces 
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phenotypic changes in microglia that are reparative and beneficial. It is important to note 

that, in our studies, ethanol concentration in vitro remains above ~40mM throughout 

exposure [56]. Similarly, in the modified Marjchowicz 4-day ethanol binge, based on the 

behavioral intoxication scores recorded in these studies [215] it appears that rats are 

continuously exposed to ethanol. Together, this suggests that polarization of microglia 

towards an anti-inflammatory and protective phenotype is promoted by continuous 

exposure to ethanol and this phenotype manifests during what could be considered the 

“first” EWD. As such, the effects of repeated EWD on microglial phenotype are uncertain 

and may in fact promote a proinflammatory microglial phenotype as has been shown in 

other ethanol exposure paradigms [39, 40, 216-218]. Given the relapsing nature of 

alcohol dependence, additional studies are warranted to explore this hypothesis.  

One of the limitations of this study is the limited number of neuroinflammatory 

markers measured. The original hypothesis stated that ethanol exposure would enhance 

proinflammatory cytokine release which in turn would enhance excitotoxicity. As such, 

we chose to focus on TNFalpha and NO. When we found that the results did not support 

the hypothesis, we attempted to measure IL-10 (prototypical anti-inflammatory cytokine) 

in our culture samples. Unfortunately, IL-10 levels were below the limits of detection in 

all treatment groups and this may have been due to freeze-thaw degradation of the 

samples. However, future studies should include additional neuroinflammatory markers 

in order to get a broader idea of how neuroimmune function is affected. In addition, it 

would be interesting to evaluate microglial phenotype in the cultures following ethanol 

exposure and EWD, using e.g. immunohistochemical analyses, which would provide a 

clearer picture of the changes to this cell type specifically.  

With this model of ethanol-induced toxicity at hand, we proceeded to test 

rhamnetin for its anti-inflammatory and neuroprotective properties. Flavonoids have in 
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fact already been shown to be cytoprotective in a variety of models of ethanol-induced 

toxicity. For example, cyanidin-3-glucoside reduces ethanol-induced neurotoxicity in 

neonatal mice [23] and epigallocatechin prevents alcoholic neuropathy in rats [219]. 

Moreover, quercetin reverses hepatotoxicity and neurotoxicity induced by 90 days of 

ethanol administration [22] and prevents alcoholic neuropathy in rats [220]. These 

studies were undertaken in large part to demonstrate that the antioxidant and anti-

inflammatory properties of these compounds translate to neuroprotection against 

ethanol-induced toxicity. However, in the current study we were interested in evaluating 

both the anti-inflammatory and the anti-excitotoxic effects of rhamnetin separately and 

simultaneously. In addition to retaining anti-inflammatory activity during EWD (fig. 4.5), 

rhamnetin inhibited NMDA toxicity during EWD (fig. 4.6). However, rhamnetin afforded 

no protection against NMDA alone under control conditions (fig. 4.2). This discrepancy 

suggests that the mechanism of enhanced excitotoxicity induced by ethanol exposure is 

a target for rhamnetin. The specific mechanism remains unknown but it is possible that 

rhamnetin, via nAChRs, normalizes changes to glutamate receptor function induced by 

ethanol thereby preventing enhanced excitotoxicity during EWD. Indeed, Proctor et al 

show that the acute effects of ethanol on NMDA receptors are abolished in OHSC from 

mice chronically exposed to nicotine [221]. Alternatively, given the considerable 

evidence that flavonoids affect glutamate signaling (see above), it is possible that in 

addition to its alpha7 nAChR activity, rhamnetin is protective via direct pharmacological 

effects on the glutamate system. However, additional experiments are needed to test 

these hypotheses. 

In this same study, rhamnetin was found to afford no protection against the 

combination of NMDA and LPS under control conditions or during EWD (fig. 4.2 & fig. 

4.6). Results obtained under control conditions are surprising given the fact that 
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proinflammatory cytokine release is reduced by rhamnetin and as such is predicted to 

reduce the potentiation of NMDA toxicity by LPS. However, this assumes that 

proinflammatory cytokines are responsible for the enhanced toxicity observed under 

these conditions whereas other mechanisms are possible (discussed in chapter 2). As 

such, reducing proinflammatory cytokine release does not prevent the potentiating 

effects of LPS on NMDA toxicity. This either suggests that potentiation of NMDA toxicity 

by proinflammatory cytokines is governed by an all-or-nothing phenomenon, which 

implies that high and low concentrations of proinflammatory cytokines are just as 

effective, or that it is mediated by another mechanism. In fact, several other mechanisms 

have been proposed for this interaction (discussed in chapter 2) and additional studies 

are necessary to identify the one responsible. During EWD, the response to LPS was 

already reduced and rhamnetin further inhibited release of proinflammatory cytokines. 

However, this did not result in additional protection against NMDA toxicity under these 

conditions. Chronic exposure to ethanol (see chapter 2), alpha7 nAChR agonists [191], 

and flavonoids [190] all promote an anti-inflammatory and neuroprotective microglial 

phenotype. As such, it is impossible to determine how rhamnetin and ethanol co-

exposure affect microglial function in these studies and additional studies are necessary 

to evaluate this interaction. Nevertheless, rhamnetin was found to be anti-inflammatory 

and reduce excitotoxicity during EWD and therefore constitutes a good candidate to 

reduce ethanol-induced neurotoxicity.  

Interestingly, flavonoids have also been evaluated on ethanol-related behaviors 

such as voluntary consumption and the anxiogenic effects of EWD. For example, 

quercetin prevents EWD induced anxiety in mice [222]. Dihydromyricetin [223] and 

puerarin [224] prevent EWD induced anxiety and reduce voluntary ethanol consumption 

in rats. Moreover, puerarin was evaluated clinically and found to reduce ethanol intake in 
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heavy drinkers [225]. Puerarin was originally identified in kudzu root extracts which are 

used in traditional Chinese medicine as a remedy for hangover. These extracts were 

also found to be anxiolytic and reduce ethanol consumption in rats [226]. The 

development of rhamnetin as a potential treatment for ethanol-induced neurotoxicity will 

require the evaluation of its effects on ethanol-related behaviors such as these in future 

studies.  

The current dissertation stemmed from the discovery of plant extracts with 

alpha7 nAChR activity and led to the in vitro characterization of a novel plant natural 

product for reducing ethanol-induced toxicity. As such, the work presented herein 

illustrates the continued value of plants as a source of novel drugs. In fact, almost half of 

the drugs approved in the last 25 years originate from plants or are derived from plant 

natural products [227, 228]. This is also true for nAChR drugs [109]. However, although 

plants are a great source of novel drugs, there are substantial difficulties associated with 

either the isolation or chemical synthesis of natural products which hinders their 

commercialization. For example, the development of the anti-cancer drug, paclitaxel 

(Taxol™), is well known to have suffered from supply problems during preclinical and 

clinical development [229] as it was exclusively isolated from its original source, Taxus 

breviflora (Pacific yew). However, using bioengineering strategies, this was eventually 

circumvented and the current commercial supply of paclitaxel is mainly from plant cell 

fermentation [230]. As such, plants can be engineered to increase yields of compounds 

of interest. Moreover, their biosynthetic machinery can be disrupted to stimulate 

production of novel compounds. Therefore, we developed a strategy that relies on 

agrobacterium-mediated transformation of Solidago nemoralis, for which we obtained 

proof of transformation (see appendix), to produce a large population of gain-of-function 
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mutants that potentially have increased yields of the endogenous nAChR active 

flavonoids and/or novel flavonoid structures.  

The end goal of this dissertation was to ascertain the potential value of rhamnetin 

for the treatment of alcohol-induced neurodegeneration. The various activities of this 

compound were hypothesized to at least reduce 2 primary pathological mechanisms in 

ethanol-induced neurotoxicity and we were able to show that, during EWD, rhamnetin is 

anti-inflammatory and reduces excitotoxicity. Moreover, we developed an in vitro model 

of ethanol-induced neurotoxicity which revealed interesting interactions between 

neuroinflammatory processes and excitotoxicity during EWD. Given the complex 

interactions between these pathological mechanisms future research should be aimed at 

further understanding the progressive changes that occur to neuroimmune cells in 

alcohol dependence as this may reveal opportune therapeutic windows in the 

progression of disease for preventing the onset of neurodegeneration.  
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APPENDIX 

HAIRY ROOT CULTURES AND PLANT REGENERATION IN SOLIDAGO 

NEMORALIS TRANSFORMED WITH AGROBACTERIUM RHIZOGENES 

5.3 Introduction 

Plants have complex biosynthetic machineries that have allowed them to evolve 

bioactive, complex and multifunctional secondary metabolites as protection against 

stressors. One example is the complex alkaloid methyllycaconitine (MLA) in Delphinium 

species which deters herbivorous insects by targeting the insect nicotinic receptor for 

acetylcholine (nAChR), the most prevalent excitatory receptor in the insect CNS [231]. In 

addition to being a high affinity ligand for the insect nAChR, MLA is also a highly 

selective ligand for the alpha7-subtype of human nAChR [111]. Since this receptor is an 

emerging target for the treatment of neurodegenerative disorders [232] other plant 

metabolites with this selectivity would be of considerable therapeutic interest. We 

therefore screened a native plant library for this pharmacological activity using a 

“differential screening” approach [187] which identified Solidago nemoralis (“gray 

goldenrod”) as a prime candidate which has not previously been investigated for this 

activity. However, as for other plant species, long grow cycles, low yield and necessity to 

harvest large amounts of biomass, is likely to hinder the development and 

commercialisation of these metabolites. A number of bioengineering strategies to 

circumvent these issues have been described for known metabolites with known 

metabolic pathways [233]. However, in the case of unknown metabolites with unknown 

pathways for production (as here) an alternative strategy for optimizing plant production 

is required. The strategy developed in our laboratory relies on Agrobacterium-mediated 

continuous hairy root culture together with random gain-of-function mutagenesis. Stable 

mutants over-producing the active metabolites are identified by pharmacological 
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screening. and are then regenerated into intact mutant plants. However, for the Solidago 

genus, only one species, S. altissima, has been reported to be transformed by 

Agrobacterium [234]. Here we report an Agrobacterium-mediated transformation 

protocol for S. nemoralis, which will enable the application of our genomic optimization 

strategy to the potential therapeutic compounds contained in this species.  

5.4 Materials and Methods 

5.4.1 Plant material & culture conditions 

Solidago nemoralis seeds were washed with 70% ethanol for 2 min followed by 

surface sterilization in 30% commercial bleach for 20 min. Seeds were rinsed five times 

with sterile water and aseptically germinated in plates containing half-strength of 

Murashigue and Skoog (MS) media supplemented with 0.6% agar and 1% sucrose. For 

all media, the pH was adjusted to 5.8 and autoclaved. The temperature in the growth 

chamber was maintained at 25±2ºC with a 12h photoperiod and (light intensity 45 µmol 

m-2 s-1).  

5.4.2 Agrobacterium culture and infection 

The pCambia 1301 binary vector was mobilized into Agrobacterium rhizogenes 

strain R1000 by freeze-thaw method. Briefly, 1 µg of plasmid DNA was mixed with 

competent cells of A. rhizogenes and incubated on ice for 30 min. The DNA–bacterial 

mix was frozen in liquid nitrogen for 30 sec and incubated for 5 min in a water bath at 

37ºC. After the heat shock, 600 µL of liquid Luria-Bertani (LB) media were added to the 

bacteria-DNA mix and shaken on rotary shaker set at 200 rpm for 4h at 28ºC. Bacteria 

were pelleted down by centrifugation at 4000 rpm, resuspended in 100 uL LB and finally 

plated on solid LB media containing 50 mg/L kanamycin. The plate was incubated for 

two days at 28ºC which resulted in transformed colonies. A single colony was used to 
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make transformed bacterial stock which was in turn aliquoted in 1.5mL 60% glycerol 

suspensions and kept at -80°C.  

Five ml of liquid LB kan50 media was inoculated with A. rhizogenes stock 

harboring pCambia 1301 and grown overnight at 28ºC. Two mL of this culture were used 

to inoculate 50 mL of LB plus kanamycin 50 mg/L liquid media and grown until the 

optical density (OD) reached to 0.6. Bacteria were then pelleted down by centrifugation 

at 4000 rpm and resuspended into 50 mL liquid MS media supplemented with 100 µM 

acetosyringone (3,5-dimethoxy-4-hydroxy-acetophenone). 

Stem explants (4 week old plants), leaf explants (4 week old plants) and root-

excised seedlings (2 week old plants) were tested for agrobacterium infection. Leaf 

explants were excised from stems and stem explants were cut into 1 cm long sections. 

Explants or seedlings were placed in the agrobacterium culture, wounded using a sterile 

needle and left to incubate for 20 min. Explants were then blot-dried on sterile filter 

paper, transferred onto solid MS media supplemented with vitamin B5 and 1% sucrose 

and incubated for 2 days in the dark in the growth chamber. After the 2-day co-

cultivation period, explants were transferred onto MS media plate supplemented with 

400 mg/L cefotaxime and 3% sucrose. Hairy roots appeared after 2-3 weeks at which 

point they were excised from explants, cut into 1 cm long sections and cultured and 

maintained on MS media supplemented with 250 mg/L cefotaxime and 3% sucrose.  

5.4.3 Plant regeneration from hairy roots 

All media used in the regeneration process was supplemented with 250 mg/L 

cefotaxime in order to prevent fortuitous agrobacterium growth. Hairy root cultures were 

transferred onto MS media alone or MS media supplemented with alpha-

naphthaleneacetic acid (NAA) (0.1 or 1 mg/L) or MS media supplemented with NAA (0.1 

or 1 mg/L) and 6-benzyladenine (BA) (2 or 5 mg/L). After 4-6 weeks adventitious shoots 
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appeared. They were excised and transferred onto MS media for root formation. GUS 

staining was performed at all stages of hairy root culture and plant regeneration to 

confirm transformation.  

5.4.4 beta-glucuronidase (GUS) histochemical assay 

GUS staining buffer was prepared by adding 50 mM sodium phosphate (pH 7.0), 

0.5 mM potassium ferricyanide, 0.5 mM potassium ferrocyanide, 10 mM EDTA and 

0.05% Triton X-100 into 150 ml of water. This buffer was dispensed into 15 ml aliquots 

and stored at –20 ºC. For GUS staining, the stock buffer was thawed and diluted to a 

final volume of 100 ml in water. 35 mg of 5-bromo,4-chloro,3-indolyl- beta-D-glucuronide 

(X-Gluc) was dissolved in 150 μl of dimethylformamide and subsequently added to the 

diluted buffer. Tissue samples were incubated in X-Gluc solution for 24-h at 37 °C and 

observed for blue staining indicative of GUS expression. 

5.5 Results 

S. nemoralis stem explants, leaf explants and seedlings were tested for their 

ability to be transformed by A. rhizogens and produce hairy roots after infection. Leaf 

explants transformation produced the highest hairy root induction frequency (30-35%) as 

compared to stem explants (18-20%) and seedlings (6-9%). Therefore, further 

experiments on regeneration of transformed plants were undertaken with A. rhizogenes 

transformed leaf explants.  

Two-3 weeks after infection, hairy roots appeared on the site of infection. They 

were excised and cultured independently. When grown in solid MS media without the 

addition of phytohormones, adventitious shoot regeneration occurred via direct 

organogenesis. Indeed, once excised, several hairy roots turned green, produced green 

callus-like structures which ultimately turned into shoots after 4-6 weeks of culture (Fig. 
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1a,b). However, the frequency of spontaneous shoot regeneration on simple MS media 

was low (only 2-3 shoots appeared on each hairy root). Therefore, in order to increase 

shoot regeneration frequency, media was supplemented with either BA/NAA or NAA 

alone. 

A combination of BA (2 or 5 mg/L) and NAA (1 mg/L) did not increase shoot 

regeneration because hairy roots cultured in this particular medium produced white 

callus like structures that did not turn into shoot buds (Fig. 1c). However, media with 

NAA alone (0.1 or 1 mg/L) did produce shoots in 4 weeks of culture (Fig. 1d) after going 

through both white and green callus like structure stages. Regeneration efficiency was 

increased by NAA supplemented media which afforded an adventitious shoot budding 

frequency of ~35%, much higher than in non-supplemented media. 

Since the transformation of S. nemoralis was performed with A. rhizogenes strain 

R1000 harboring pCambia 1301 which has the GUS gene as visible marker, all stages of 

hairy root development and shoot regeneration were tested by GUS histochemical assay 

to ensure transformation events (Fig. 2a-c). The coding region of the gusA gene is 

interrupted by a catalase intron to ensure that the transcription and post-transcription 

splicing to form mature mRNA occurs by utilizing the plant cell machinery rather than the 

agrobacterium protein synthesis machinery [235].  
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Figure 5.1 Agrobacterium rhizogenes mediated transformation of S. nemoralis 

(a) Hairy root culture and their spontaneous regeneration into shoot; (b) Hairy root 

turned green after two weeks of culture and produced shoots on their surface; (c) 

Hairy root treated with BA produced white callus which failed to regenerate when 

continued culture on the same medium; (d) Shoot regeneration increased by 

application of NAA (0.1 mg/L) 

  

a b 

c d 
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Figure 5.2 GUS histochemical staining of transformed S. nemoralis 

Samples were treated in the x-Gluc solution overnight followed by washing with 

70% ethanol. (a) Hairy roots generation on the leaf explants; (b) Transformed hairy 

root turned into callus during regeneration process; (c) Regenerated shoots 

showed blue GUS stain in their leaves; (d) Adverse effect of high concentration of 

sucrose in the culture medium- the regenerated shoots turned brown and did not 

elongate further when HR were cultured on 6% sucrose containing medium. 

 

  

a b 

c 
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5.6 Discussion 

A. rhizogenes-mediated genetic transformation in plants is a well established 

procedure which produces hairy roots at the site of infection by altering the endogenous 

auxin:cytokinin ratio in the plant cell [236, 237]. Additionally, it is well documented that, 

once established, hairy roots can be cultured on hormone-free medium [238]. S. 

nemoralis hairy roots were easily established and then cultured both in solid and liquid 

hormone free medium.  

Although shoot regeneration occurred spontaneously in hormone-free media, it 

occurred only at low frequency. Additionally, introducing exogenous NAA and BA lead to 

no improvement in shoot regeneration. However, application of NAA alone on S. 

nemoralis hairy root cultures showed a positive effect on shoot regeneration. These 

results go against the notion that higher levels of cytokinin (in the auxin:cytokinin ratio) 

are necessary for shoot regeneration although it has been reported that A. rhizogenes 

transformed plants can regenerate shoots in the presence of only auxin, presumably due 

to the cytokinin mimetic effect of the over expression of the rolC gene, present on A. 

rhizogenes Ri plasmid [239].  

The effect of auxin application for shoot regeneration may be different for each 

hairy root and might be linked with the expression of the rolC gene [240]. A similar result 

has been previously reported in Solanum khasianum hairy roots where application of 

IAA and kinetin affected the growth and regeneration capacity of the plant [241]. 

Additionally, high concentrations of sucrose appear to have an adverse effect on 

root culture and shoot organogenesis. S. nemoralis hairy root grew better in media 

containing only 1-2% sucrose. On the other hand, media with more than 4% sucrose 

turned the root culture and regenerated shoots deep brown in color and abrogated 
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growth (Fig. 2d). Similar findings on the effect of sucrose concentration on growth and 

shoot regeneration have previously been reported for Hypericum perforatum [242].  

In conclusion, we report a protocol for culture and transformation of S. nemoralis 

which should enable the genome of this species to be altered so as to optimize 

production of the potentially valuable pharmacologically active metabolites it contains.   
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