8-29-2000

Sarcocystis Neurona Diagnostic Primer and Its Use in Methods of Equine Protozoal Myeloencephalitis Diagnosis

Clara K. Fenger
University of Kentucky

David E. Granstrom
University of Kentucky

Alvin A. Gajadhar

Jitender P. Dubey

Follow this and additional works at: http://uknowledge.uky.edu/gluck_patents

Part of the [Veterinary Medicine Commons](http://uknowledge.uky.edu/gluck_patents)

Recommended Citation

http://uknowledge.uky.edu/gluck_patents/6

This Patent is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Veterinary Science Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
SARCOCYSTIS NEURON DIAGNOSTIC PRIMER AND ITS USE IN METHODS OF EQUINE PROTOZOA MYELOENCEPHALITIS DIAGNOSIS

Inventors: Clara K. Fenger; David E. Granstrom; Alvin A. Gajadhar, all of Lexington, Ky.; Jitender P. Dubey, Greenbelt, Md.

Assignee: University of Kentucky Research Foundation, Lexington, Ky.

An amplification primer and probe which can be used in an in vitro diagnostic test for the presence of S. neurona in equine blood or cerebrospinal fluid. Sarcocystis neurona is responsible for the equine condition of protozoal myelitis. The amplification primer is seventeen nucleotides in length and complementary to a unique section of the small ribosomal subunit of Sarcocystis neurona. The primer encompasses nucleotide positions 1470–1487 of the small ribosomal subunit of S. neurona. The primer has the sequence 5'CATTCCGGACGCGGGTACC 3' SEQ ID NO:1.

10 Claims, 7 Drawing Sheets
OTHER PUBLICATIONS

Figure 1A

POS=604
S. neurona: ATAGTA-ACCGAACGGATCGCA-T-TAT
S. muris: ATAGTA-ACCGAACGGATCGCA-C-TAT
S. capricanis: ATNTCG-CNNTCTGAGAATCGAT-NAT
S. arietianus: NTAANNTCCGNNNGGTTCCNN-TNANT
S. cruzi: ATAGTA-ACCGAACGGATCGC-AT-TAT
S. gigantea: ATAGTA-NCNGAACGGATCGCATCATAT
S. tenella: ATNGTNNCTCGTTCN-TTCGTATCNAT
T. gondii: ATAGTA-ACCGAACGGGTGACGTTGA
E. tenella: ATAGTA-ACCGAACGGATCGC-AN-GTT
C. parvum: ATAAAA-ACCTTNCGGATCACATTAAT

POS=661
SN: GCGATGGATCATTTCA-AGTTTCT-GAC-CTATC-AGCT-TTC-GA-CGGTACTGTA
SM: GCGATAGATCATTTCA-AGTTTCT-GAC-CTATC-AGCT-TTC-GA-CGGTACTGTA
SCA: GCGATNNTTTNTCN-NGTTTCT-GNC-CTATCNCNTCT-TCNGNNG-CCGTAGTGA
SA: GCGATTCATCATTTCN-NGTNTCT-GAC-CTATCNAGCT-TNT-GANGGTTGNTG
SCR: GCGATAGATCATTTCA-AGTTTCT-GAC-CTATC-AGCT-TTC-GA-CGGTACTGTA
SG: GCGATAGATCATTTCA-AGTTTCT-GAC-CTATC-AGCT-TTC-NA-CGGTACTGTA
ST: GCGATNGATNNNTGANTNTCTGTACCTATC-NGCT-T-CG--CCGTAGTGA
TG: GCGACGGATCATTTCA-AGTTTCT-GAC-CTATC-AGCTATTCC-AGGNACTGTA
ET: GCGATAGATCATTTCA-AGTTTCT-GAC-CTATCNAGCT-TTC-GA-CGGTACGN
CR: GTGACATATCATTTCA-AGTTTCT-GAC-CTATC-AGCT-TTA-GN-CGGTACGN
Figure 1D

POS=2181
SN: GAAAGCATTGGCCAAGAGATGTTTTTCAATTAATCAAGAAACGAAAGTTAGGGGCTC SEQ ID NO: 68
SM: GAAAGCATTGGCCAAGAGATGTTTTTCAATTAATCAAGAAACGAAAGTTAGGGGCTC SEQ ID NO: 69
SCA: GAAAGCATTGGCCAAGAGATGTTTTTCAATTAATCAAGAAACGAAAGTTAGGGGCTC SEQ ID NO: 70
SA: GAAAGCATTGGCCAAGAGATGTTTTTCAATTAATCAAGAAACGAAAGTTAGGGGCTC SEQ ID NO: 71
SCR: GAAAGCATTGGCCAAGAGATGTTTTTCAATTAATCAAGAAACGAAAGTTAGGGGCTC SEQ ID NO: 72
SG: GAAAGCATTGGCCAAGAGATGTTTTTCAATTAATCAAGAAACGAAAGTTAGGGGCTC SEQ ID NO: 73
ST: GAAAGCATTGGCCAAGAGATGTTTTTCAATTAATCAAGAAACGAAAGTTAGGGGCTC SEQ ID NO: 74
TG: GAAAGCATTGGCCAAGAGATGTTTTTCAATTAATCAAGAAACGAAAGTTAGGGGCTC SEQ ID NO: 75
ET: GAAAGCATTGGCCAAGAGATGTTTTTCAATTAATCAAGAAACGAAAGTTAGGGGCTC SEQ ID NO: 76
CR: GAAAGCATTGGCCAAGAGATGTTTTTCAATTAATCAAGAAACGAAAGTTAGGGGCTC SEQ ID NO: 77

POS=2263
SN: GAAGACGATCAGATACCAGCTGCTAGTCTTAACGATACGCTGCTGAGATGCTGAGACGGTCTGAG SEQ ID NO: 78
SM: GAAGACGATCAGATACCAGCTGCTAGTCTTAACGATACGCTGCTGAGATGCTGAGACGGTCTGAG SEQ ID NO: 79
SCA: GAAGACGATCAGATACCAGCTGCTAGTCTTAACGATACGCTGCTGAGATGCTGAGACGGTCTGAG SEQ ID NO: 80
SA: GAAGACGATCAGATACCAGCTGCTAGTCTTAACGATACGCTGCTGAGATGCTGAGACGGTCTGAG SEQ ID NO: 81
SCR: GAAGACGATCAGATACCAGCTGCTAGTCTTAACGATACGCTGCTGAGATGCTGAGACGGTCTGAG SEQ ID NO: 82
SG: GAAGACGATCAGATACCAGCTGCTAGTCTTAACGATACGCTGCTGAGATGCTGAGACGGTCTGAG SEQ ID NO: 83
ST: GAAGACGATCAGATACCAGCTGCTAGTCTTAACGATACGCTGCTGAGATGCTGAGACGGTCTGAG SEQ ID NO: 84
TG: GAAGACGATCAGATACCAGCTGCTAGTCTTAACGATACGCTGCTGAGATGCTGAGACGGTCTGAG SEQ ID NO: 85
ET: GAAGACGATCAGATACCAGCTGCTAGTCTTAACGATACGCTGCTGAGATGCTGAGACGGTCTGAG SEQ ID NO: 86
CR: GAAGACGATCAGATACCAGCTGCTAGTCTTAACGATACGCTGCTGAGATGCTGAGACGGTCTGAG SEQ ID NO: 87
Figure 1E

POS=2318

SN: ATAGGAAAAACGTATCCT- -TGACTTTCCTCGCACCTTATGAGAAA-T
SM: ATAGGAAAAAGTCATCCT--TGAATTCCTCGCACCTTATGAGAAA-T
SCA: ATAGGAAAAATGTCTTCTGCNTCTCCTCNACCTTATGAGNNA-T
SA: ATAGGAAAAATGTCTTCTGCNTCTCCTCNACCTTATGAGNNA-T
SCR: ATAGGAAAAATNTCTATTCCTGACTTTCCTCGACCTTATGAGAAA-GT
SG: ATAGGAAAA-TGTCACATTTGTTT-GGTCTCTCC--CCTCTTATGAGAAA-T
ST: ATNGGANNATGTGATTTCTCTT--CNTCTCCTCCTCCTCNTATGAGAAA-T
TG: ATAGGAAAAACGTACAGCT- -TGACTTTCCTCGACCTTATGAGAAA-T
ET: ATAGGAAAAACGCCTATAGCT--TGGNNTCTCTCGACCTCTAGAGAAA-T
CR: ATGGGGNTTGT--TTCTTCTACTCCTCGACCTTATGAGAAA-T

SEQ ID NO: 88
SEQ ID NO: 89
SEQ ID NO: 90
SEQ ID NO: 91
SEQ ID NO: 92
SEQ ID NO: 93
SEQ ID NO: 94
SEQ ID NO: 95
SEQ ID NO: 96
SEQ ID NO: 97
Figure 3
SARCOCYSTIS NEURONA DIAGNOSTIC PRIMER AND ITS USE IN METHODS OF EQUINE PROTOZOAL MYELOENCEPHALITIS DIAGNOSIS

TECHNICAL FIELD

The present invention relates to an amplification primer and probe which can be used in an in vitro diagnostic test for the presence of S. neurona in equine blood or cerebrospinal fluid.

Sarcocystis neurona is responsible for the equine condition of protozoal myelitis. The amplification primer is seventeen nucleotides in length and complementary to a unique section of the small ribosomal subunit of Sarcocystis neurona, nucleotide positions 1470–1487. The primer has the sequence 5′ CCAATCGGACGCGGTT-3′ (SEQ ID NO:1).

BACKGROUND

Equine protozoal myeloencephalitis (EPM) is a treatable, but often fatal, central nervous system (CNS) disease of equids. It has not been reported among horses originating outside the Western hemisphere. Several hundred cases occur in North America annually. Although EPM has been reported in ponies, donkeys and most breeds of horses, the greatest incidence has been among thoroughbreds, standardbreds, and quarter horses. (See references section below.) The disease occurs as a result of infection with Sarcocystis neurona. Merozoites multiply in neurons, leucocytes and vascular endothelial cells of the CNS resulting in perivascular mononuclear cell infiltration and necrosis of the neurute. Antemortem diagnosis of EPM is difficult. Clinical signs vary dramatically, depending upon the location and severity of CNS lesions. The disease may mimic various neurological disorders of the horse. Clinicopathologic data are frequently of little diagnostic value.

Some methods of diagnosing equine parasitic and other infections are known. For example, U.S. Pat. No. 4,740,456 to Kuhn et al. discloses immunological methods for diagnosing active human neurocyctoerciosis, including a serum test and a cerebrospinal fluid test. The test involves detecting an antigen or antigens of larval origin, specifically of Taenia solium larva.

U.S. Pat. No. 4,759,927 to Dutta discloses a vaccine against Polonac Horse Fever comprising deactivated E. Risticii as the active agent. The patent also discloses an assay for detecting the presence of E. Risticii antibodies.

U.S. Pat. No. 5,141,925 to Alroy et al. discloses a method for the prophylactic and therapeutic treatment of animals having a parasite to cause Coccidiosis.

U.S. Pat. No. 5,210,018 to Nuzzolo et al. discloses an immunoenzymatic method for the detection of anti-Plasmodium falciparum sporozoite antibodies in human blood.

“Evidence for Sarcocystis as the etiologic agent of equine protozoal myeloencephalitis”, Simpson et al., J Protozool (UNITED STATES) August 1980, 27 (3) p288–92, discloses the diagnosis of Equine protozoal myeloencephalitis (EPM) in 10 horses. By electron microscopy, schizonts were found in intact host cells of the spinal cords or, more frequently, free in the extracellular spaces. Developmental stages of schizonts differed morphologically, and the late stage of schizogony was characterized by endopolygeny. These findings permitted tentative identification of the protozoan as a Sarcocystis sp. Free merozoites were present in the extra-

...cellular spaces or in cells of the spinal cord. Pericytes of capillaries were most frequently parasitized by merozoites, but the cytoplasm of neurons, macrophages, intravascular and tissue neutrophils, and axons of myelinated nerve fibers also contained these organisms. The presence of parasites in the cytoplasm of tissue and circulating neutrophils suggest that this putative Sarcocystis sp. may have a hematogenous phase of infection.

“Immunohistochemical study to demonstrate Sarcocystis neurona in equine protozoal myeloencephalitis”, Hamir et al., J Vet. Diagn. Invest. (UNITED STATES) July 1993, 5 (3) p418–22; discloses a 5-year (1985–1989) retrospective immunohistochemical study was conducted using an avidin-biotin complex (ABC) immunoperoxidase method to demonstrate Sarcocystis neurona in histologically suspect cases of equine protozoal myeloencephalitis (EPM). Primary antibodies against S. neurona and S. cruzi were utilized for the ABC technique. The findings were compared with those from cases in which the organisms were detected by examination of hematoxylin and eosin (HE)-stained neuronal sections. HE-stained sections detected the presence of the organisms in 20% of the suspect cases; whereas the ABC technique confirmed the presence of S. neurona in 51% and 67% of the cases by S. neurona and S. cruzi antibodies, respectively. A review of clinical case histories showed that 21/47 (45%) of the EPM horses with parasites in the tissue sections had prior treatment with antiprotozoal drugs and/or steroids. Using the test results of S. neurona and S. cruzi as a standard reference, HE test sensitivity based on examination of up to 30 neuronal sections per case was only 25%, and test specificity was 91%.

“Equine protozoal myeloencephalitis: Antigen analysis of cultured Sarcocystis neurona merozoites”, Granstrom et al., J. Vet. Diagn. Invest. (UNITED STATES) January 1993, 5(1) p 88–90; discloses antigens of cultured Sarcocystis neurona merozoites were examined using immunoblot analysis. Blotted proteins were probed with S. cruzi, S. munitis, and S. neurona antisera produced in rabbits, S. fayeri (pre- and post-infection) and S. neurona (pre- and post-inoculation) sera produced in horses, immune sera from 7 histologically confirmed cases of equine protozoal myeloencephalitis, and pre-suckler serum from a newborn foal. Eight proteins, 70, 24, 23.5, 22.5, 13, 11, 10.5, and 10 Kd, were detected only by S. neurona antisera and/or immune serum from EPM-affected horses. Equine sera were titrated by the indirect immunofluorescent antibody (IFA) method using air-dried, cultured S. neurona merozoites. Anti-Sarcocystis IFA titers were found in horses with or without EPM. Serum titers did not correspond to the number of specific bands recognized on immunoblots.

“A five year (1985–1989) retrospective study of equine neurological diseases with special reference to rabies”, Hamir et al., J. Comp. Pathol. (ENGLAND) May 1992, 106 (4) p411–21; discloses a retrospective study of horses necropsied between 1985 and 1989 at a diagnostic laboratory of a veterinary school in North America is documented. In this investigation over 20 per cent of the horses had clinical neurological signs. Equine protozoal myeloencephalitis (caused by Sarcocystis neurona) and cervical stenotic myelopathy (wobbler syndrome) were the most common of these disorders. However, only four cases of equine rabies were diagnosed during the 5-year study. The gross microscopic and immunohistochemical findings from these rabies-positive horses are documented. Immunoperoxidase tests for detection of rabies antigen in another 35 horses with non-specific encephalitis/encephalopathy did not reveal any positive cases. Based on this investigation, it appears that
immunoperoxidase is a valid method for diagnosis of rabies when fresh tissues are not available for the fluorescent antibody test.

“Characterization of Sarcozystis neurona from a thoroughlybred equine protozoal myeloencephalitis”, Bowman et al., appears in Cornell Vet. 1992, April 82(2):115, Cornell Vet. (UNITED STATES) January 1992, 82 (1) p41–52 and discloses morphological information for syn-type material of the etiologic agent of equine protozoal myeloencephalitis, Sarcozystis neurona. A clinical description of the horse from which the organism was isolated and the methodology used to immunosuppress the horse in an attempt to increase parasite numbers are also given. The description includes microscopic details observed both with light and transmission electron microscopy. Mainly stages from tissue are illustrated, but information is also presented on the development of the organism after inoculation on to monolayers of bovine monocytes. It is believed that the large numbers of organisms observed in this horse were due to its having ascended antibodies against S. neurona. Blood conomphonic and the large amounts of corticosteroids that were administered in order to facilitate isolation of the pathogen.

“Sarcozystis neurona n. sp. (Protozoa: Apicomplexa), the etiologic agent of equine protozoal myeloencephalitis”, Dubey et al., J Parasitol (UNITED STATES) April 1991, 77 (2) p212–8; discloses Sarcozystis neurona n. sp. is proposed for the apicomplexan taxon associated with myeloencephalitis in horses. Only asexual stages of this parasite presently are known, and they are found within neuronal cells and leukocytes of the brain and spinal cord. The parasite is located in the host cell cytoplasm, does not have a parasitophorous vacuole, and divides by endopolygeny. Schizont are 5–35 microns x5–20 microns and contain 4–40 merozoites arranged in a rosette around a prominent residual body. Merozoites are approximately 4x1 micron, have a central nucleus, and lack rhoptries. Schizonts and merozoites react with Sarcozystis cruzi dispersum but not with Caryospora bigenistema. Toxoplasma gondii, Hammondia hammondii, or Neospora caninum are identified in an immunohistochemical test.

“Equine protozoal myeloencephalitis”, Madigan et al., Vet. Clin. North Am. Equine Pract. (UNITED STATES) August 1987, 3 (2) p307–403; discloses Equine protozoal myeloencephalitis (EPM) is a disease that produces neurologic signs of brain or spinal cord dysfunction. The causative organism is believed to be a Sarcozystis species of protozoa. A definitive diagnosis can only be made on histopathology of affected spinal cord or brain. No preventive measures or documented treatment is available at this time for suspected cases of EPM.

Currently the only method of ante-mortem diagnosis of equine sarcocystosis (EPM) is by Western Blot, which detects the presence of antibodies against S. neurona. Blood contamination of the spinal fluid, or loss of integrity of the blood-brain barrier may result in false positive tests. A DNA based test according to the present invention circumvents these problems. Recently, progress has been made in the development of serological methods for EPM diagnosis. The availability of cultured merozoites has made it possible to detect S. neurona-specific antibodies in serum and cerebrospinal fluid of affected horses.

Immunoblot analysis of these samples distinguishes between exposure to S. neurona and S. fayeri a common, non-pathogenic, coccidia of the horse. Previous serologic tests relied on S. cruzi bradyzoite antigen which only detected antibodies to shared or cross-reactive Sarcozystis spp. epitopes. Preliminary immunoblot screening of several groups of horses in central Kentucky indicated that many horses are exposed while few develop clinical signs.

At present, there is no method to directly detect and differentiate S. neurona from non-pathogenic Sarcozystis in live animals.

There is a need in the art for a diagnostic method of detecting Equine protozoal myeloencephalitis (EPM). The primer/probe of the present invention provides the first diagnostic primer for the diagnosis of Equine protozoal myeloencephalitis (EPM) caused by the parasite Sarcozystis neurona.

DISCLOSURE OF THE INVENTION

The present invention provides an amplification primer/probe which can be used in an in vitro diagnostic test for the presence of S. neurona in equine blood or cerebrospinal fluid. Sarcozystis neurona is responsible for the equine condition protozoal myelitis.

The above and other objects of the invention will become readily apparent to those of skill in the relevant art from the following detailed description and figures, wherein only the preferred embodiments of the invention are shown and described, simply by way of illustration of the best mode of carrying out the invention. As is readily recognized the invention is capable of modifications within the skill of the relevant art without departing from the spirit and scope of the invention.

BRIEF DESCRIPTION OF DRAWINGS

FIGS. 1(A)–(E) shows the relatedness of a 450 nt sequence from SRSU of S. neurona when compared to S. muris, S. gigantea, T. gondii, S. capicranis, S. arcticicanis, S. cruzi, S. tenella, E. tenella and C. parvum by comparison of sequences from the small ribosomal subunit of each. FIG. 2 shows a phylogenetic tree depicting the relatedness of the complete gene sequence (1806 nt) from SRSU of S. neurona when compared to S. muris, S. gigantea, T. gondii, S. capicranis, S. arcticicanis, S. cruzi, S. tenella, E. tenella and C. parvum by comparison of sequences from the small ribosomal subunit of each. FIG. 3 shows a gel showing efficacy of the probe according to the present invention.

DESCRIPTION OF THE INVENTION

Sarcozystis neurona is the etiologic agent of Equine protozoal myeloencephalitis (EPM) which was isolated and described in 1991. There are limited means available for ante-mortem detection of this protozoan in horses, and the life cycle and mode of transmission and pathogenesis of this disease remain unknown.

The gene sequence of the Sarcozystis neurona small ribosomal subunit (SRSU) was determined using polymerase chain reaction techniques and Sanger sequencing methods. The SRSU gene was found to be 1806 nucleotides (nt) in length and have a G/C content of 46%. The small ribosomal subunit gene is an ideal molecular marker because it contains both sequences which are highly conserved among species and sequences which are variable. Variable regions are used to determine genetic relatedness of protozoal organisms. For example, FIG. 1 shows the relatedness of a 450 nt sequence from SRSU of S. neurona when compared to S. muris, S. gigantea, T. gondii, S. capicranis, S. arcticicanis, S. cruzi, S. tenella, E. tenella and C. parvum by comparison of sequences from the small ribosomal subunit of each. FIG. 2 shows a phylogenetic tree depicting the
relatedness of the complete gene sequence (1806 nt) of SRSU of S. neurona when compared to S. muris, S. gigantea, T. gondii, S. capricornis, S. arcticus, S. cruzi, S. tenella, E. tenella and C. parvum by comparison of sequences from the small ribosomal subunit of each.

The present inventors have isolated an ρDNA sequence which can be used as a species-specific diagnostic probe and primer for Sarcoctysis neurona. The methodology for isolating the ρDNA probe is set forth below.

EXAMPLE 1
Parasite Isolation and DNA Preparation
Merozoites of S. neurona (fifth isolate, strain SN5) were cultured in vitro from the spinal cord of an infected horse which was necropsied at the University of Kentucky Livestock Disease Diagnostic Center. The parasite was maintained in tissue culture in bovine monocytes (provided by C. A. Speer, Montana State University) supplemented with 10% neonatal bovine serum (BioWhittaker, Walkersville, Md.). Culture media were removed from the culture vials, centrifuged at 800g for 20 min to pellet the cells, then resuspended in the Hank’s balanced salt solution (BioWhittaker, Walkersville, Md.). The suspension of parasites and bovine monocytes was layered above 1 ml of Percoll (Sigma, St. Louis, Mo.) at a specific gravity of 1.070, and centrifuged at 400g for 20 min. Merozoites were found in the pellet, while the bovine monocytes were found at the Hank’s balanced salt solution-percoll interface.

Approximately 5x10⁶ merozoites were washed in 1 ml phosphate-buffered saline (PBS), then resuspended in 20 µl PBS, and 200 µl of 50% Chelex-100 (Bio-Rad, Richmond, Calif.). S. neurona DNA was released by boiling this suspension for 5 min. The sample was subsequently quenched on ice for 5 min, and centrifuged. This supernatant was used in the polymerase chain reaction (PCR) for the amplification of the small ribosomal subunit gene.

DNA Amplification
The PCR (Saiki et al., 1988) was performed using eukaryotic specific universal amplification primers developed by Medlin et al., (1988). The described amplification protocol was modified to optimize DNA yield. The “hot start” technique (Mulis, 1991) was employed to limit mispriming at the onset of the reaction. Amplification primers (MgCl₂, and dNTP in PCR buffer (10 mM Tris-HCl, pH=8.3, 50 mM KCl) were placed in 0.5 ml microcentrifuge tubes, and overlaid with 40 µl paraffin wax. Ten µl of Chelex supernatant and Taq polymerase (1.25 U, AmpliTaq, Perkin-Elmer, Norwalk, Conn.) in PCR buffer were overlaid on the wax, and the microcentrifuge tubes were placed in a thermocycler (Perkin-Elmer, Norwalk, Conn.). The final concentrations of reagents were 0.5 µM of each primer, 2 mM MgCl₂, and 500 µM of each DNA nucleotide.

Denaturation of the DNA in the reactions was accomplished by heating to 94° C. for 1 min. The annealing temperature was 55° C. for 1 min, and the elongation temperature was 72° C. for 2 min. These sequential incubations were repeated for 5 cycles, and then 30 additional cycles were performed at the same conditions, with the exception of an annealing temperature of 50° C. for 1 min. The final primer extension was continued for 7 min to permit complete elongation of all amplified product.

Cloning into a pT7Blue Vector
The PCR product was purified by ultrafiltration (Krowczynska and Henderson, 1992) using microcon-100 microconcentrators (Amicon, Beverly, Mass.). The amplified product was directly ligated into a pT7Blue vector (Novagen, Madison, Wis.) and transformed according to the recommendations of the manufacturer. Transformed cells were selected by culturing on LB agar plates containing 50 µg/ml ampicillin and 15 µg/ml tetracycline. Colonies containing PCR product insert were selected using blue/white screening, by the addition of 40 µl of 20 mg/ml X-gal in dimethyl formamide, and 4 µl 200 mg/ml IPTG per 100 mm plate. Plates were incubated for 12 to 24 hours (Sambrook, Fritsch and Maniatis, 1989). White colonies were screened for insert by PCR. Individual colonies were scraped from the plate, and diluted in 20 µl of sterile water in 1.5 ml microcentrifuge tubes. These were boiled for 2 min to release plasmid DNA, and 10 µl of supernatant was used in the PCR protocol described above. Twelve positive clones were identified in this manner, and two were arbitrarily chosen for sequencing.

Dideoxynucleotide Sequencing and Analysis
Small scale plasmid purifications were performed for two positive clones, by a protocol modified from Sambrook et al. (1989). Alkaline denaturation of these plasmid solutions was performed to yield single stranded template. Sanger sequencing reactions were performed using these templates. Primers used for sequencing included primers complementary to regions of the vector flanking the insert, and also synthetic primers complementary to conserved regions of the eukaryotic small ribosomal subunit gene (Elwood et al., 1985). Additional internal primers (840F: 5’ GGAATTCGGTTCATAATTTTGTTG3’ (SEQ ID NO:2) and 1055R: 5’ GTTCCAGCCTTGGCAGCAT3’ (SEQ ID NO:3) were designed from the partial sequence to determine the complete sequence.

The complete gene sequence of the small ribosomal subunit of S. neurona has 1806 nt. A specific 450 nt sequence fragment from SRSU of S. neurona was also obtained and is disclosed.

EXAMPLE 2
Various amplification primers for the SRSU gene which are species-specific for Sarcoctysis neurona were tested. The amplification primer for Sarcoctysis neurona SRSU with species specificity is seventeen nucleotides in length and complementary to a unique section of the small ribosomal subunit of Sarcoctysis neurona. The unique amplification primer encompasses nucleotide positions 1470–1487. The primer has the sequence:

5’-CCAATCCGGACGCGGTT-3’ (SEQ ID NO:1). The primer/probe may be modified at the 3’ end by adding 1–5 nucleotides, such that the primer/probe maintains the function of the original probe and hybridizes specifically to Sarcoctysis neurona small ribosomal subunit.

1470R Ampli. Primer: 5’ CCAATCCGGACGCGGTT 3’ (SEQ ID NO:1) MW=5267
The 1470 R primer can be coupled to a detectable label and used as a diagnostic probe for the detection of Sarcoctysis neurona. The detectable label may be selected from the group consisting of chromophores, fluorophores, chemiluminescent materials and radioisotopes. Alternatively the primer may be used as a PCR primer as set forth below.

EXAMPLE 3
The advent of DNA based diagnostic assays has facilitated rapid, accurate identification of micro-organisms through the use of species-specific nucleotide sequences. Generally, DNA probes have been developed from unique gene or intergenic sequences for DNA probes, or from
repetitive elements. In addition, development of the polymerase chain reaction (PCR) has greatly increased the speed at which new diagnostic assays can be developed. The time required to construct DNA libraries or clone specific DNA fragments has been reduced considerably by the ability to directly amplify the desired DNA region.

The methodology for the nested polymerase chain reaction (PCR) procedure used to conduct the diagnostic assay according to the present invention is set forth below.

** Nested PCR Diagnostic Method **

** I. Required Reagents/Supplies/Equipment **

A. Supplies:

- Sterile 1.5 ml microfuge tubes
- Sterile 0.5 ml microfuge tubes
- Blue (first stage)
- Yellow (second stage)
- PCR wax beads (created by dropping 30 μl hot paraffin wax on tin foil)
- Forceps for wax beads
- 1.5 and 0.5 ml tube racks
- Styrofoam ice cooler
- Ice
- Dedicated 1000 μl, 200 μl pipetman pipettors sterile, plugged tips for 1000 μl and 20 μl
- Thermocycler (48 reactions)
- Dedicated microcentrifuge

B. Reagents:

- Millipore water, sterilized and in 1 ml aliquots (store in freezer)
- DMSO, in 1 ml aliquots (store away from light in box)
- Perkin-Elmer 10xPCR buffer
- Perkin-Elmer dNTPs, 10 mM per each, mixed together to form a single dNTP mixture containing 2.5 mM each nucleotide
- Perkin-Elmer MgCl₂, 25 mM Primer 1470R (unique primer, reverse primer, first stage), 10 mM, 5' CCATCCGAGCGGCGGT-3'(SEQ ID NO:1) Primer 1184F (forward primer, first stage), 10 mM
- 5' CCAAGCGTGAGCTGGCG-3'(SEQ ID NO:4) Primer 1055F (forward primer, second stage), 10 mM
- 5' GTGGTGATGGTAGGCGCG-3'(SEQ ID NO:5) Primer 1475R (reverse primer, second stage), 10 mM
- 5' GGCGCGTCAGGAACC-3'(SEQ ID NO:6) (Primers may be synthesized on Applied Biosystems DNA synthesizer)
- Ethidium Bromide
- DNA 100 bp ladder

II. First Stage Reaction:

A. The nested PCR reaction with hot start technique is set up in several stages. First, the hot start technique requires a lower reaction including the primers and dNTPs in PCR buffer. The wax is overlaid and melted over the lower reaction mixture. The upper reaction containing the DNA template (in this case, cerebrospinal fluid (CSF)) and Taq polymerase are placed in PCR buffer on top of the wax. A drop (20 to 40 μl) of sterile mineral oil is put on top to prevent excessive evaporation from the upper reaction mixture. The entire tube is then spun briefly to collect the fluid at the bottom of the tube.
Samples are removed, and the wax is pierced with a sterile pipette tip. Then, 10 µl of the product is used as the DNA template for the second stage reaction.

III. Second Stage Reaction

A. It is critical that no PCR carryover occur, and therefore, the entire procedure is done in a UV-clean area. Addition of the PCR product from the first reaction, is performed in a different area, so as not to risk contamination of “clean” area.

B. Lower Reaction Mixture

<table>
<thead>
<tr>
<th>Reagents</th>
<th>‘X 1’ (µl)</th>
<th>Concentrations (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1055F</td>
<td>5.00</td>
<td>1 mM 250.00</td>
</tr>
<tr>
<td>P1475R</td>
<td>5.00</td>
<td>1 mM 250.00</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>4.00</td>
<td>1 mM 200.00</td>
</tr>
<tr>
<td>dNTPs</td>
<td>4.50</td>
<td>1 mM 200.00</td>
</tr>
<tr>
<td>10 x PCRB</td>
<td>2.50</td>
<td>1 X 125.00</td>
</tr>
<tr>
<td>mpH₂O</td>
<td>8.50</td>
<td>— 425.00</td>
</tr>
<tr>
<td>Reaction Volume</td>
<td>30.00</td>
<td>— 1500.00</td>
</tr>
</tbody>
</table>

The lower reaction mixture is made up in 50 reaction quantities in a 1.5 ml microcentrifuge tube. This mixture (labelled “#2”, and dated) may be frozen for at least 1 month safely.

When the nested reaction is to be performed, the tube is slowly thawed, mix the pipetted up and down, then 30.0 µl aliquots are placed into 48 yellow 0.5 ml microfuge tubes. A wax bead (PCR gen) is placed in the tube over the solution. The tubes are placed in the thermocycler at 80°C for 5 minutes to melt the wax, and then cooled to 4°C to harden the wax. Alternatively, the tubes may be placed in a water bath (>65°C) for about 5–10 minutes, then removed carefully and placed in a refrigerator for a few minutes.

C. Upper Reaction Mixture

<table>
<thead>
<tr>
<th>Reagents</th>
<th>‘X 1’ (µl)</th>
<th>Concentrations (µl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mpH₂O</td>
<td>7.25</td>
<td>— 362.50</td>
</tr>
<tr>
<td>10 x PCRB</td>
<td>2.50</td>
<td>1 X 125.00</td>
</tr>
<tr>
<td>Taq</td>
<td>0.25</td>
<td>— 12.50</td>
</tr>
<tr>
<td>Template</td>
<td>10.00</td>
<td>—</td>
</tr>
<tr>
<td>Reaction Volume</td>
<td>20.00</td>
<td>— 500.00</td>
</tr>
</tbody>
</table>

The upper reaction mixture must be made up fresh, and chilled in ice throughout the procedure. The reagents are added to the upper reaction mixture in order, so that the PCR buffer is in the solution before the Taq is added.

The tubes are placed in the thermal-cycler, and the amplification protocol follows:
hybridization analyses indicated no sequence homology between these fragments and the 550-bp fragment generated from *S. neurona*. The *S. neurona* 550-bp DNA fragment also did not hybridize with genomic blots of various other coccidia. These results evidence that the *S. neurona* DNA fragment 550-bp fragment is also a species-specific probe for this parasite.

Diagnostic Assay

Four geographic isolates of *S. neurona* were used; SN 2 and SN 4 from California, and Sn 3 from Panama and Sn 5 from Kentucky. Organisms were isolated from gross spinal cord lesions and grown in bovine monocyte (M617) cell cultures as originally described by Dubey et al. 13. Merocyclosporines were isolated and purified from cultures as previously described by Grantstrom et al. 14. DNA from *S. neurona*, *S. cruzi*, *S. campestris*, Toxoplasma gondii or bovine monocytes was extracted using proteinase K digestion and phenol/chloroform extraction as described by Gajdhar et al. 14. DNA was extracted from *Eimeria tenella*, *E. falciformis*, *E. nieschulzi*, *E. absalata* or *E. bovis* as outlined previously. 14

Each RAPD assay consisted of a 25-μl reaction volume which contained approximately 50 ng of DNA from each species or geographic isolate, 1.5 U of Taq DNA polymerase (Promega, Madison, Wis., USA) in 50 mM KCl, 10 mM Tris·HCl, pH 9.0, 3.0 mM MgCl₂, 0.01% gelatin, 0.1% Triton X-100, 0.4 μM primer (TGF; 5'-GGCGAAAGCCGCCCAAAA-3' (SEQ ID NO:7) and 200 μM of each dNTP.

The samples were overlaid with 25 μl of mineral oil and preincubated for 10 min at 94°C in a DNA Thermal Cycler model 480 (Perkin-Elmer Cetus Corporation, Norwalk, Conn., USA). This was followed by 40 cycles of 94°C for 30 s, 38°C for 30 s, 72°C for 45 s, as suggested by Yu and Pauls. 15 After completion of the thermal cycling reaction, a final 10-min incubation at 72°C was performed.

DNA fragments generated by PCR were separated by electrophoresis on 1.2% agarose gels in borate buffer and visualized by staining with ethidium bromide. 16 DNA fragments unique to *S. neurona* were isolated from agarose gels by band excision and purified using Quix (Qiagen, Chatsworth, Calif., USA). Putative DNA probe fragments were labelled with [α-32P]dATP using *Escherichia coli* DNA polymerase I as described by Rigby et al. 17

The putative DNA probe fragments were analyzed using standard hybridization conditions. 18 DNA fragments were applied to Zeta probe GT membranes (BioRad, Hercules, Calif.) and baked in vacuo at 80°C for 2 h. Genomic DNA from *S. cruzi*, *S. campestris*, T. gondii, *E. nieschulzi*, *E. absalata*, *E. vermiformis*, *E. coli* or bovine monocytes were digested with Pst 1 at 37°C for 2 h. The resulting DNA fragments were electrophoretically separated in a 0.75% agarose gel and transferred to Zeta probe GT membrane by capillary action. 19

Hybridization analysis with putative *S. neurona*-specific DNA probes was conducted at 65°C for 12 h in 10 ml hybridization buffer (5xDenhardts, 4xSSC, 0.1% SDS at 65°C for 30 min, and once in 0.5xSSC, 0.1% SDS for 30 min at the same temperature. The membranes were exposed to XAR-5 film at ~70°C for 24 h using lighting plus intensifying screens.

Random amplified polymorphic DNA assays using primer TGF generated a single DNA fragment with an electrophoretic mobility corresponding to 350 bp in all *S. neurona* isolates. The amplification of only 15 minute amount of product was detectable from isolate 3. A DNA fragment with an identical electrophoretic mobility was also amplified from the DNA of *S. campestris*, *E. falciformis*, *E. absalata* and

EXAMPLE 4

In an alternative embodiment a RAPD assay may be used to detect *Sarcocystis neurona*. Unlike standard PCR, the random amplified polymorphic DNA (RAPD) assay is a procedure which amplifies DNA fragments without the use of specific primers, thus circumventing the need for nucleotide sequence information and specific primer design. 6,7 These random DNA fragments are often polymorphic among species and isolates, behave as dominant alleles, and are inherited in a Mendelian fashion. Therefore, not only can they be used in the same manner as restriction fragment length polymorphic (RFLP) markers to characterize an organism’s genome through genetic mapping, but also as a means to differentiate species or isolates. 6,9

The present inventors utilize the RAPD assay as a means to differentiate four isolates of *S. neurona* from other coccidial species and have isolated a short DNA fragment which is useful as a specific DNA probe for *S. neurona*. Four isolates of *Sarcocystis neurona* from horses with equine protozoal myeloencephalitis and eight species of coccidia from the genera *Sarcocystis*, *Toxoplasma* or *Eimeria* were differentiated using the random amplified polymorphic DNA (RAPD) assay. A single, common 550-bp DNA fragment was amplified from the DNA of each *S. neurona* isolate using a 16 nucleotide universal primer (TGF): 5'-GGCGAAAGCCGCCCAAAA-3' (SEQ ID NO:7).

Cross-hybridization analysis among *S. neurona* isolates showed that DNA fragments had at least partial sequence homology. The primer generated several DNA fragments, including a 550-bp DNA fragment, from *S. cruzi*, *Eimeria falciformis*, *E. nieschulzi*, *E. absalata* and *E. bovis*. DNA

<table>
<thead>
<tr>
<th>Lanes</th>
<th>Lanes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100 bp Ladder</td>
</tr>
<tr>
<td>2</td>
<td>1.0 μl pr, 2 mM MgCl₂, 10 ng DNA Templ.</td>
</tr>
<tr>
<td>3</td>
<td>1.0 μl pr, 2 mM MgCl₂, 40 ng DNA Templ.</td>
</tr>
<tr>
<td>4</td>
<td>1.0 μl pr, 2 mM MgCl₂, 80 ng DNA Templ.</td>
</tr>
<tr>
<td>5</td>
<td>1.0 μl pr, 3 mM MgCl₂, 10 ng DNA</td>
</tr>
<tr>
<td>6</td>
<td>1.0 μl pr, 3 mM MgCl₂, 40 ng DNA</td>
</tr>
<tr>
<td>7</td>
<td>1.0 μl pr, 3 mM MgCl₂, 80 ng DNA</td>
</tr>
<tr>
<td>8</td>
<td>2.5 μl pr, 1 mM MgCl₂, 10 ng DNA</td>
</tr>
<tr>
<td>9</td>
<td>2.5 μl pr, 1 mM MgCl₂, 40 ng DNA</td>
</tr>
<tr>
<td>10</td>
<td>2.5 μl pr, 1 mM MgCl₂, 80 ng DNA</td>
</tr>
<tr>
<td>11</td>
<td>2.5 μl pr, 2 mM MgCl₂, 10 ng DNA</td>
</tr>
<tr>
<td>12</td>
<td>2.5 μl pr, 2 mM MgCl₂, 40 ng DNA</td>
</tr>
<tr>
<td>13</td>
<td>2.5 μl pr, 2 mM MgCl₂, 80 ng DNA</td>
</tr>
<tr>
<td>14</td>
<td>2.5 μl pr, 3 mM MgCl₂, 10 ng DNA</td>
</tr>
<tr>
<td>15</td>
<td>2.5 μl pr, 3 mM MgCl₂, 40 ng DNA</td>
</tr>
<tr>
<td>16</td>
<td>2.5 μl pr, 3 mM MgCl₂, 80 ng DNA</td>
</tr>
<tr>
<td>17</td>
<td>3.0 μl pr, 2 mM MgCl₂, 10 ng DNA</td>
</tr>
<tr>
<td>18</td>
<td>3.0 μl pr, 2 mM MgCl₂, 40 ng DNA</td>
</tr>
<tr>
<td>19</td>
<td>3.0 μl pr, 2 mM MgCl₂, 80 ng DNA</td>
</tr>
<tr>
<td>20</td>
<td>1.0 μl, 2 mM MgCl₂, DMSO, 10</td>
</tr>
<tr>
<td>21</td>
<td>1.0 μl, 2 mM MgCl₂, DMSO, 40</td>
</tr>
<tr>
<td>22</td>
<td>1.0 μl, 2 mM MgCl₂, DMSO, 80</td>
</tr>
<tr>
<td>23</td>
<td>2.0 μl, 3 mM MgCl₂, DMSO, 10</td>
</tr>
<tr>
<td>24</td>
<td>2.0 μl, 3 mM MgCl₂, DMSO, 40</td>
</tr>
<tr>
<td>25</td>
<td>2.0 μl, 3 mM MgCl₂, DMSO, 80</td>
</tr>
<tr>
<td>26</td>
<td>2.5 μl, 1 mM MgCl₂, DMSO, 10</td>
</tr>
<tr>
<td>27</td>
<td>2.5 μl, 1 mM MgCl₂, DMSO, 40</td>
</tr>
<tr>
<td>28</td>
<td>2.5 μl, 1 mM MgCl₂, DMSO, 80</td>
</tr>
<tr>
<td>29</td>
<td>2.5 μl, 2 mM MgCl₂, DMSO, 10</td>
</tr>
<tr>
<td>30</td>
<td>2.5 μl, 2 mM MgCl₂, DMSO, 40</td>
</tr>
<tr>
<td>31</td>
<td>2.5 μl, 2 mM MgCl₂, DMSO, 80</td>
</tr>
<tr>
<td>32</td>
<td>2.5 μl, 3 mM MgCl₂, DMSO, 10</td>
</tr>
<tr>
<td>33</td>
<td>2.5 μl, 3 mM MgCl₂, DMSO, 40</td>
</tr>
<tr>
<td>34</td>
<td>2.5 μl, 3 mM MgCl₂, DMSO, 80</td>
</tr>
</tbody>
</table>

(—~ marks (+) lane, **** marks excellent probe)
E. bovis, but not from bovine monocyte cells. However, when the 550-bp DNA fragment from S. neurona (SN 2) was used as a probe, only those DNA fragments amplified from the S. neurona isolates hybridized.

Although 550-bp DNA fragments were also generated from other coccidia, the fragments did not share nucleotide sequence homology with S. neurona. Cross-species hybridization did not occur when the 550-bp DNA fragment from S. neurona (SN 2) was used to probe Southern transfers of genomic DNA isolated from bovine monocyte cells, Escherichia coli, E. vermiformis, E. absata, E. nieschulzi, T. gondii, S. canepasteuris or S. cruzi.

The RAPD assay has been successfully used to differentiate among closely related organisms. It was found that it is possible to identify unique RAPD fragments which could be used as species-specific DNA probes.

In the present study, the RAPD assay differentiated S. neurona from S. cruzi and S. canepasteuris, as well as T. gondii and five Eimeria spp.

These data, among ecologically distinct isolates of S. neurona, suggest that EPM is caused by a single organism. The 550-bp DNA fragment generated by the RAPD assay has been used to develop a diagnostic assay for S. neurona based on DNA hybridization.

Sarcocystis spp. have a heteroxenous, predator-prey or scavenger-carrion life cycle. The definitive host(s) and true intermediate host(s) of S. neurona are not known. Sarcocystis of S. neurona, required for transmission to the definitive host, have not been observed in the horse.

Consequently, the horse is considered an aberrant, dead-end host. S. neurona probably cycles normally between two or more wildlife species. Although many species have been suggested as the true definitive host(s) of S. neurona, skunks, raccoons or opossums are the most probable. Similar to EPM, these species are broadly distributed but unique to the Western Hemisphere. Small rodents or birds are speculative but reasonable candidates for the true intermediate host(s) of S. neurona.

While the RAPD assay and resultant probes have immediate application for the differentiation of S. neurona from other coccidial species, an equally important utility is the ability to discern and solve the parasite's life cycle by testing S. canepasteuris spp. from potential hosts. The availability of infective stages will permit the experiments necessary to develop effective prevention and control measures for EPM.

REFERENCES

6,110,665

mal RNA sequences of Sarcozystis muris, Theileria annula
ta and Cryptococodesmum cohnii reveal evolutionary rela
tact Sarcozystis as determined by small subunit riboso
cation of PCR products using ultriltration. BioTech
ments of evolutionary history. J. Theor. Biol. 8: 357–366. In sum, the present invention provides a specific amplifi
cation primer/probe which can be used in an in vitro diagnostte test for the presence of S. neurona in equine blood or cerebrospinal fluid. Sarcozystis neurona is responsible for the equine condition of protozoal myelitis.

The purpose of the above description and examples is to illustrate some embodiments of the present invention with
out inhearing any limitation. It will be apparent to those of skill in the art that various modifications and variations may be made to the composition and method of the present invention without departing from the spirit or scope of the invention. All patents and publications cited herein are incorporated by reference in their entireties.
6,110,665

-continued

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 17 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:1:
CCATCCGGACCCGGT

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 23 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:2:
GGATTTCGGTTCTATTTTGTAGG

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 19 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:3:
GTTTCAGCCTTGCGACCAT

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 17 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:4:
CCAGGCGTGGAGCTGCG

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(x) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

GUTGUTGUTG CATGGCCG

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 16 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(x) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

GCGGUTGUTG GCCAGAAC

(2) INFORMATION FOR SEQ ID NO: 7:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(x) SEQUENCE DESCRIPTION: SEQ ID NO: 7:

GCACGAACGC GCCACAAA

(2) INFORMATION FOR SEQ ID NO: 8:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(x) SEQUENCE DESCRIPTION: SEQ ID NO: 8:

ATAGTAACCG AACGGATCGC ATTAT

(2) INFORMATION FOR SEQ ID NO: 9:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

ATAGTAACCG AACGGATCGC ACTAT

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 26 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ATNTCGCNNT CTGAGATCGC GATNAT

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 27 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

NTANNANTCC GNNGGTTCC NNNHANT

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 25 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ATAGTAACCG AACGGATCGC ATTAT

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 27 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

ATAGTACGTC TGCGACT

(2) INFORMATION FOR SEQ ID NO:14:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 26 base pairs
(B) TYPE: nucleic acid
(C) STRAND: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

ATAGTACGTC TGCGACT

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRAND: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

ATAGTACGTC TGCGACT

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 25 base pairs
(B) TYPE: nucleic acid
(C) STRAND: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

ATAGTACGTC TGCGACT

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 27 base pairs
(B) TYPE: nucleic acid
(C) STRAND: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

ATAATAACTT TNCGATCAC ATTAAT

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 49 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GCGATGGATC ATTCAAGTTT CTCGACCTAC AGCTTTCGAC GUTACTCTA

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 49 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GCGATAGATC ATTCAAGTTT CTCGACCTAC AGCTTTCGAC GUTACTCTA

(2) INFORMATION FOR SEQ ID NO:20:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

GCGATNNNNH TNHNNNNGTTT CTCGACCTAC NGCTTTCHNG NGGUTAGTUT A

(2) INFORMATION FOR SEQ ID NO:21:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:
(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 49 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

GCGTAGATC ATTCAGTTT CTGACCTATC AGCTTTTC AC GOTA TOTA

49

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 49 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

GCGTAGATC ATTCAGTTT CTGACCTATC AGCTTTTC AC GOTA TOTA

49

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 50 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GCGN KAGATN NNNTGANTN TCCTGACTCT ATCNGCTTCG CGGTA TOTA

50

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 50 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

GCGA CCGATC ATTCAGTTT CTGACCTATC AGCTTTTC AC GNA TOTA

50
(2) INFORMATION FOR SEQ ID NO:26:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 50 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

GCGATGATC ATTTAGGTTT CTGACCTATC NASCTTTCGA CGGTAGGNTA

(2) INFORMATION FOR SEQ ID NO:27:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 49 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

GTGACCATAC ATTCAAGTTT CTGACCTATC AGCTTTCAGN CGGTAGGNTA

(2) INFORMATION FOR SEQ ID NO:28:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

TTGACATTAC GTGCGAATGA CGGTAAACGG GGAATTAGG GTGCGATTCCG G

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

TTGACATTAC GTGCGAATGA CGGTAAACGG GGAATTAGG GTGCGATTCCG G

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 50 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:
TTGGCCTCCG TGCCGCTGNN NGTINNNGGG GNATTAGGG TGGTTTCGGG 50

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:
TNGGACTAC CUTCAGCTG NGCCGNGGG GGGATTAGG GTGCAATTCC GG 52

(2) INFORMATION FOR SEQ ID NO:32:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 49 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:
TGGCCTGCC TNGCAGCTGC GGGNNCGGG GGNATTAGG GGGATTCCGG 49

(2) INFORMATION FOR SEQ ID NO:33:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 51 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:
TTGGACTACC NGGCGANGA CGGGNACGG GGAATTAGG TTGGATCCGG G 51

(2) INFORMATION FOR SEQ ID NO:34:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 49 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

TTGGCTCNCH TNGCACTGGN GNNRNNGGG AATTCCGGT CGATTCCG

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

TTGGACTACC NTGGCAGNGA CGGATAACCG GQAATAGHNN NTNNATTCCG N

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

NTGGCTACN NTNGCASTGGA CGGNNHACCG GGAATAGGNG TTAGATCCCG G

(2) INFORMATION FOR SEQ ID NO:37:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 52 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

TTGGCCCTCAG NNGGCAAATGA CGGCTACNG GGAATTAGGN NTGGATTCGA G

(2) INFORMATION FOR SEQ ID NO:38:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 52 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
AGAGGGAGCC TGAGAAACG CTACCCACAT TAAGGAAAGG CGGCAGGCGG CG
CA 52

(2) INFORMATION FOR SEQ ID NO:39:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:
AGAGGGAGCC TGAGAAACG CTACCCACAT TAAGGAAAGG CGGCAGGCGG CG
CA 52

(2) INFORMATION FOR SEQ ID NO:40:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
AGAGGGAGCC TGAGGNNCGG CTCGCCNNTC TNNGNNNGGC NGCNNGGCGG CG
CA 52

(2) INFORMATION FOR SEQ ID NO:41:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 51 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:
AGNTGGAGGC CTGAANHNCG GCCTCCCAAT CTNNNNGGCN GCNNGGCNCN A 51

(2) INFORMATION FOR SEQ ID NO:42:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:42:

AGNGGAGCC TGAGNNHCGG CTNNCNHCNCT TNNNNHNGGG CNHHHNNNNN CA 52

(2) INFORMATION FOR SEQ ID NO:43:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:43:

AGAGGAGGC TGAGAAAGCC CTACACATCG TAAAGNGGCAC GCAGGGCNC A 51

(2) INFORMATION FOR SEQ ID NO:44:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:44:

AGAGGAGGC TGAGNNHCGG CTACACATCG TNNNNHNGGCN CNHNGGNCNC A 51

(2) INFORMATION FOR SEQ ID NO:45:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 52 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:45:

AGANRGAGNC TGAAAAACGG CTACACATCG TAAAGNGGCAC AGCGGGCGCG CA 52

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 52 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:46:
AGAGGAAGCC TGAGAAACGG CTACCGNATC TAAGGGNCGG AGCAGGCGCG CA

(2) INFORMATION FOR SEQ ID NO:47:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 53 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: DNA (genomic)
 (iii) HYPOTHETICAL: NO
 (iv) ANTI-SENSE: NO
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:
AGAGGAAGCC TGAGAAACGG GTTACCCAGAT ATAGGGAGGG CAGCAGGCGCG NCA

(2) INFORMATION FOR SEQ ID NO:48:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 53 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: DNA (genomic)
 (iii) HYPOTHETICAL: NO
 (iv) ANTI-SENSE: NO
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:
ACACTGAAAA TTTATATTCT ATGAGTGGGA ATGATGGAA TCCAAACGCC TTT

(2) INFORMATION FOR SEQ ID NO:49:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 53 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: DNA (genomic)
 (iii) HYPOTHETICAL: NO
 (iv) ANTI-SENSE: NO
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:
ACACTGAAAA TTCAATTCT ATGAGTGGGA ATGATGGAA TCCAAACGCC TTT

(2) INFORMATION FOR SEQ ID NO:50:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 53 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear
 (ii) MOLECULE TYPE: DNA (genomic)
 (iii) HYPOTHETICAL: NO
 (iv) ANTI-SENSE: NO
 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:
ACACTGAAAA TTCAATTCT AGTATGGGA ATGATGGNA TTTPHNCGCC TTT

6,110,665

39

-continued
(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 53 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

ACGCTTGGAA TTTTNTTCT NOTGATTGGA ATGATGOGAA TTTTHHHCOC TTT

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 53 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

ACACTTGGAA TTTTNTTCT AGHNATGOG ATGANGOGGA TTTTHHHCOCN TTT

(2) INFORMATION FOR SEQ ID NO:53:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 54 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

ACGCHOGGA ATGATNTTTC TATGTGATG ATGATGOGGA ATCTHNNCCC CTTT

(2) INFORMATION FOR SEQ ID NO:54:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 53 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

ACACTTGGAA TTHTTTTCT AGHNATGOG GA TATGOGGA TTTTHHHCOCN TTT

(2) INFORMATION FOR SEQ ID NO:55:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 53 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDINESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

ACACTGGAAA TTTCATTTCT AAGGATGGA ATGATAGAA TCCAAACCC TTT

(2) INFORMATION FOR SEQ ID NO:56:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 55 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDINESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

ATACAGGA TTTATGCTT TTTAATTGG AAATGATGAA TTTAAACCC TTN

(2) INFORMATION FOR SEQ ID NO:57:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 55 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDINESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

ATANCTAGG CTTTTGCTT TTGTATGCTG GAAGGATGTT AATGATATCC CCTTT

(2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDINESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

ATTTA CTCT ATGCA CTG AAACCT CTT

(2) INFORMATION FOR SEQ ID NO:59:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

ATT AAA CTCTG TACATGAA ATTCTAGAT TTGTTAAGGA CTAAACTGAC C
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

ATTTAAGTGAAA ATCTTAAGAT TGTAAAGAC GCACTACTG C

(2) INFORMATION FOR SEQ ID NO:60:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 50 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

ATTTAAGTGAAA ATCTTAAGAT TGTAAAGAC GACCTNCGC

(2) INFORMATION FOR SEQ ID NO:61:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

ATTTAAGTGAAA ATCTTAAGAT TGTAAAGAC GCHANCTGC

(2) INFORMATION FOR SEQ ID NO:62:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 50 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

ATTTAAGTGAAA ATCTTAAGAT TGTAAAGNC GANCTNCGC

(2) INFORMATION FOR SEQ ID NO:63:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 51 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

ATTTAAGGNAGAGTGGAA ATCCTTTAGAT TTTTAAAGA CUAACAATCTC

(2) INFORMATION FOR SEQ ID NO:64:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

ATTTAAGGNAGAGTGGAA ATCCTTTAGAT TTTTAAAGA CUAACCTACTC

(2) INFORMATION FOR SEQ ID NO:65:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 50 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

ATTAACTGCAGAGTGGAAA ATCCTTTAGAT TTTTAAAGA CUAACTACTC

(2) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 52 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

ATTAACTGNNAGAGTGGAAA ATCCTTTAGAT TTTTAAAGA CUAACCTACTC

(2) INFORMATION FOR SEQ ID NO:67:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 51 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:67:
ATTTAACGT CAGAGTGAA ATTCCTGAGT TTGTAAAGA CAAACTAAGG C

(2) INFORMATION FOR SEQ ID NO:68:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:
GAAAGCATTG GCCAAAGATG TTTTCAATTAA TCAAAAGCGA AAGTTAGGGG CTC

(2) INFORMATION FOR SEQ ID NO:69:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:
GAAAGCATTG GCCAAAGATG TTTTCAATTAA TCAAAAGCGA AAGTTAGGGG CTC

(2) INFORMATION FOR SEQ ID NO:70:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:
GAAAGCATTG GCCAAAGATG TTTTCAATTAA TCAAAAGCGA AAGNNNGGGN CTC

(2) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

GAAAAGATT GCCAAAGATG TTTTCAATTA TCAAGAAGCA AAAGTTNGGN CTN 53

(2) INFORMATION FOR SEQ ID NO:73:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:73:

GAAAAGATT GCCAAAGATG TTTTCAATTA TCAAGAAGCA AAAGTTAGGG CTG 53

(2) INFORMATION FOR SEQ ID NO:74:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

GAAAAGATT GCCAAAGATG TTTTCAATTA TCAAGAAGCA AAAGTTNGGN CTN 53

(2) INFORMATION FOR SEQ ID NO:75:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

GAAAAGATT GCCAAAGATG TTTTCAATTA TCAAGAAGCA AAAGTTAGGG CTC 53
(2) INFORMATION FOR SEQ ID NO:76:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

GAAAGCATTG GCCAAGATG TTTTCTTTA TCAAGACCGA CAGTAGGAGG TTT

(2) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 53 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

GAAAGCATTG GCCAAGATG TTTTCTTTA TCAAGANNGA AAGTTAGGAG ATC

(2) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

GAAAGAATG AGATACTGTG CTAAGCCTAA CCATAAATTA TCGCCACTAG AG

(2) INFORMATION FOR SEQ ID NO:79:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

GAAAGAATG AGATACTGTG CTAAGCCTAA CCATAAATTA TCGCCACTAG AG

(2) INFORMATION FOR SEQ ID NO:80:

GAAAGAATG AGATACTGTG CTAAGCCTAA CCATAAATTA TCGCCACTAG AG
(i) **SEQUENCE CHARACTERISTICS:**
 (A) **LENGTH:** 52 base pairs
 (B) **TYPE:** nucleic acid
 (C) **STRANDEDNESS:** single
 (D) **TOPOLOGY:** linear

(ii) **MOLECULE TYPE:** DNA (genomic)

(iii) **HYPOTHETICAL:** NO

(iv) **ANTI-SENSE:** NO

(xi) **SEQUENCE DESCRIPTION:** SEQ ID NO:80:

GAAGGCGATG AGATACCCTG CTAAGCTTTA A CCATAAACTA TGCCCCACTAG AG 52

(2) **INFORMATION FOR SEQ ID NO:81:**

(i) **SEQUENCE CHARACTERISTICS:**
 (A) **LENGTH:** 51 base pairs
 (B) **TYPE:** nucleic acid
 (C) **STRANDEDNESS:** single
 (D) **TOPOLOGY:** linear

(ii) **MOLECULE TYPE:** DNA (genomic)

(iii) **HYPOTHETICAL:** NO

(iv) **ANTI-SENSE:** NO

(xi) **SEQUENCE DESCRIPTION:** SEQ ID NO:81:

GAAGGCGATCA GATACCGTC TGACTCTTTA A CCATAAACTAT GCCGACTAGA G 51

(2) **INFORMATION FOR SEQ ID NO:82:**

(i) **SEQUENCE CHARACTERISTICS:**
 (A) **LENGTH:** 52 base pairs
 (B) **TYPE:** nucleic acid
 (C) **STRANDEDNESS:** single
 (D) **TOPOLOGY:** linear

(ii) **MOLECULE TYPE:** DNA (genomic)

(iii) **HYPOTHETICAL:** NO

(iv) **ANTI-SENSE:** NO

(xi) **SEQUENCE DESCRIPTION:** SEQ ID NO:82:

GAAGGCGATCG NGGTGCCGTC GTATCTGTAN CCATNNACTA TGCCGACTAG AG 52

(2) **INFORMATION FOR SEQ ID NO:83:**

(i) **SEQUENCE CHARACTERISTICS:**
 (A) **LENGTH:** 52 base pairs
 (B) **TYPE:** nucleic acid
 (C) **STRANDEDNESS:** single
 (D) **TOPOLOGY:** linear

(ii) **MOLECULE TYPE:** DNA (genomic)

(iii) **HYPOTHETICAL:** NO

(iv) **ANTI-SENSE:** NO

(xi) **SEQUENCE DESCRIPTION:** SEQ ID NO:83:

GAAGGCGATG AGATACCCTG CTAAGCTTTA A CCATAAACTA TGCCCCACTAG AG 52

(2) **INFORMATION FOR SEQ ID NO:84:**

(i) **SEQUENCE CHARACTERISTICS:**
 (A) **LENGTH:** 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

GNAACGAC GATAACCTCG TGGCTTTAAC CATAAACTAT GCCGACTAG A

(2) INFORMATION FOR SEQ ID NO:85:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 51 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

GAAACGATG GATAACCTCG TGGCTTTAAC CATAAACTAT GCCGACTAG A

(2) INFORMATION FOR SEQ ID NO:86:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

GAAACGATG GATAACCTCG TGAATCTCTA CCATAAACA TGGCAGACTAG A

(2) INFORMATION FOR SEQ ID NO:87:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 52 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

GAAACGATG GATAACCTCG TGGCTTTAA CCATAAACA TGCCAACTAG A

(2) INFORMATION FOR SEQ ID NO:88:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 45 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(x) SEQUENCE DESCRIPTION: SEQ ID NO:88:

ATAGGAAAC GTCAATCCCTG ACTTCTCCTG CACCTTATGA GAAAT 45

(2) INFORMATION FOR SEQ ID NO:89:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 45 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(x) SEQUENCE DESCRIPTION: SEQ ID NO:89:

ATAGGAAACA GTCAATCCCTG ACTTCTCCTG CACCTTATGA GAAAT 45

(2) INFORMATION FOR SEQ ID NO:90:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 47 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(x) SEQUENCE DESCRIPTION: SEQ ID NO:90:

ATAGGAAAT GTCAATTTC GCAGCTCCT CGTNACCTTAT GAGNHAT 47

(2) INFORMATION FOR SEQ ID NO:91:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 47 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(iii) HYPOTHETICAL: NO

(iv) ANTI-SENSE: NO

(x) SEQUENCE DESCRIPTION: SEQ ID NO:91:

ATAGGAAAT GTCAATTTC GCAGCTCCT CGTNACCTTAT GAGAAAT 47

(2) INFORMATION FOR SEQ ID NO:92:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 47 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:92:

ATAGGAAAT NTCAATTTCT GCTCCTCCT NTACCTTATG AGAAGT

(2) INFORMATION FOR SEQ ID NO:93:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 43 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:93:

ATAGGAAATG TCACATTGTG CTCTCCCTCA CCCTACAGA AAT

(2) INFORMATION FOR SEQ ID NO:94:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 46 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:94:

ATAGGAAAT GTNATTTTGC TCTNCTCCCN NTCCCTTATG AGAAGT

(2) INFORMATION FOR SEQ ID NO:95:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 45 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(x) SEQUENCE DESCRIPTION: SEQ ID NO:95:

ATAGGAAACT GTCTCTCTTG ACTCTCTCTG CACCTTATGA AAT

(2) INFORMATION FOR SEQ ID NO:96:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 45 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
We claim:
1. A diagnostic primer consisting of nucleotide positions 1470-1487 of the small ribosomal subunit of *Sarcocystis neurona*.
2. The primer according to claim 1, wherein said primer has a sequence as shown in SEQ ID NO:1, 5'-CCAATTCCGGACGCGGGT-3'.
3. The primer according to claim 1, wherein said primer is coupled to a detectable label.
4. The primer according to claim 3, wherein said detectable label is selected from the group consisting of chromophores, fluorophores, chemiluminescent materials and radioisotopes.
5. The primer according to claim 4, wherein said detectable label is a radioisotope.
6. A method for the diagnosis of Equine protozoal myeloencephalitis (EPM) comprising the steps of:
 (a) contacting a equine cerebrospinal fluid specimen with a primer according to claim 3;
 (b) removing unreacted sample from the specimen; and
 (c) detecting the detectable label hybridized to the specimen, where the presence of a detectable label hybridized to the specimen is indicative of EPM.
7. A method for the diagnosis of Equine protozoal myeloencephalitis (EPM) comprising the steps of obtaining equine cerebrospinal fluid and testing for the presence of *Sarcocystis neurona* with the primer of SEQ ID NO:1, where the presence of *Sarcocystis neurona* is indicative of EPM.
8. A method for the diagnosis of Equine protozoal myeloencephalitis according to claim 7, wherein said step of testing for the presence of *Sarcocystis neurona* is testing by nested polymerase chain reaction.
9. A method for the diagnosis of Equine protozoal myeloencephalitis according to claim 8, wherein said nested polymerase chain reaction comprises two stages and employs the primer pairs a-d,
 a) primer 1470R, reverse primer, first stage, 5' CCAATTCCGGACGCGGGT-3'(SEQ ID NO:1);
 b) primer 1184F, forward primer, first stage, 5' CCAGGGCGTGGACGCTGC-3'(SEQ ID NO:4);
 c) primer 1055F, forward primer, second stage, 5' GTGTGTTGTCATGCGCCG-3'(SEQ ID NO:5); and
 d) primer 1475R, reverse primer, second stage, 5' GCGGGCGCCAGAAC-3'(SEQ ID NO:6).
10. A method for the diagnosis of Equine protozoal myeloencephalitis (EPM) comprising the steps of obtaining equine cerebrospinal fluid and testing for the presence of *Sarcocystis neurona* with a ribosomal RNA primer or probe from *Sarcocystis neurona* a consisting of nucleotide positions 1470-1487 or derivatives thereof in which 1-5 nucleotides are added to the 3' end of the primer or probe, where the presence of *Sarcocystis neurona* is indicative of EPM.