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ABSTRACT OF DISSERTATION

MULTIHIERARCHICAL DOCUMENTS AND FINE-GRAINED ACCESS
CONTROL

This work presents new models and algorithms for creating, modifying, and control-
ling access to complex text. The digitization of texts opens new opportunities for
preservation, access, and analysis, but at the same time raises questions regarding
how to represent and collaboratively edit such texts. Two issues of particular in-
terest are modelling the relationships of markup (annotations) in complex texts, and
controlling the creation and modification of those texts. This work addresses and con-
nects these issues, with emphasis on data modelling, algorithms, and computational
complexity; and contributes new results in these areas of research.

Although hierarchical models of text and markup are common, complex texts often
exhibit layers of overlapping structure that are best described by multihierarchical
markup. We develop a new model of multihierarchical markup, the globally ordered
GODDAG, that combines features of both graph- and range-based models of markup,
allowing documents to be unambiguously serialized. We describe extensions to the
XPath query language to support globally ordered GODDAGs, provide semantics for
a set of update operations on this structure, and provide algorithms for converting
between two different representations of the globally ordered GODDAG.

Managing the collaborative editing of documents can require restricting the types
of changes different editors may make, while not altogether restricting their access to
the document. Fine-grained access control allows precisely these kinds of restrictions
on the operations that a user is or is not permitted to perform on a document. We
describe a rule-based model of fine-grained access control for updates of hierarchical
documents, and in this context analyze the document generation problem: deter-
mining whether a document could have been created without violating a particular
access control policy. We show that this problem is undecidable in the general case
and provide computational complexity bounds for a number of restricted variants of
the problem.



Finally, we extend our fine-grained access control model from hierarchical to mul-
tihierarchical documents. We provide semantics for fine-grained access control poli-
cies that control splice-in, splice-out, and rename operations on globally ordered
GODDAGs, and show that the multihierarchical version of the document generation
problem remains undecidable.

KEYWORDS: Text encoding, markup, multiple hierarchies, access control, globally
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Author’s signature: Neil Moore

Date: May 2, 2012



MULTIHIERARCHICAL DOCUMENTS AND FINE-GRAINED ACCESS
CONTROL

By
Neil Moore

Director of Dissertation: Jerzy Wl. Jaromczyk

Director of Graduate Studies: Raphael Finkel

Date: May 2, 2012



Dedicated to my wife, Amanda Mefford, whose patience, understanding, and
constant encouragement made this work possible.



ACKNOWLEDGMENTS

The current work, though the product of individual research, would not have been

possible without the support of a number of individuals. Foremost thanks go to

my advisor, Dr Jerzy Jaromczyk, for his guidance, technical advice, and support

along what has been a long road through my graduate studies. I also thank Drs

Kenneth Calvert, Raphael Finkel, and William Rayens for serving on my dissertation

committee and providing constructive advice that has helped improve the final version

of this work.

Also important are a long list of educators who have helped shape me into the

researcher I have become. Though a full list would be impractical, I would like to

single out a few particular individuals for acknowledgment. Drs Victor Marek and
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Chapter 1 Introduction

This work presents new models and algorithms for creating, modifying, and control-

ling access to complex text. These models aim to support the digitization of complex

texts that do not fit the commonly-used hierarchical model, and to allow controlled

collaborative editing of such texts. We consider and connect two issues: modelling

the relationships of markup in complex texts, and controlling the creation and mod-

ification of such markup.

Text documents are often encoded in the Extensible Markup Language (XML) [9],

which, with its simple and elegant structure, offers a natural choice for many kinds

of documents [22]. However, documents with multiple layers of structure or analysis,

such as electronic editions of manuscripts [34, 45], often expose limitations of XML’s

elegant hierarchical document model and as a result require multihierarchical models

of text and markup [58]. A number of such models have been introduced over the

years [16, 57, 61, 64]; we identify some problems with these models, and introduce

our own model that addresses these problems [55].

Complex text documents are often constructed by multiple users with different

areas and levels of expertise and authority. This situation suggests that the editing

process be governed by fine-grained access control rules restricting the types and

locations of edits that may be made by certain users, groups, or roles. We examine

a problem in the analysis of fine-grained access control policies for updating XML

documents, obtaining a number of complexity results.

Finally, most models of fine-grained access control for document editing assume

that documents are hierarchical, with edits consisting of tree update operations [49,

27]. In order to better support collaborative editing of complex documents that are

best represented multihierarchically, we develop a model of access control for updates

of multihierarchical documents.

1.1 Our contributions

In this dissertation we introduce and study models of multihierarchical text docu-

ments, as well as fine-grained access control of both hierarchical and multihierarchical

documents to support managed collaborative editing. Our contributions advance the

state of the art in multihierarchical markup and fine-grained access control. They

include the following, described in more detail in Sections 1.1.1–1.1.3:
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1. We develop a model of multihierarchical documents, the globally ordered GOD-

DAG [55], in which markup and text have both a containment structure (in

terms of directed acyclic graphs) and a global order with certain properties in-

spired by XML. We also introduce extensions to the XPath language to support

these multihierarchical documents, as well as update operations to allow editing

of such structures.

2. We prove that the globally ordered GODDAG characterizes multihierarchical

documents with unambiguous serializations free of spurious overlaps, through

correspondence with a structure, the range GODDAG, that models the markup

relations in such documents. We furthermore provide algorithms for converting

between the two structures. This characterization provides an important con-

nection between graph-based models of documents and serialized depictions of

markup ranges.

3. We establish complexity bounds for the document generation problem in cer-

tain classes of rule-based fine-grained access control systems for updates of trees,

where rules are based on expressions in XPath or subsets thereof [54, 56]. This

problem asks whether a given document could have been generated while fol-

lowing the rules of a given access control policy. We show that the most general

version of the problem is in fact undecidable, indicating that such fine-grained

access control systems are too powerful for many kinds of static analysis.

4. We develop a model of fine-grained access control on the globally ordered

GODDAG, providing the first steps towards a fine-grained access control sys-

tem for collaborative editing of multihierarchical documents. We also show that

the multihierarchical version of the document generation problem, like the tree

version, is undecidable.

1.1.1 The globally ordered GODDAG

We present a model of multihierarchical markup, which we call the globally ordered

GODDAG or GOG, that augments the GODDAG (generalized ordered-descendant

DAG) structure of Sperberg-McQueen and Huitfeldt [61] with an order relation and

certain natural properties on that order and the graph structure. We also provide an

alternative characterization of GOG documents in terms of serialization properties.

We prove that documents in the model have (1) a unique representation as a directed

acyclic graph, and (2) a unique textual serialization that avoids spurious overlap.
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We also provide algorithms for converting between these representations. Finally,

we provide semantics for an extension of XPath to globally ordered GODDAGs, and

show how the model provides a convenient way to characterize the update operations

that may be performed on a document while maintaining serializability. This work

restates and extends results we previously published in 2010 [55].

1.1.2 The document generation problem

Fine-grained access control is the problem of specifying the set of operations that may

be performed on a complex structure. For tree-structured databases and documents,

particularly XML, a rule-based approach is most common. In this model, access

control policies consist of rules that select the allowed or disallowed targets of queries

or updates based on their hierarchical relationships to other nodes.

We consider the problem of deciding whether a fine-grained access control policy

for tree updates allows a particular document to be constructed. This problem, which

we call PGen, is motivated by a number of database administration and collaborative

editing scenarios. For example, an administrator might wish to audit a document by

verifying that it was (or at least could have been) created under the existing policy;

such auditing is particularly important when logs of previous operations are missing

or unavailable. Another application is to evaluate a proposed policy change, by

verifying that existing documents could be reconstructed under the policy. Finally, an

algorithm for PGen would allow administrators to verify that particular undesirable

document states are disallowed: that is, that the policy does not generate particular

trees.

We show that, for a typical form of rule-based fine-grained access control policies

based on a simple fragment of XPath, the problem PGen is undecidable. We also

prove lower bounds on the complexity of various restrictions of this problem, including

those that limit both the subset of XPath and the set of update operations allowed.

For two restrictions in particular, we demonstrate deterministic and nondeterministic

(respectively) polynomial-time algorithms for PGen. This work extends results we

previously published in 2009 [54] and 2011 [56].

1.1.3 Fine-grained access control on multihierarchical structures

Although fine-grained access control has been well-studied for hierarchical documents

[27, 28], it has not previously been applied to multihierarchical structures. In order

to facilitate managed collaborative editing of multihierarchical documents, we define
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a model for fine-grained access control on globally ordered GODDAGs, based on the

update operations and XPath extensions described elsewhere in this work. We show

that, as with hierarchical documents, the document generation problem PGenMH is

undecidable.

1.2 Motivations for our research

Digital editions provide an important means of preserving documents while facilitat-

ing access by researchers, students, and the general public. Although such editions

can be based on page images [1], the use of marked-up text [22], possibly in con-

junction with images [46], is a recognized means of making these texts available to

computational processing and analysis as well [65]. Our interest in multihierarchi-

cal markup and fine-grained access control arose through in involvement with the

ARCHway [45] project, developing tools for constructing electronic editions such as

Electronic Boethius [34].

The encoding of text and markup is often based on a model of text as an “ordered

hierarchy of content objects” [22]. This model, exemplified by languages such as the

Standard Generalized Markup Language (SGML) [39] and the Extensible Markup

Language [9], represents a document as an ordered tree with plain text (that is to say,

character strings) forming leaves and markup appearing as both internal nodes and

leaves. This model aims to recapture the hierarchical nature of many of the concepts

represented by markup, such as books that are divided into chapters, themselves

divided into sections.

1.2.1 Multihierarchical markup

Although XML, with its simple and elegant hierarchical structure, is a popular choice

for text encoding, this very simplicity leads to problems with complex documents; in

particular, a single hierarchy may not be sufficient to capture the relationships among

multiple layers of descriptions [58]. For example, in preparing an electronic edition of a

literary manuscript, an editor may wish to describe both the division of the document

into pages and lines, and the division into paragraphs and sentences. However, as

most printed texts readily demonstrate, sentences and lines do not necessarily nest

within one another to form hierarchical structures; a sentence may overlap with a line

without either being included within the other. Even two annotations that encode the

same type of feature, such as stricken-out text [58] or components of a portmanteau

word, may overlap with one another. The question, then, is how to represent such
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multihierarchical structures in a way that offers the same advantages of portability,

flexibility, etc. as XML does for hierarchical documents. Such a solution would

ideally have two components: a mathematical model of multihierarchical documents,

corresponding to the tree-based document object model (DOM) of XML [4]; and an

encoding of such documents in a format for data interchange, corresponding to the

tag-based textual serialization of XML.

Many representations for multiple hierarchies have been proposed, ranging from

straightforward embeddings in XML [21, 64] to entirely new data structures [16,

43, 57, 61]. One model in particular, Sperberg-McQueen and Huitfeldt’s generalized

ordered-descendant directed acyclic graph (GODDAG) [61], defines a straightforward

but powerful generalization of the DOM tree model to multihierarchical structures.

As a result, the GODDAG is used as the basis for a number of models of and systems

for multihierarchical documents [37, 38, 52]. However, the GODDAG lacks many of

the desirable properties of XML trees, such as a consistent order among nodes in

the document; as a result, tag-based serializations along the lines of XML cannot

unambiguously represent the full range of GODDAG documents without significant

added complexity. Furthermore, restricted versions of GODDAG designed to avoid

these problems [52, 61] can make it difficult to concisely specify the set of updates

that may be applied to a document while maintaining the integrity of the structure.

Our model attempts to address these problems.

1.2.2 Fine-grained access control

The construction of digital documents is often conducted by groups of individu-

als, sometimes separated by geographical and organizational boundaries. Although

projects such as Wikipedia [2] show that it is sometimes possible to organize collab-

orative editing as a (more-or-less) “free for all” process, often some kind of control

is desired. In many instances, the many contributors to a document play different

roles in the construction process. For example, some contributors to an electronic

edition may concentrate on the physical nature of the document (for example, fire

and water damage); while others might instead focus on lyrical properties of the po-

etry contained therein. A project manager may wish to make this division of labor

explicit, by ensuring that editors work only on their assigned tasks. Access control is

the problem of determining which users can access or modify which resources, and of

enforcing those determinations, and has many applications to collaborative editing:

• Protecting sensitive data, such as personally identifying information in medical
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data. Although this data may be necessary for the attending physician, it

should not be available to outside researchers studying the efficacy of treatment

methods.

• Enforcing editorial roles and delegations. In an image-based electronic edition

project, a student assistant editor might be allowed to add certain kinds of

markup, but not to change the underlying text. In a business environment, the

marketing team might be permitted to modify product brochures but (we hope)

not technical manuals.

• Gradually expanding privileges for initially-untrusted users. For example, in

Wikipedia [2], all visitors are permitted and encouraged to add and edit content.

However, newly-registered users cannot edit certain “semi-protected” pages, and

unregistered users are even more restricted. [3]

Because encoded text documents have an internal structure that is often associ-

ated with a division of labor, it is natural to ask whether it is possible to control

updates to certain parts of this structure, rather than to entire documents. This

topic of fine-grained access control (FGAC) for hierarchical structures has been heav-

ily studied, particularly in the context of XML documents. For FGAC of XML

documents, a rule-based approach is prevalent in the literature [5, 14, 28, 33]: in this

model, an access control policy comprises a collection of rules. Each rule permits

or denies a user, role, program, etc. (the subject) to use a particular kind of oper-

ation on certain parts of the document (the object). Objects are nodes or subtrees

of the document, usually specified with a language of path expressions, usually

XPath [12] or some fragment thereof [23, 53], but sometimes with tree automata and

term rewriting systems [40].

Although most of the early research on FGAC for XML focused on query opera-

tions [5, 11, 14], there has also been a great deal of work in applying FGAC to update

operations [10, 15, 27, 49]. Three problems have been particularly well-studied for

hierarchical documents: specifying and formalizing the semantics of FGAC policies

[6, 27, 28, 33]; safely and efficiently enforcing these policies [5, 11, 15, 47, 50]; and an-

alyzing policies for consistency [7, 8, 27]. Another important problem is to determine

a posteriori whether a document could have been constructed under a given access

control policy [54, 56]; applications include verifying that a document was (or could

have been) created pursuant to a policy, and checking whether a policy can result in

documents that violate schemas or other structural rules [40]. This problem thus has
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important implications for document security, verifiability, and provenance, even in

the absence of multihierarchical markup.

Finally, multihierarchical text documents, including annotated electronic editions

of literary works [34, 45], may be created through a collaborative but curated process,

a perfect situation for fine-grained access control. This method of creation suggests

the need for models of update operations, path expressions, and finally fine-grained

access control policies for multihierarchical structures. To our knowledge, this prob-

lem has not been previously addressed in the literature.

1.3 Structure of dissertation

In Chapter 2 we discuss hierarchical models of text and markup, and formulate a

model that characterizes documents in a simplified subset of XML. We also discuss

the XPath language for querying node sets according to their hierarchical and order

relationships. Finally, we discuss various types of update operations on hierarchical

documents.

In Chapter 3 we discuss models of multihierarchical documents, beginning with

three important existing classes of models (concurrent trees, overlapping ranges, and

ordered DAGs) and concluding with our structure, the globally ordered GODDAG

(GOG). We show that the GOG connects the ordered DAG model of multihierar-

chical documents with serializable and range-based models of markup, and provide

algorithms for converting between a range-based and a graph-based representation.

Finally, we provide extensions of XPath and the update operations discussed in Chap-

ter 2 to support globally ordered GODDAGs and some other models of multihierar-

chical documents.

Chapter 4 concerns fine-grained access control for document updates. We briefly

discuss existing models of FGAC, and present in detail a model that simplifies many

of those found in the literature. We describe the document generation problem on

access control policies, and provide new complexity results, including in some cases

undecidability, for this problem under various subsets of our access control model.

Furthermore, we extend our access control model to updates of globally ordered

GODDAGs.

Finally, Chapter 5 summarizes the key results and contributions of this work, and

briefly discusses possible directions for future research in fine-grained access control

and multihierarchical documents.

Copyright c© Neil Moore, 2012.

7



Chapter 2 XML and hierarchical document models

2.1 Hierarchical documents

We begin with a simple hierarchical model of text as an “ordered hierarchy of content

objects” [22]. In this model, a document is an arborescence1 with its vertices divided

into text nodes (with outdegree zero) and element nodes or elements (with any

outdegree, including zero). At each node ν, there is a total order (the child order at

ν) on the successors (children) of ν. Each text node is associated with a string (over,

for example, the Unicode alphabet [13], as in XML [9]) called the node’s text. Each

element node has a name from some language L of labels, as well as an attribute

map from a language of keys (which, for simplicity, we assume to be the same as

L) to a language of values (assumed to be Σ∗; in particular, attributes may have

empty values, and an attribute with an empty value is distinguished from a missing

attribute).

We begin with some terminology regarding binary relations.

Definition 2.1.1 A strict partial order is a transitive irreflexive binary relation.

A strict total order is a strict partial order that is additionally trichotomous:

For any x, y in the domain, either x = y, x < y, or x > y.

Definition 2.1.2 The transitive closure R+ of a binary relation R is the minimal

transitive binary relation that contains R. If the domain of R is finite with cardinality

k, then the transitive closure of R is:

R+ = R ∪R2 ∪ · · · ∪Rk

.

A transitive reduction of a binary relation R is a minimal binary relation R−

such that (R−)
+

= R+. If R is acyclic, then it has a unique transitive reduction:

R− =
{

(x, z) ∈ R| ¬∃y : xR+ y ∧ y R z
}

.

We may now define our model of hierarchical documents.

1That is to say, a tree with all edges directed away from the root. Alternatively, a directed graph
with a root node ρ such that, for every vertex v, there is exactly one path from ρ to v.
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Definition 2.1.3 A hierarchical document is a tuple

(Σ, L, T, E,A, text, label, order, attribute) ,

where

• Σ is a text alphabet;

• L is a set of element (and attribute) labels;

• T is a set of terminal or text nodes;

• E is a set of nonterminal or element nodes, with T ∩ E = ∅;

• A ⊂ E × (T ∪E) is a set of arcs from elements to nodes such that, if T ∪E is

non-empty, (T ∪ E,A) is an arborescence;

• text is a function from T to Σ+;

• label is a function from E to L;

• order is a function mapping each node of T ∪E to a strict total order over that

node’s children in A; and

• attribute is a function mapping elements in E to partial functions from attribute

keys in L to strings in Σ∗. That is, attribute : E → L→ (Σ∗ ∪ ⊥).

To simplify later definitions, we define notations for a number of relations and

functions on the nodes of a document. In these notations, the document is not

specified and is assumed to be clear from context.

Definition 2.1.4 Given a document D = (Σ, L, T, E,A, text, label, order, attribute),

we write:

• <ν for order(ν).

• ν → ξ (or ξ ← ν) if there is an arc (ν, ξ) ∈ A. We say also that ν directly

contains ξ.

• ν →∗ ξ (or ξ ←∗ ν) if there is a (possibly empty) path from ν to ξ in A. We

say also that ν dominates ξ.

• ν →+ ξ (or ξ ←+ ν) if there is a nonempty path from ν to ξ in A; that is, if

(ν, ξ) ∈ A+. We say also that ν contains ξ.
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• root(D) for the root of the arborescence (T ∪ E,A), or undefined if T ∪ E is

empty.

• children(ν) for either the sequence of nodes ξ such that ν → ξ, ordered by <ν;

or the set of these nodes.

• parent(ν) for the (unique) node π such that π → ν (with parent(root(D)) un-

defined).

• descendants(ν) for the set of nodes ξ such that ν →+ ξ (the empty set if ν ∈ T ).

• ancestors(ν) for the set of nodes ξ such that ν ←+ ξ (the empty set if ν =

root(D)).

We write DocΣ,L for the set of all documents with node names from L and text

from Σ+.

The child orders of document nodes can be combined and extended to a (strict)

partial order, the precedes relation, over all nodes of the document. Two nodes are

ordered according to the order of their respective subtrees in their lowest common

ancestor; nodes are incomparable with their ancestors and descendants.

Definition 2.1.5 We say that node ν precedes node ξ (equivalently, ξ follows ν)

in document D if there is some node aξ →∗ ξ (ξ or an ancestor of ξ) and some node

aν →∗ ν such that aξ and aν have the same parent p, and aν <p aξ. If ν precedes ξ,

we write ν <D ξ and ξ >D ν.

Theorem 2.1.1 <D is a strict partial order over the set T ∪ E of nodes in D.

Proof:

• Irreflexivity : Because the nodes of D form an arborescence, for any nodes p and

d there is at most one child c of p such that c→∗ d. Hence no node has distinct

ancestors aν and aξ with the same parent, and Definition 2.1.5 does not apply

when ν and ξ are the same node.

• Transitivity : Let µ, ν, ξ ∈ T ∪ E with µ <D ν and ν <D ξ. Let p1 be the

common ancestor of µ and ν from Definition 2.1.5, with aµ and aν being the

corresponding children of p1; and let p2 be the common ancestor of ν and ξ,

with children a′ν and a′ξ. Since both p1 and p2 are ancestors of ν, either they

are the same node, or one is an ancestor of the other.
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If p1 = p2 = p, then aµ <p aν = a′ν <p a
′
ξ; by transitivity, aµ <p a

′
ξ, so µ <D ξ.

Otherwise, one is an ancestor of the other; assume without loss of generality

that p1 is an ancestor of p2. Then the child aξ of p1 containing ξ and the child

aν of p1 containing ν both contain or equal p2, and are hence the same node.

Because aµ <p1 aν , we have that aµ <p1 aξ, and µ <D ξ

�

The precedes relation may be combined with the ancestor-of relation to form a

total order, known as the document order in XML. In fact, the relationships may

be combined in two distinct ways, each giving a total order.

Definition 2.1.6 Given a document D, the document order on D is the binary

relation <+ on nodes, where µ <+ if µ <D ν or µ→+ ν. The inverted document

order is the relation <−, where µ <− ν if µ <D ν or ν →+ µ.

The document order is the preorder depth-first traversal of the document, begin-

ning from the root and processing children of each node ν in the order given by <ν .

The inverted document order is the corresponding postorder traversal. As we shall

see, these are the orders of text nodes along with start or end tags, respectively, in

the XML serialization of the document.

To begin, we note that each node in a document partitions that document into

five sets: the node itself, its ancestors, its descendants, its preceding nodes, and its

following nodes.

Lemma 2.1.1 Orthogonality: For any two distinct nodes ν and ξ of a document

D, exactly one of the following is true: ν <D ξ, ξ <D ν, ν →+ ξ, or ξ →+ ν.

Proof: If ν →+ ξ or ξ →+ ν (by irreflexivity, only one of these can be true), then

for any common ancestor p of ν and ξ, the children aν →∗ ν and aξ →∗ ξ of p are the

same node. Hence Definition 2.1.5 does not apply, neither ν <D ξ nor ξ <D ν, and

exactly one of the cases is true.

Otherwise, neither ν →+ ξ nor ξ →+ ν. Let p be the lowest common ancestor

of ν and ξ; it is distinct from both ν and ξ. Now consider the children aν and aξ of

p that are ancestors of ν and ξ respectively. If aν = aξ then it is a lower common

ancestor than p, a contradiction. Therefore, because the child order is a strict total

order, either aν <p aξ and ν <D ξ; or aξ <p aν and ξ <D ν; but not both. Hence

exactly one of the cases is true. �
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We shall return to this orthogonality property later, when in Section 3.3 we discuss

models for multihierarchical documents. For now, we use it to show that the document

orders are (strict) total orders.

Theorem 2.1.2 The document order <+ and inverted document order <− on a doc-

ument D are strict total orders over the set T ∪ E of nodes of D.

Proof:

• Trichotomy : This property follows straightforwardly from Lemma 2.1.1 and the

definitions of <+ and <−.

• Transitivity : We consider only <+; the proof for <− is analogous. Suppose

µ <+ ν and ν <+ ξ. If the former and latter relationship derive from the same

underlying relation (<D or →+), transitivity follows from the transitivity of

that relation. We therefore need only consider two cases:

– µ →+ ν <D ξ. If ξ is a descendant of µ, then µ <+ ξ. Otherwise, the

lowest common ancestor of ξ and ν is also a common ancestor of ξ and µ,

with a single child aµ = aν of this ancestor containing both µ and ν. Since

ν <D ξ, this child precedes the corresponding ancestor of ξ, so µ <D ξ and

thus µ <+ ξ.

– µ <D ν →+ ξ. If ξ is a descendant of µ, then µ <+ ξ. Otherwise, the

lowest common ancestor of µ and ν is also a common ancestor of µ and ξ,

with a single child aν = aξ of this ancestor containing both ν and ξ. Since

µ <D ν, this child follows the corresponding ancestor of µ, so µ <D ξ and

thus µ <+ ξ.

�

2.1.1 XML

The Extensible Markup Language (XML) [9] defines documents as strings (seriali-

zations) obeying the XML grammar, with the XML and related Document Object

Model (DOM) [4] standards defining a tree, similar to our hierarchical model, for

each document. Text nodes are serialized as simple text strings, while elements are

represented by the sequence of a start tag <label>, the children of the node in

order, and an end tag </label>. XML requires that start and end tags be nested:
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if the start tag of element e1 occurs between the start and end tags of e2, the end

tag of e1 also occurs between the tags of e2, ensuring that the document does in fact

form a tree. In a somewhat simplified form:

Definition 2.1.7 The XML serialization serial (D) of a hierarchical document D

is defined recursively on the nodes of the document.

serial (D) = serial (root(D))

serial (t ∈ T ) = text(t)

serial (e ∈ E) = <name(e)> serial (χ1) serial (χ2) . . . serial (χn)</name(e)>,

where χ1, χ2, . . . χn is the sequence children(e).

If element names and text nodes are not permitted to contain the characters <

or > , the serialization is unambiguous and reversible. XML, in fact, does not allow

these characters to occur except where specifically indicated in the grammar; other

methods, such as CDATA sections and entity references, are required to encode these

(and a few other) characters in an XML document.

The document tree corresponding to a given serialized XML document is, essen-

tially, the parse tree for that string, with elements containing those nodes that occur

between their start and end tags, in order; and with other types of nodes appearing as

leaves. Likewise, an XML tree may be serialized recursively, by a depth-first traversal

of the nodes; start tags appear before content, and end tags after. XML defines a

document order based on the sequence of start tags and leaf nodes; this order is the

same as the document order of Definition 2.1.6.

The XML document model is somewhat more complicated than ours; besides

elements and text nodes, XML documents may contain other types of nodes including

processing instructions, comments, CDATA sections, and entity references; each type

of node has its own serialization, none of which contain other nodes. The document

as a whole is represented by a document node (the root of the document tree, distinct

from the root element). The document also contains an XML declaration indicating

character encoding and version of XML to which the document conforms; and an

optional document type declaration, which, among other things, defines a simple

grammar (the document type definition or DTD) to which elements and their children

must conform. Finally, XML allows an empty tag shorthand <t/> for a start tag

immediately followed by the corresponding end tag.

In the remainder of this work we shall, for simplicity, refer to XML documents

and our hierarchical documents interchangeably. We shall for the most part disregard
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the additional features of XML (document nodes, comments, etc.), referring to them

only when they would require special treatment. In general, the document node may

be treated as a special case of an element; and other node types may be treated as

text nodes with labels distinct from those of ordinary text nodes.

2.2 Selecting nodes in hierarchical documents: XPath and its subsets

The nature of a hierarchical document as an arborescence implies that each node

has a unique path from the root to that node. This fact, along with the often

constrained structure of these paths, suggests a query language that locates and

identifies nodes based on the paths from the root to those nodes. XPath [12], part of

the W3 Consortium’s family of XML technologies, is precisely such a language.

Rather than dealing with the full complexities of XPath, we consider the fragment

known as core XPath [24, 31]. This subset of XPath dispenses with numeric, string,

and Boolean expressions; rather, each expression evaluates to a set of nodes, greatly

simplifying the semantics.

Briefly, a path expression in core XPath consists of a sequence of location steps,

each containing an axis (the name of a relation on the document: parent, descen-

dant, following, and so on), a node test (usually an element name or node type

predicate such as text()), and optional predicates (themselves path expressions). A

location step selects those nodes that have the axis relationship to nodes selected by

the previous location step; that satisfy the node test; and at which each predicate

evaluates to a nonempty set of nodes.

2.2.1 Core XPath

We follow Gottlob, Koch, and Pichler [31], with some exceptions noted, in our formu-

lation of the syntax and semantics of core XPath. We use the symbol ε to represent

the empty string.

Grammar 2.2.1 A core XPath expression is given by the expression production

of the following grammar, where the name nonterminal produces a language of element

names.
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expression ⇒ relative
∣∣ / relative-path

relative-path ⇒ location-step
∣∣ relative-path / location-step

location-step ⇒ axis :: node-test predicate-list

predicate-list ⇒ ε
∣∣ [ predicate ]

predicate ⇒ ( predicate and predicate )
∣∣ ( predicate or predicate )∣∣ not ( predicate )

∣∣ expression

axis ⇒ self
∣∣ parent

∣∣ child∣∣ ancestor
∣∣ ancestor-or-self∣∣ descendant
∣∣ descendant-or-self∣∣ following
∣∣ following-sibling∣∣ preceding
∣∣ preceding-sibling

node-test ⇒ name
∣∣ *

∣∣ node()
∣∣ text()

Remark: Gottlob, Koch, and Pichler use slightly different terminology, writing “lo-

cationpath” for relative path expressions (what we call “relative-path”), and folding

our predicate-list production into the location-step production. Furthermore, they

do not require Boolean expressions to be parenthesized, instead implicitly relying on

relative precedences of and and or ; and their node tests are simpler, permitting

only element names and * .

We also follow Gottlob et al.[31], with some modifications, in our definition of the

semantics of a path expression. The semantics SC[[p]]D of a path expression p on a

document D is a function from sets of nodes (the context) to sets of nodes. The

semantics of other productions in Grammar 2.2.1 are either functions from sets of

nodes to sets of nodes, or (in the case of predicate-list and node-test), simply sets of

nodes.

In the following definitions, we assume a document

D = (Σ, L, T, E,A, text, label, order, attribute) ,

and write N = T ∪ E for the set of nodes of D.

An axis represents a relation between nodes. We identify axis terminals parent ,

child , etc. with relations on the document D. The semantics of an axis is a function

from sets of context nodes to sets of nodes that bear the indicated relation to a

context node.
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Definition 2.2.1 An axis is one of the following relationships on a set N of nodes:

• self = {(ν, ν)| ν ∈ N}

• parent = {(µ, ν)| µ→ ν}

• child = {(µ, ν)| ν → µ}

• ancestor-or-self = {(µ, ν)| µ→∗ ν}

• descendant-or-self = {(µ, ν)| ν →∗ µ}

• ancestor = {(µ, ν)| µ→+ ν}

• descendant = {(µ, ν)| ν →+ µ}

• following = {(µ, ν)| µ >D ν}

• preceding = {(µ, ν)| µ <D ν}

• following-sibling = {(µ, ν) ∈ following| µ and ν have the same parent}

• preceding-sibling = {(µ, ν) ∈ preceding| µ and ν have the same parent}

The semantics of an axis χ on document D, SC[[χ]]D : P(N) → P(N), is given

by:

SC[[χ]]D (M) = {ν ∈ N | ∃µ ∈M : (ν, µ) ∈ χ}

A node test matches nodes of a particular type or (in the case of elements) name.

In particular, ∗ matches all elements, text() matches all text nodes, node() matches

all nodes, and an element name matches all elements with that name. The semantics

of a node test is the set of matching nodes.

Definition 2.2.2 The semantics of a node test τ on document D, SC[[τ ]]D : P(N),

is given by:

SC[[ * ]]D = E

SC[[ text() ]]D = T

SC[[ node() ]]D = T ∪ E

SC[[` ]]D = {e ∈ E| name(e) = `} ,

where ` is a string produced by the nonterminal name.
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We say that a node test τ matches the label ` ∈ (L ∪ Σ+) if one of the following

is true:

• τ = node() ;

• τ = ` ∈ L;

• τ = * and ` ∈ L; or

• τ = text() and ` ∈ Σ+.

A predicate is a Boolean expression formed from path expressions, where a path

expression is considered to be true at a given node if, when evaluated in the context of

that node, it produces a nonempty set of nodes. A predicate list is simply an optional

predicate, where the lack of a predicate is taken to be true of all nodes. Gottlob et

al. use a bottom-up semantics for path expressions in predicates, contrary to the

top-down semantics used elsewhere. We instead use the ordinary top-down semantics

for all path expressions, reducing the number of definitions required at the expense

of slightly complicating Definition 2.2.3.

Definition 2.2.3 The semantics of a predicate Q on document D, SQ
C [[Q]]D ∈ P(N),

is given by the following, where SC[[P ]]D (C), defined later (Definition 2.2.6), is the

result of evaluating the path expression P in context C.

SQ
C [[P ]]D = {ν ∈ N | SC[[P ]]D ({ν}) 6= ∅}

SQ
C [[ (Q1 andQ2 ) ]]D = SQ

C [[Q1]]D ∩ S
Q
C [[Q2]]D

SQ
C [[ (Q1 orQ2 ) ]]D = SQ

C [[Q1]]D ∪ S
Q
C [[Q2]]D

SQ
C [[not(Q′)]]D = N \ SQ

C [[Q′]]D ,

The semantics of a predicate list P on document D, SC[[P ]]D : P(N), is given by

the following:

SC[[ [Q ] ]]D = SQ
C [[Q]]D

SC[[ε]]D = N

A location step comprises an axis, a node test, and a (possibly empty) predicate

list. A location step is evaluated on a set of context nodes M ⊆ T ∪ E, typically

the result of the previous location step. It evaluates to the set of nodes that bear

the axis relation to any context node, at which the node test and predicate list both

evaluate to true.
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Definition 2.2.4 The semantics of a location step S of the form χ::τP , SC[[S]]D :

P(N)→ P(N), is given by:

SC[[χ::τP ]]D (C) = SC[[χ]]D (C) ∩ SC[[τ ]]D ∩ SC[[P ]]D

A relative path expression consists of a sequence of one or more location steps.

Evaluating a relative path expression on a set of context nodes results in a set of

nodes; the location steps are evaluated, from left to right, with each of the second

and subsequent steps using the previous step’s result as its context.

Definition 2.2.5 The semantics of a relative path expression R, SR
C [[R]]D : P(N)→

P(N), is given by the following, where S is a location step.

SR
C [[S]]D (N) = SC[[S]]D (N)

SR
C [[R′ / S]]D (N) = SC[[S]]D (SR

C [[R′]]D (N))

Finally,

Definition 2.2.6 The semantics of a core XPath expression E, SC[[E]]D : P(N)→
P(N), is given by the following, where R is a relative path expression, and ρ(D) is

either the empty set (if N is empty) or the singleton containing the root of D (if it

is not empty).

SC[[R]]D (N) = SR
C [[R]]D (N)

SC[[ /R]]D (N) = SR
C [[R]]D (ρ(D))

The semantics of a core XPath expression E on a document D is a set of nodes

in that document:

SC[[E]] (D) =

∅, N = ∅

SC[[E]]D (ρ(D)), otherwise

If ν ∈ SC[[E]] (D), we say that E matches ν in D.

Remark: Gottlob, Koch, and Pichler showed that queries in Core XPath (that

is to say, computing SC[[P ]]D (M) for some expression P and node set M) can be

evaluated in time O (|P | |N |) [31].
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Figure 2.1: A hierarchical document.
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Figure 2.2: Evaluating an XPath expression on Figure 2.1.

2.2.2 XPath example

Consider the hierarchical document in Figure 2.1. In this diagram, and in subsequent

diagrams of hierarchical and multihierarchical documents, we assume unless otherwise

specified that edges are directed from top to bottom, and that children of a node are

ordered from left to right. Rectangles represent elements, and diamonds text nodes.
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In Figure 2.2 we trace the evaluation of the XPath expression

/descendant::chapter[following::chapter]/child::section/ text() .

The first location step descendant::chapter, evaluated in the context of the root, evalu-

ates to the set of chapter nodes (a). The predicate [following::chapter] evaluates to the

set of nodes that are followed by a chapter node in document order (b). The complete

location step descendant::chapter[following::chapter] thus evaluates to the intersection

of these two sets (c). The next location step, child::section, is evaluated in the context

of these nodes, yielding a single section child (d). Finally, the location step text()

is evaluated in the context of this node, yielding the single text node A (e) as the

result of the full expression.

2.2.3 The language XP{[],∗,//}

For the purposes of access control rules (Chapter 4), we use an even simpler language

than Core XPath. The XP{[],∗,//} fragment of XPath consists of path expressions that

always descend the tree [23, 53], with location steps containing conjunctive lists of

predicates rather than arbitrary Boolean formulae.

Grammar 2.2.2 The language XP{[],∗,//} is given by the expression production of the

following grammar, where name produces a language of element names.

expression ⇒ relative-path
∣∣ / relative-path

∣∣ // relative-path

relative-path ⇒ location-step∣∣ relative-path / location-step∣∣ relative-path // location-step

location-step ⇒ node-test predicate-list

predicate-list ⇒ ε
∣∣ [ relative-path ] predicate-list

node-test ⇒ name
∣∣ *

∣∣ node()
∣∣ text()

We note that the XP{[],∗,//} syntax is somewhat simplified and therefore not a

subset of Core XPath. In particular:

• Axes are omitted; the / separator implies the child axis on the next location

step, while // implies the descendant axis. It is not possible to traverse up or

across the tree, only down.
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• Conjunctive lists of predicates are represented sequentially, rather than as ex-

pressions using and . It is not possible to disjoin or negate predicates.

Nonetheless, it is possible to express the semantics of XP{[],∗,//} in terms of the

semantics of a subset of Core XPath. We define a mapping from XP{[],∗,//} to the

subset of Core XPath with only the child and descendant axes and only the and

operation on predicates.

Definition 2.2.7 The core equivalent of a path expression P ∈ XP{[],∗,//} is a path

expression Ecore(P ) in Core XPath given by the following rules:

• Node tests are identical: Ecore(τ) = τ .

• Predicate lists are converted using an auxiliary function Ecorep that handles the

non-empty cases.

– Ecore(ε) = ε;

– Ecore([R]P ) = [Ecorep([R]P )];

– Ecorep([R]) = Ecore(R)

– Ecorep([R]P ) = (Ecore(R) and Ecorep(P ))

• Location steps: Ecore(τP ) = child ::τ Ecore(P )

• Relative paths:

– Ecore(S) = Ecore(S);

– Ecore(P/S) = Ecore(P )/ Ecore(S);

– Ecore(P//S) = Ecore(P )/ descendant-or-self :: node() / Ecore(S);

• Path expressions:

– Ecore(R) = Ecore(R)

– Ecore(/R) = / Ecore(R)

– Ecore(//R) = / descendant-or-self :: node() / Ecore(R)

The semantics of a path expression P ∈ XP{[],∗,//} is the function S[[P ]]D :

P(N)→ P(N) given by S[[P ]]D (N) = SC[[Ecore(P )]]D (N).
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2.3 Updating hierarchical documents

In order to define update operations on hierarchical documents, we begin with a

number of notations for representing modifications to functions or total order. We

shall make heavy use of these notations when defining the semantics of the various

update operations.

Definition 2.3.1 Let f be a function from domain A to codomain B, and let x and

y be arbitrary objects. The extension of f with f(x) = y, written fx→y, is the

function from A ∪ {x} to B ∪ {y} such that:

fx→y(z) =

y, z = x

f(z), otherwise

We write fx0→y0,...,xn→yn as a shorthand for (fx0→y0)...xn→yn.

We also define the extension of a total order, obtained by adding the members

of another total order (disjoint from the first) either at the end of, or immediately

preceding some item in, the first order.

Definition 2.3.2 If R is a total order on the set A, B is a set disjoint from A, and

S is a total order over B, the extension of R by S is the total order RS<∞ on

A ∪B such that m (RS<∞)n if and only if one of the following is true:

• m,n ∈ A and mRn;

• m,n ∈ B and mS n;

• m ∈ A, n ∈ B.

If R is a total order on the set A, B is a set disjoint from A, S is a total order

over B, and a ∈ A, the extension of R by S before a, is the total order RS<a on

A ∪B such that m (RS<a)n if and only if one of the following is true:

• m,n ∈ A and mRn;

• m,n ∈ B and mS n;

• m ∈ B, n ∈ A, and aRn;

• m ∈ A \ {a}, n ∈ B, and mRa.
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If x 6∈ A and p ∈ A∪{∞}, we write Rx<p as a shorthand for R(x,x)p, where (x, x)

is the (unique) total order over {x}.

Similarly, a relation (including functions and total orders) may be restricted to

some subset of its domain. We define restriction slightly differently for functions and

for binary relations on a single set; in the former case only the domain is restricted,

while in the latter both components are restricted.

Definition 2.3.3 If f is a function from A to B, and C ⊆ A, the restriction of f

to C, f |C, is f ∩ (C ×B).

If R is a binary relation on A, and C ⊆ A, the restriction of R to C, R|C, is

the relation R ∩ C2.

Finally, a few operations may affect either elements or text nodes. We define a

notation to concisely represent the changes to the sets of nodes and the text and label

functions .

Definition 2.3.4 Let P = (ν, `) be a pair of either an element and an element name,

or a text node and a string; we do not require that ν be a node of the document. Then

the extensions by P of the sets T and E of elements, and of the text and label

functions, by P is:

T (ν,`) =

T, ` ∈ L

T ∪ {ν} , ` ∈ Σ+

E(ν,`) =

E ∪ {ν} , ` ∈ L

E, ` ∈ Σ+

text(ν,`) =

text, ` ∈ L

textν→`, ` ∈ Σ+;

label(ν,`) =

labelν→`, ` ∈ L

label, ` ∈ Σ+;

2.3.1 Insert

The insert operation adds nodes to a document in a specified location. We consider

three forms of the insert operation, in order of increasing complexity. First, a simple

insert adds a new leaf node to a document. This operation corresponds to the

insert-before, insert-after, and append methods of DOM [4] and XUpdate [48].
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Definition 2.3.5 A simple insert on the document

D = (Σ, L, T, E,A, text, label, order, attribute)

is a tuple of the form I = (insert, π, ν, `), where:

• π ∈ E ∪{>} is the node which will be the parent of the new node; if π = >, the

new node will be the root of the document.

• ν is either∞ or a child of E (if E = >, then ν =∞); this node will immediately

follow the new node in the child order of π, or ∞ if the new node will be the

last child of π.

• ` ∈ L ∪ Σ+ is the name or text of the new node.

The result of I on D, written I(D), is:

• If π = > and E ∪ T is nonempty, an error (⊥).

• If π = > and E ∪ T is empty, the document(
Σ, L, T P , EP , A, textP , labelP , orderχ→∅, attributeχ→∅

)
, where χ is a new node and P = (χ, `).

• If π ∈ E, the document(
Σ, L, T P , EP , A ∪ (π, χ) , textP , labelP , orderχ→∅,π→<

χ<ν
π attributeχ→∅

)
,

where χ is a new node not in T ∪ E, and P = (χ, `).

While a simple insert adds a single new node to a tree, a complex insert adds

an entire subtree:

Definition 2.3.6 A complex insert on the document

D = (Σ, L, T, E,A, text, label, order, attribute)

is a tuple of the form (insert, π, ν,D′), where π and ν are as in a simple insert, and

D′ = (Σ, L, T ′, E ′, A′, text′, label′, order′, attribute′)

is a non-empty document over the same languages as D with the sets of nodes T ∪E
and T ′ ∪ E ′ being disjoint.
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The result of a complex insert (insert, π, ν,D′) on document D is:

• If π = > and E ∪ T is nonempty, an error (⊥).

• If π = > and E ∪ T is empty, the document D′.

• If π ∈ E, the document(
Σ, L, (T ∪ T ′), (E ∪ E ′), A ∪ {(π, root(D′))} , text∪ text′, label∪ label′,

orderπ→<
root(D’)<ν
π ∪ order′, attribute∪ attribute′

)
Finally, a compound insert adds a sequence of subtrees (a document frag-

ment) to the location in question.

Definition 2.3.7 A compound insert on the document

D = (Σ, L, T, E, text, label, order)

is a tuple of the form (insert, π, ν,X ), where π and ν are as in a simple insert, and

X = 〈X0, X1, . . . , Xn〉 is a sequence of non-empty documents over the same languages

as D, with the node set of each Xi disjoint from that of D as well as that of each Xj

where i 6= j.

The result of a compound insert I = (insert, π, ν,X ) on document D is the compo-

sition I(D) = In(· · · (I1(I0(D))) · · · ) of complex inserts, where Ik = (insert, π, ν,Xk)

for 0 ≤ k ≤ n. In particular, if X is empty, I(D) = D.

Note that if π = > but X contains more than one item, then I1(I0(D)) (and hence

I(D)) is undefined, as I1 attempts to insert a root node into a document that either

is undefined, or already has a root node.

2.3.2 Delete

The delete operation removes a node of the document; since all paths from the root to

a descendant of the deleted node must pass through the deleted node, it is necessary

to remove the entire subtree rooted at that node.

Definition 2.3.8 A deletion on the document D is a tuple of the form (delete, ν),

where ν is a node of D. The result of a deletion X = (delete, ν) on

D = (Σ, L, T, E,A, text, label, order)
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is the document

X(D) = (Σ, L, T ∩N ′, E ∩N ′, A|N ′ , text|N ′ , label|N ′ , order’) ,

where N ′ is the set of nodes that are neither ν nor descendants of ν, and order′ is the

function:

order′ =

(order|N’)
π→<π |children(π)∩N’ , ν ∈ children(π)

∅, ν is the root node

One could also define simple deletions, which remove only a single node. The

node in question must be a leaf node.

Definition 2.3.9 A simple deletion on the document D is a deletion (delete, ν),

where ν has no children in D. The result X(D) of a simple deletion X on document

D is its result when treated an ordinary deletion.

2.3.3 Move

A move operation removes a document node ν as a child of its parent node and re-

adds it in a different location of the tree. It is, conceptually speaking, the composition

of an insert and a delete, though it should be considered an atomic operation. It is

not possible to move a node to the root of the document, nor to move a node beneath

itself or one of its own descendants.

Definition 2.3.10 A move on the document D is a tuple of the form (move, µ, π, ν),

where µ is a node of D, π is node of D that is neither µ nor one of its descendants,

and ν is either ∞ or a child of π other than µ.

The result of a move on D is the result of deleting ν then inserting it in the

location identified by π and ν:

(insert, π, ν,Dµ) ((delete, µ) (D)),

where Dµ is the document obtained from D by retaining only the nodes reachable from

µ:

Dµ =
(

Σ, L, T ∩Nµ, E ∩Nµ, A|Nµ , text|Nµ , label|Nµ , order|Nµ attributes|Nµ
)
,

where Nµ = {µ} ∪ descendants(µ).
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2.3.4 Rename

The rename operation changes the name of an element or the text of a text node,

but leaves all node relationships unchanged. A rename operation could be viewed

as a sequence of an insertion (adding a node with the new label as a sibling of

the target node), a number of moves (moving each child of the target node to the

new node), and a deletion (removing the old, now empty, node). However, these

operations entail changes to the document tree that may result in invalid or incorrect

intermediate documents. Even worse, such a model would not allow renaming the

root node, as it is not possible to add a sibling. In order to avoid this problem, we

consider rename as a separate, atomic, operation.

Definition 2.3.11 A rename on the document D is a tuple of the form R =

(rename, ν, `), where ν ∈ T ∪E is a node of D; and ` is a name from L if ν ∈ E, or

a text string from Σ+ if ν ∈ T . The result of a rename R on the document

D = (Σ, L, T, E,A, text, label, order, attribute)

is the document

R(D) =
(

Σ, L, T, E,A, text(ν,`), label(ν,`), order, attribute
)

.

2.3.5 Splice-out

While the delete operation allows removing entire subtrees of the document, some-

times a more delicate approach is required. We define a splice-out operation that

replaces a target node with its children. It is not always possible to perform this

operation on the root; if the root has more than one child, such an operation would

produce a document without a unique root node; instead, we make the result of the

operation undefined.

Definition 2.3.12 A splice-out on the document D is a tuple of the form X =

(splice-out, ν), where ν is a node of D. The result X(D) of a splice-out X on the

document

D = (Σ, L, T, E,A, text, label, order)

is ⊥ (an error) if ν is the root of D and contains more than one child. Otherwise,

X(D) =
(
Σ, L, T ∩N ′, E ∩N ′, A|N ′ ∪ ({parent(ν)} × children(ν)) ,

text|N ′ , label|N ′ , order′, attribute|N ′
)
,
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where N ′ = (T ∪ E) \ {ν} is the set of nodes other than ν, and

order′ =

(order|N’)
π→

(
<

(<ν )<ν
π

∣∣∣
children(ν)∪children(π)\{ν}

)
, ν ← π

order|N ′ , ν = root(D)

Splice-outs can usually be simulated by a sequence of moves to relocate the target

node’s children, followed by a deletion of the now-empty target node. However, such

an implementation would not allow splicing out the root node, even when it contains

one child or no children.

2.3.6 Splice-in

The inverse of the splice-out operation is splice-in. While the insert operation allows

building a document from the top down by adding new leaf nodes and/or subtrees,

splice-in builds a document from the bottom up, by adding new nodes that contain

existing nodes. Specifically, a sequence of consecutive child nodes (or the root node)

is replaced by a single node, with the replaced nodes becoming children of the new

node. This operation corresponds to the “tagging” method of markup, where markup

elements are added to an existing text [19].

Definition 2.3.13 A splice-in on the document

D = (Σ, L, T, E,A, text, label, order, attribute)

is a tuple of the form S = (splice-in, α, β, `), where:

• α = β, or α and β share a parent π with α <π β; these nodes will be children

of the new node; and

• ` ∈ L is an element name.

The result of a splice-in S on the document D is the document

S(D) =
(
Σ, L, T, E ∪ {χ} , (A ∪ (π, χ) ∪ ({χ} ×R)) \ ({π} ×R) ,

text, labelν→`, order
ν→<π |R,π→

(
<χ<απ |{ν}∪childrenπ\R

)
,

attributeχ→∅
)
,

where R is the set of children of π between α and β, inclusive, in <π; and χ is a new

element node.
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Note that there is no overlap with insert operations: (simple) inserts add only

leaf nodes, while splice-in operations always add nodes with at least one child. In

particular, this fact means that splice-in operations are not sufficient to construct a

tree, as they provide no means of adding a first node to the tree, nor of increasing the

maximum out-degree of nodes in an existing tree. We shall see later, in Definition

3.3.5, that a variant of the splice-in operation on multihierarchical documents can

allow inserting nodes anywhere in the document, including as leaves.

Copyright c© Neil Moore, 2012.
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Chapter 3 Multihierarchical text: encodings and models

In 1990, DeRose et al. introduced a model of text as an “Ordered Hierarchy of Content

Objects” (OHCO), a model that is now reflected in XML. Even as early as this

paper, however, it was clear that the OHCO model was insufficient for some purposes,

as “many documents have more than one useful structure” [22]. The problem of

modelling and encoding documents with such multiple hierarchies has, in the two

decades since the DeRose paper, seen many often incompatible solutions.

A few years after the OHCO paper, several of its authors published an article [58]

arguing that the notion of text as an ordered hierarchy is flawed. The authors suggest

a series of extensions of the OHCO thesis that account for some of the difficulties

presented by multiple hierarchies:

OHCO: Text is an ordered hierarchy of content objects. [22]

OHCO-2: An analytical perspective on a text determines an ordered

hierarchy of content objects. [58]

OHCO-3: Analytical perspectives can be decomposed into hierarchies:

for every distinct pair of objects x and y that overlap in the structure

determined by some perspective P (1), there exist diverse perspectives

P (2) and P (3) such that P (2) and P (3) are sub-perspectives of P (1) and

x is an object in P (2) and not in P (3) and y is an object in P (3) and not

in P (2). [58]

Unfortunately, as the authors note, each of these theses itself has flaws. OHCO-

2 claims, essentially, that a document can be treated as a collection of hierarchical

views, each associated with a particular analytical perspective. However, the notion

of enjambment, wherein a syntactic structure spans portions of two or more lines of

verse, reflects an inherently non-hierarchical perspective of text. As a simple example,

consider the first two lines of T.S. Eliot’s famous poem The Waste Land :

<l>April is the cruellest month, <cl>breeding</l>

<l>Lilacs out of the dead land</cl>, mixing</l>

The verse structure, represented by <l> tags for verse lines, forms a hierarchy,

as does the syntactic structure, here represented by <cl> tags delimiting clauses.
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However, treating these two hierarchies as entirely separate views of the document

limits the analysis of enjambment, which as we see is inherently non-hierarchical.

The OHCO-3 thesis aims to address this issue by declaring the verse and syntactic

structures to be sub-perspectives of a unified “literary studies” perspective. However,

other situations such as self-overlap (discussed in Section 3.1.1) challenge even this

model of text, by providing examples of non-nesting overlap that cannot reasonably

be divided into sub-perspectives.

We first discuss methods of encoding documents with multiple hierarchies, includ-

ing both XML and XML-like languages; followed by data models for such documents.

Finally, we describe our model, the globally ordered GODDAG, which brings to-

gether a number of the existing data models.

3.1 Encoding multiple hierarchies

Although XML documents are modeled as trees, documents are usually stored, trans-

ferred, and often even edited, in their serialized form: strings of characters containing

tags and text. The hierarchical form of XML documents corresponds to certain con-

straints on the components of these strings, in particular the nesting of tags. By

relaxing these constraints, or by using alternative serializations that lack them, it

is possible to produce a markup language that can represent at least some kinds

of overlapping features. Alternatively, overlapping features can be encoded in ordi-

nary hierarchical XML documents by a variety of means, although ordinary XML

processing tools can typically manipulate the multiple hierarchies only indirectly.

Of course, even if we have a serialized representation for multihierarchical docu-

ments, processing and reasoning about them requires a model. In XML, this represen-

tation is the tree structure of the Document Object Model (DOM) [4], but non-nested

overlap results in documents that cannot be represented as trees. We shall consider a

number of such models later, in Section 3.2. The encodings described in the present

section may be used to store and exchange documents belonging to many models.

They can therefore, with certain caveats we address later, also serve as a medium for

converting among those models.

3.1.1 Non-nested tags

Recall from Section 2.1.1 that a hierarchical document may be serialized, as in XML,

as a string consisting of text, start tags, and end tags; start tags and end tags ap-

pear in pairs representing elements, with (the serialization of) an element’s content
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appearing between its tags. Naturally, a start tag precedes its corresponding end tag.

Furthermore, the hierarchical nature of XML results in tags being nested: if s1, e1

are the start and end tags of element ν1, and s2, e2 of ν2, then they appear in one of

the following orders:

• s1e1s2e2 (ν1 precedes ν2)

• s2e2s1e1 (ν1 follows ν2)

• s1s2e2e1 (ν1 is an ancestor of ν2)

• s2s1e1e2 (ν1 is a descendant of ν2)

In particular, s1s2e1e2 and s2s1e2e1 are disallowed.

In some ways, the simplest approach to the problem of encoding multiple hier-

archies is to remove this nesting constraint, while maintaining the requirement that

tags occur in pairs with the start tag following the end tag. We call the resulting

superset of XML pseudo-XML [19]. As with XML, an element’s content is the set

of nodes that occur between its start and end tags. Unlike XML, it is possible for only

part of an element B (for example, its start tag) to occur between the tags of element

A; in this case we do not say that B is part of A’s content, though they may in fact

share content; instead we say that A and B overlap.1 Of course, it is not possible to

use standard XML-processing tools with such documents, because conforming XML-

processing tools are required to reject documents with improperly nested tags [9].

However, approaches such as just-in-time trees [25] allow reconstructing hierarchies

at the time of document processing rather than parsing, allowing XML-based tools

to be used for processing the resulting hierarchies.

Since pseudo-XML documents are not processed directly by standard XML tools,

it is not necessary to retain the same syntax as XML. For example, the TexMECS

language [37] uses tags of the form “<start|” and “|end>,” as well as additional

syntax to encode features that represent discontinuous [62] and unordered elements.

Another language, the Layered Markup and Annotation Language (LMNL) [66], uses

tags of the form “{start|” and “{end|” instead, and furthermore allows annotations

(the equivalent of attributes) to themselves contain hierarchical structures. At least

some extensions to the XML syntax are necessary to represent certain kinds of overlap

with non-nested tags. For example, if an element overlaps another element with the

1Though one could take the term “overlap” to include case where two elements share content,
including when one element is nested within another, we do not do so. We instead use the term
“intersect” or “intersection” when we wish to include both nesting and proper overlap.
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same name—so-called self-overlap—straightforward encodings such as pseudo-XML

are likely to be ambiguous.

(a) No longer necessary
(b) No longer necessary
Figure 3.1: Self-overlapping and nested strike-through. In the absence of special
support for self-overlap, (a) and (b) would have the same serialization “<strike>no
<strike>longer</strike> necessary</strike>”.

For example, to represent the text “no longer necessary” with the substrings “no

longer” and “longer necessary” separately stricken out (Figure 3.1(a)), we would ex-

pect “<strike>no <strike>longer</strike> necessary </strike>”. However,

this string is identical to the serialization of a text where “no longer necessary” and

“longer” are stricken (Figure 3.1(b)). Alternative syntaxes can help solve this prob-

lem, by adding an additional identifier to the representation of both start and end tags

of self-overlapping elements; a start tag then only corresponds to the end tags with a

matching identifier. For example, in TexMECS [37], tags may have a suffix separated

from the element name by a tilde; tags only match (forming an element) if the start

and end tags have the same suffix. Suffixes in TexMECS need not be unique; rather,

tags with the same suffix (including no suffix) are assumed to be nested with respect

to one another; so in TexMECS, the first situation could be encoded as “<strike|no

<strike~1|longer|strike> necessary |strike~1>,” while the second could be sim-

ply “<strike|no <strike|longer|strike> necessary |strike>”, or for more clarity

“<strike|no <strike~1|longer|strike~1> necessary |strike>”.

Another problematic situation, present in pseudo-XML as well as both TexMECS

and LMNL, is spurious overlap: the representation of two elements as overlapping

when they could equivalently be represented as non-overlapping. Sperberg-McQueen

and Huitfeldt [61] define spurious overlap to occur when two elements overlap, but

either the overlapping region of the document or the region of the document exclusive

to one of the elements is empty. In the former case (Figure 3.2(a)), the same contain-

(a) <link>edit<suffix></link>ed</suffix>
(b) <link>edit</link><suffix>ed</suffix>

Figure 3.2: Spurious overlap. (a) Elements link and suffix spuriously overlap. (b) A
non-overlapping document fragment with the same containment relations.
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(a) <link><verb>edit</link></verb>
(b) <link><verb>edit</verb></link>

Figure 3.3: Complete overlap. (a) Elements link and verb overlap but have exactly
the same content. (b) Removing the overlap introduces a containment relationship
between link and verb.

ment relations can be represented with two adjacent but non-overlapping elements

(Figure 3.2(b)). The latter case (Figure 3.3(a)) is more difficult, however, as the

“obvious” solution of nesting one element within the other (Figure 3.3(b)) changes

the containment relations among elements, though not between elements and text

nodes. In fact, it is not clear that this case is spurious at all: it may be important

to represent two or more elements that have the same content, without claiming that

any of the elements is in fact nested within another [52]. Therefore, we use the term

to refer only to the first situation.

Definition 3.1.1 Two elements e1 and e2 in a tag-based serialization of a multihier-

archical document spuriously overlap if the start tag for e2 immediately precedes

the end tag for e1, or if the start tag for e1 immediately precedes the end tag for e2.

We return to the topic of spurious overlap in Section 3.3, where we consider a

model of markup with a serialization that avoids such spurious overlap.

3.1.2 Encoding multiple hierarchies in XML

Although enhanced markup languages, such as those discussed in the previous sec-

tion, can effectively represent many kinds of multihierarchical structures, they have

a significant disadvantage in that documents encoded in such languages cannot be

processed by the wealth of existing tools based on XML. The Text Encoding Initia-

tive guidelines [65] suggest four methods of representing multihierarchical documents

within the XML framework [64].

Multiple encoding

By far the simplest method of encoding multiple hierarchies is to encode each hierar-

chy separately. The document, then, contains one or more “root” elements, one per

hierarchy, along with an actual root element containing all these hierarchy roots. The

textual content of each hierarchy is the same, though it may be divided differently

into text nodes.
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<poem>
<lg><l>April is the cruellest month, breeding</l>
<l>Lilacs out of the dead land, mixing</l>
<l>Memory and desire, stirring</l>
<l>Dull roots with spring rain.</l>

</lg>
<seg>April is the cruellest month, <cl>breeding

Lilacs out of the dead land</cl>, <cl>mixing
Memory and desire</cl>, <cl>stirring
Dull roots with spring rain</cl>.

</seg>
. . .
</poem>

Figure 3.4: Multiple encoding of multiple hierarchies

Encoding multiple hierarchies in this way has a number of disadvantages. The

duplication of text, once per hierarchy, invites inconsistency when the document is

updated. Any change made to the text in one tree (including deleting elements in

that tree) must be replicated in each other tree; failure to do so results in hierarchies

that describe different documents. Worse, cross-hierarchy queries, such as searches

for instances of enjambment or even for words occurring within lines of poetry, are

difficult or impossible in this representation.

One possible XPath extension to help support such queries is an axis that nav-

igates from text nodes in one hierarchy to the corresponding text nodes in other

hierarchies. However, because each hierarchy divides text into text nodes in its own

way, such an axis is not usually be one-to-one, even when restricted to two hierarchies.

For example, in Figure 3.4, the text node “breeding Lilacs out of the dead land” from

the second (red) hierarchy corresponds to two text nodes from the first (blue) hier-

archy: “April is. . . ” and “Lilacs out. . . ”; each of these nodes, in turn, corresponds

to two or three text nodes from the second hierarchy. Some progress is possible by

implicitly fragmenting text nodes so as to contain only sequences of characters that

appear contiguously, with no intervening tags, in all hierarchies; then text nodes may

be placed in one-to-one correspondence with those from another hierarchy.

Fragmentation

The fragmentation of text nodes suggested above can be extended to elements

as well. Doing so makes it possible to represent the underlying text only once, with

markup elements from all the hierarchies interspersed among one another. Essentially,
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one dominant hierarchy is encoded normally, while elements of the other hierarchy are

divided as necessary to allow their parts to nest within elements of the first hierarchy.

<poem>
<lg><seg><l>April is the cruellest month, <cl
part="I">breeding</cl></l>
<l><cl part="F">Lilacs out of the dead land</cl>,

<cl part="I">mixing</cl></l>
<l><cl part="F">Memory and desire</cl>,

<cl part="I">stirring</cl></l>
<l><cl part="F">Dull roots with spring rain</cl>.</l></seg>

</lg> . . .
</poem>

Figure 3.5: TEI fragmentation encoding of multiple hierarchies, with (I)nitial,
(M)edial, and (F)inal fragments.

Users of this encoding must take care when fragmenting elements. With text

nodes, fragmentation could be applied arbitrarily without changing the appearance

or meaning of the document; two consecutive text nodes are encoded and interpreted

no differently from a single text node containing the concatenation of their text. The

same can be true for some kinds of elements, particularly those such as “in an italic

typeface” with what we might call intensive semantics; that is, those that express

that their content has some property. However, many if not most types of elements

have extensive semantics, indicating that their content forms some particular object

or quantity. For example, in Figure 3.5, the first line of the poem contains a <cl>

element (ostensibly representing a clause) that contains only the text “breeding”;

this text, however, is not a clause, but only part of one. In order to maintain the

proper sense of elements such as <cl>, the fragmented elements must somehow

be distinguished from stand-alone elements; and the fragments must somehow be

associated with one another so that they can be (at least conceptually) reassembled

into coherent units.

The TEI guidelines provide two ways of labelling fragments to support such vir-

tual joins. The simpler, but less widely applicable, method is demonstrated in Figure

3.5: certain TEI elements may contain a part attribute that indicates the element

represents only the (I)nitial, a (M)edial, or the (F)inal portion of a feature. However,

this method is not supported for element types that may self-nest or self-overlap,

because in such a situation fragments of a virtual element may appear between the

initial and final fragments of another virtual element of the same type (i.e. with the

same element name).
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<poem>
<lg><seg><l>April is the cruellest month, <cl xml:id="cl01"

next="#cl02">breeding</cl></l>
<l><cl xml:id="cl02" prev="#cl01">Lilacs out of the dead land</cl>,

<cl xml:id="cl03" next="#cl04">mixing</cl></l>
<l><cl xml:id="cl04" prev="#cl03">Memory and desire</cl>,

<cl xml:id="cl05" next="#cl06">stirring</cl></l>
<l><cl xml:id="cl06" prev="#cl05">Dull roots with spring

rain</cl>.</l></seg>
</lg> . . .
</poem>

Figure 3.6: TEI fragmentation encoding of multiple hierarchies, with chaining

More general situations may be represented by chaining, demonstrated in Figure

3.6. In this method of encoding virtual joins, each fragment has a unique identifier as

well as references to the identifier of the previous and next fragments of the virtual

element. The virtual element may then be reconstructed by following the chain of

next pointers from the first element. Other, less direct but just as general, methods

of expressing virtual joins are discussed in Section 3.1.2.

Cross-hierarchy queries are much simpler with fragmentation encoding than with

multiple encoding. For example, if the verse hierarchy is primary and the syntactic

hierarchy secondary, instances of enjambment may be found by searching for clause

fragments that occur within a different line from the preceding fragment of the same

clause. However, XPath alone is not sufficient for such a query, because it is not in

general possible to express both that the two lines are in fact distinct and that the

two fragments belong to the same virtual element.

Milestones

Milestone elements or boundary marking is a third, and one of the most popu-

lar [21], means of representing multiple hierarchies in XML. As with fragmentation,

one hierarchy is typically encoded normally. Features in other hierarchies are then

represented by empty elements called milestones representing the beginning and

end of each element. In fact, it is possible to avoid privileging one hierarchy by using

milestone encodings for all hierarchies.

Milestone encodings, like fragmentation encodings, can be made to support self-

overlap. As with non-XML encodings such as TexMECS [37], milestone encodings

can disambiguate self-overlapping markup by adding to each milestone element an
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<poem>
<lg><anchor type="delimiter" subtype="sentenceStart"/>
<l>April is the cruellest month,

<anchor type="delimiter" subtype="clStart"/>breeding</l>
<l>Lilacs out of the dead land<anchor type="delimiter" subtype="clEnd"/>,

<anchor type="delimiter" subtype="clStart"/>mixing</l>
<l>Memory and desire<anchor type="delimiter" subtype="clEnd"/>,

<anchor type="delimiter" subtype="clStart"/>stirring</l>
<l>Dull roots with spring rain<anchor type="delimiter" subtype="clEnd"/>.
</l> <anchor type="delimiter" subtype="sentenceEnd"/></lg> . . .
</poem>

Figure 3.7: Milestone encoding of multiple hierarchies

attribute that uniquely identifies its matching milestone. For example, the trojan

milestone approach, used in the Canonical LMNL in XML (CLIX) serialization of

LMNL [21], uses attributes sID and eID to identify start and end milestones, respec-

tively. Each milestone element has exactly one of these attributes, and every value

of such an attribute occurs exactly twice: once as the value of sID, and once as the

value of eID. A pair of milestones represents a virtual markup element if and only if

the sID of the first is equal to the eID of the second.

The milestone approach is conceptually very similar to pseudo-XML, adapted to

produce well formed XML documents by replacing the improperly nested tags with

an entire element representing each tag. It is therefore straightforward to convert

between pseudo-XML and related languages and milestone encodings; in fact, par-

ticularly if milestones are used uniformly across hierarchies, the conversion can be

done entirely at the lexical level, without regard for the large-scale structure of the

document.

Standoff markup

Standoff markup is the fourth and final method proposed in the TEI guidelines for

encoding multiple hierarchies. A single hierarchy of the document is selected as the

link base. Other hierarchies may be specified elsewhere in the document, or even in

other documents; they contain, rather than text, pointers to ranges of elements or of

text characters in the first hierarchy, using a notation such as XPointer [32]. In some

models, such as XStandoff [63], the link base may be just the text of the document,

with each hierarchy containing pointers to ranges of characters in the text.
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Standoff markup combines features of fragmentation and of multiple encoding.

As with fragmentation, elements from hierarchies other than the link base can be

thought of a virtual joins of ranges of elements from a single hierarchy. As with

multiple encoding, hierarchies other than the link base are stored separately from it,

with elements nested as in an ordinary single-hierarchy document without interference

from other markup layers.

Although standoff markup avoids duplicating text, it still requires considerable

work to synchronize the representations of the various hierarchies. If a node in the

link base is deleted or moved, it is necessary to update every range that has that

node as an endpoint. Likewise, if pointers reference ranges of text characters rather

than of elements, modifying the text is likely to require updating a large number

of pointers (in an implementation using integer character indices, potentially every

character range ending after the modified text).

3.2 Models of multihierarchical documents

3.2.1 Concurrent hierarchies

One model of multihierarchical markup, concurrent hierarchies, represents docu-

ments as a collection of markup hierarchies over the same underlying text. This model

reflects the OHCO-2 or OHCO-3 thesis, that analytical perspectives correspond to

or may be decomposed into hierarchies.

<poem>
<(V)lg>
<(S)seg><(V)l>April is the cruellest month, <(S)cl>breeding</(V)l>
<(V)l>Lilacs out of the dead land</(S)cl>, <(S)cl>mixing</(S)(V)l>
<(V)l>Memory and desire</(S)cl>,<(S)cl>stirring</(V)l>
<(V)l>Dull roots with spring rain</(S)cl>.</(V)l></(S)seg>

</(V)lg> . . .
</poem>

Figure 3.8: CONCUR encoding of multiple hierarchies: S (syntax) and V (verse
structure)

XML’s predecessor SGML has, with its CONCUR feature, supported concurrent

hierarchies from the outset [39]. CONCUR allows markup tags to be annotated with

the name of the schema (document type definition) or instance of a schema to which

they belong (Figure 3.8). When constructing a tree for the document, only one

schema instance is used, with tags belonging to other schemata and other instances
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of the same schema being ignored. This method allows a single SGML document to

represent concurrent hierarchies over the document text, with one schema instance

for each hierarchy. However, CONCUR is an optional feature, not supported by

all or even most SGML processing systems [58], and the SGML developers have

argued against its use for representing “multiple logical views of a document” [30].

CONCUR has never been included in XML, although there exist XML extensions

such as MULAX [35] that add a CONCUR feature.

Other models of concurrent hierarchies include distributed XML [16]. In this

model, a multihierarchical document is a collection of XML documents, each associ-

ated with a schema, such that the documents

• share a single root node; and

• have the same underlying text.

In a document with concurrent hierarchies, relationships among nodes in the same

hierarchy may be expressed in the ordinary language of XML. Relationships among

nodes from separate hierarchies are more complex, but may be described in terms of

the (shared) text content of the nodes [21, 20], allowing for cross-hierarchy queries.

For example, a node A may be said to contain a node B from a different hierarchy if

every text node descendant of B is also a descendant of A.

Documents with concurrent hierarchies may be represented as graphs [38], in par-

ticular using the generalized ordered-descendant directed acyclic graph (GODDAG)

structure of Sperberg-McQueen and Huitfeldt [61], described in detail in Section 3.2.3.

However, concurrent hierarchies do not exhibit the full generalities of multihierar-

chical markup. In particular, self-overlap is difficult to represent: two overlapping

elements must be assigned to different schema instances, even if they share the same

name and should therefore logically belong to the same schema. This problem ulti-

mately reflects the limitations of the OHCO-3 model: some annotation perspectives

cannot logically be divided into hierarchies.

3.2.2 Overlapping ranges

One way to model more general forms of multihierarchical markup is to return to the

serialization, based on non-nested tags, described in Section 3.1.1. This serialization,

where elements contain the objects (elements or text nodes) that fall between a pair of

start and end tags, immediately suggests a model of markup in terms of overlapping

intervals in some coordinate system over the document’s text.
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A number of coordinate systems are possible. One possibility, used in the core

range algebra formalism [57], is to assign an integer position to each character in the

document. Markup elements are then associated with intervals of integers, with a

range containing a character if the interval contains that character’s position. There

are difficulties, however, in using integer ranges of characters to represent some forms

of markup. In particular, such a representation of element containment does not

distinguish between two elements containing the same text, even though one element

might contain the other. Likewise, it is difficult to represent elements with no text

content, which occur between consecutive text nodes and thus correspond to empty

intervals at different positions in the document. Particularly difficult are subtrees of

elements containing no characters; in this case, every element in the subtree corre-

sponds to the same empty interval, and the relationships of the elements are lost.

One solution to these problems is to represent ranges as intervals of real numbers,

with characters continuing to corresponding to integers. Then two elements may be

represented by intervals with distinct endpoints, even if they contain the same char-

acters, allowing disambiguation of their nesting (and order) relationships. Likewise,

elements between two consecutive characters may be represented by subintervals of

the open interval between characters; since such a nonempty open interval is home-

omorphic to the real line, any relationships that may be expressed among elements

with content may also be expressed among such elements.

Alternatively, integer positions may be assigned in sequence to lexical tokens of the

document (start tags, end tags, and contiguous sequences of text), with an element’s

range being the open interval of the integers between the positions of its start and

end tags. Since each element’s range has endpoints distinct from those of every other

element, the relationships among elements, even those containing no text, is always

unambiguous.

Finally, for text associated with a digitized image, for example in an image-based

electronic edition [19], it may be possible to use pixel or sub-pixel coordinates within

the image [18]. One advantage of this method is that is allows for visualization of

markup directly on the image whose features that markup describes [41, 42]. However,

effort is required to define mappings between image regions and lines of text, in order

to create a linear coordinate system for markup; and between pixel coordinates and

characters, so that those characters may be put in relationship with the markup

ranges [18].
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3.2.3 Ordered DAGs

Rather than using XML’s serialized form as the basis for a model of multiple hierar-

chies, we may begin with the tree structure of XML. Generalizing this tree structure

to allow directed acyclic graphs yields an initially straightforward model of multi-

hierarchical markup, general enough to represent many types of structures, including

distributed markup.

Definition 3.2.1 An ordered directed acyclic graph (ordered DAG) is a tuple

(V,A, order), where V is a set of nodes, A ⊂ V 2 is an acyclic relation on nodes known

as the arc or child relation, and order : V → P(V 2) is a function associating with

each node of V a strict total order on the children of that node.

Ordered trees, such as those of our hierarchical document model, are special cases

of ordered DAGs containing a single root node ρ with exactly one path from ρ to

each node. Extending our definition of hierarchical documents (Definition 2.1.3) to

ordered DAGs is straightforward; the only change is to loosen the restriction on the

set A of arcs in the document’s graph, and to account for the potential presence of

multiple root nodes.

Definition 3.2.2 A ordered DAG document is a tuple

D = (Σ, L, T, E,A, text, label, order, attribute) ,

where:

• Σ is the text alphabet;

• L is a set of element and attribute labels;

• T is a set of terminal or text nodes;

• E is a set of nonterminal or element nodes, with T ∩ E = ∅;

• A ⊂ E × (T ∪ E) is a set of arcs from elements to nodes such that (T ∪ E,A)

is an acyclic directed graph;

• text is a function from T to Σ+;

• label is a function from E to L;

• order is a function from nodes of T ∪E to strict total orders over those nodes’

children in A; and
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• attribute is a function mapping elements in E to partial functions from attribute

keys in L to values in Σ∗.

We write roots(D) for the set of nodes in T ∪E that do not have parents; this set

is empty if and only if T ∪ E is empty.

The ordered DAG associated with a document D is odag(D) = (T ∪ E,A, order) .

C

A
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1 2

1 2
<B

<A

>C
2 1

ed

Figure 3.9: Inconsistent sibling axes in an ordered DAG. Numbers on edges represent
the child order at the parent node. The node e is both a following-sibling and a
preceding-sibling of d.

A

B
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e

d

Figure 3.10: Intersecting axes in an ordered DAG. The node C is both a child and
a following-sibling of B.

Axes similar to those of standard XPath may be defined for ordered DAGs, but the

more general document structure requires some compromise. Most importantly, there

is no unique way to order nodes; even if two nodes share a common ancestor, different

paths from that ancestor to those nodes may suggest different orders. As a result,

the following and preceding axes (and likewise following-sibling and preceding-sibling

are no longer disjoint with one another (Figure 3.9), nor with the child and parent

axes (Figure 3.10). In fact, under the definition of the follows relation we used for

hierarchical documents (Definition 2.1.5), a node would follow itself whenever it has

two ancestors that share a common parent (Figure 3.11). For these reasons, we
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Figure 3.11: Self-following in an ordered DAG. Under the tree-based definition of
preceding and following nodes, the node d follows itself, since its ancestor C is a
following-sibling of its ancestor B.

temporarily put aside consideration of these axes until we more thoroughly explore

the notion of order on multihierarchical documents.

Definition 3.2.3 An unordered axis on an ordered DAG is one of the following

relationships on the set of nodes:

• self = {(ν, ν)| ν ∈ N}

• parent = {(µ, ν)| µ→ ν} = A

• child = {(µ, ν)| ν → µ} = A−1

• ancestor-or-self = {(µ, ν)| µ→∗ ν}

• descendant-or-self = {(µ, ν)| ν →∗ µ}

• ancestor = {(µ, ν)| µ→+ ν}

• descendant = {(µ, ν)| ν →+ µ}

The inconsistencies inherent in extending these originally tree-based relations to

a more general document structure lead to a desire for a more restricted form of

multihierarchical document, still generalizing XML while preserving more properties

of the axis relations. One DAG-based model that aims to address these concerns is

the generalized ordered-descendant directed acyclic graph (GODDAG) of Sperberg-

McQueen and Huitfeldt [61].

In its most general form, a GODDAG is simply an ordered DAG document with

the additional restriction that the child relation be antitransitive (no node dominates

another node both directly and indirectly). This restriction eliminates cases such

as Figure 3.10 where two nodes have both a parent-child and a sibling relationship;
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and furthermore ensures that the child axis can be reconstructed from the descendant

relation by taking its transitive reduction. In the original definition of GODDAG,

leaf and non-leaf nodes are strictly separated, with leaves always corresponding to

text nodes, and otherwise empty elements containing an empty text node. In order

to avoid the necessity of empty text nodes, we instead require only that text nodes

be leaves (and not that leaves be text nodes).

Definition 3.2.4 A GODDAG is an ordered DAG document

(Σ, L, T, E,A, text, label, order, attribute)

such that A is antitransitive: if (a0, a1), (a1, a2), . . . , (an−1, an) ∈ A, with (n > 1),

then (a0, an) 6∈ A.

Since the GODDAG structure still permits inconsistent orders (such as in Figure

3.9), Sperberg-McQueen and Huitfeldt furthermore defined the restricted GOD-

DAG [61], which replaces the child order with a total order on the set of leaf nodes,

along with two constraints on the sets of leaf nodes contained within elements. We

begin with a slightly relaxed version of the restricted GODDAG that has only one

of these constraints. This definition is very similar to the definition of ordered DAG

documents (Definition 3.2.2), with the order function replaced with a total order <T

on the leaf nodes.

Definition 3.2.5 A semi-restricted GODDAG is a tuple

D = (Σ, L, T, E,A,<T , text, label, attribute) ,

where:

• Σ is the text alphabet;

• L is a set of element and attribute labels;

• T is a set of terminal or text nodes;

• E is a set of nonterminal or element nodes, with T ∩ E = ∅;

• A ⊂ E × (T ∪ E) is a set of arcs from elements to nodes such that (T ∪ E,A)

is an acyclic directed graph;

• <T⊂ T 2 is a strict total order, the leaf order, on T ;
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• text is a function from T to Σ+;

• label is a function from E to L; and

• attribute is a function mapping elements in E to partial functions from attribute

keys in L to values in Σ∗;

that furthermore satisfies the leaf contiguity constraint: If ν ∈ E and α <T β <T

γ ∈ T , and α and γ are descendants of ν in A, then β is also a descendant of ν.

The set of leaves reachable from a node ν ∈ T ∪ E is called the frontier of ν,

denoted by frontier(ν).

The restricted GODDAG further adds a uniqueness constraint. The strict sep-

aration of leaf and internal nodes, which we disregarded in our description of the

GODDAG, also becomes important for the properties of the restricted GODDAG, so

we include it here.

Definition 3.2.6 A restricted GODDAG is a semi-restricted GODDAG that also

satisfied the constraints:

1. (Uniqueness) No two elements have the same frontier. For any two nodes µ, ν ∈
E, at least one of frontier(µ)\frontier(ν) and frontier(ν)\frontier(µ) is nonempty.

2. (Leaves) No element is a leaf node.

The leaf order and the uniqueness criterion allow us to define a more consistent

document order.

Definition 3.2.7 Let A and B be two nodes of a restricted GODDAG D. We say

that A precedes B (A <D B) if frontier(A) \ frontier(B) contains a leaf that precedes

in <T every leaf in frontier(B) \ frontier(A), and frontier(B) \ frontier(A) contains a

leaf that follows in <T every leaf in frontier(A) \ frontier(B).

This definition gives us a variant of the orthogonality property of hierarchical

documents (Lemma 2.1.1).

Lemma 3.2.1 Let A and B be two distinct nodes of a restricted GODDAG D. Then

exactly one of the following is true: A <D B; B <D A; A dominates every leaf node

that B dominates; or B dominates every leaf node that A dominates.
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Proof: Because of the uniqueness constraint, either or both of FA = frontier(A) \
frontier(B) and FB = frontier(B) \ frontier(A) are non-empty.

If FA is empty, then B dominates every node that A dominates; if FB is empty,

then A dominates every node that B dominates. In neither case can A precede B, as

doing so requires that both FA and FB be non-empty. Furthermore, by the uniqueness

constraint FA and FB cannot both be empty.

Now consider the case where FA and FB are both nonempty; we must show that

either A precedes B or B precedes A. By the definition of precedence, this case is

equivalent to stating that the smallest and largest members of FA∪FB do not appear

in the same set. But if they did both occur in A, then by contiguity A would dominate

every leaf node that B dominates, and FB would be empty. Hence either the smallest

element is in A and the largest in B, in which case A precedes B; or vice versa, with

B preceding A. �

Furthermore, the <D relation allows us to define the missing XPath axes for

restricted GODDAGs. Overlapping nodes are those that share descendants without

themselves having an ancestor/descendant relationship.

Definition 3.2.8 An axis on a restricted GODDAG D is one of the following:

• One of the unordered axes (Definition 3.2.3); none of these definitions refers

to the child order of an ordered DAG, so each may be applied to the restricted

GODDAG unchanged.

• following = {(µ, ν)| µ >D ν}

• preceding = {(µ, ν)| µ <D ν}

• following-sibling = {(µ, ν) ∈ following| µ and ν have a parent in common}

• preceding-sibling = {(µ, ν) ∈ preceding| µ and ν have a parent in common}

• following-overlap = {(µ, ν) ∈ following| µ and ν have a descendant in common}

• preceding-overlap = {(µ, ν) ∈ preceding| µ and ν have a descendant in common}

• following-strict = following \ following-overlap

• preceding-strict = preceding \ preceding-overlap
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Figure 3.12: Containment relationships in a restricted GODDAG. Although A con-
tains every leaf node that C contains, it does not contain C itself.

Note that the condition in Theorem 3.2.1 is not that A dominates B, but rather

that A dominates every leaf node that B dominates. It is entirely possible for the

latter to be true without the former being so; for example, consider the nodes A and

C in Figure 3.12. Such a situation poses a problem for tag-based serializations: the

relationship among the start and end tags of A and C is the same as if A dominated

C, so it is impossible to determine from the serialization whether there is in fact an

edge from A to C.

B

A

s

Figure 3.13: A non-example of a restricted GODDAG. A and B contain the same
set of text nodes, violating the uniqueness constraint.

Although the uniqueness and leaf constraints establish an order on elements based

on the sets of text nodes they contain, this order comes at a cost. Certain situations,

such as an element with another element as its only child (Figure 3.13), are impossible

to represent under this constraint. The usual solution, demonstrated in Figure 3.14, is

to use empty text nodes to disambiguate the relationship [52, 61]. Since the encoding

of an empty text node is simply the empty string, these nodes do not change the

serialization of the document. Care must be taken to add them in appropriate places

when de-serializing a document; one possibility is to add empty text nodes between

all adjacent pairs of tags [61].
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Figure 3.14: Figure 3.13 corrected to form a restricted GODDAG. The nodes r and
t are empty text nodes, with text(r) = text(t) = ε. Either r or t, but not both, may
be omitted.

3.3 Resolving inconsistencies in the GODDAG: global order

The infelicities described in Figures 3.12 and 3.13 motivate us to put forward a

different DAG-based model for markup, the globally ordered GODDAG [55]. We

maintain the per-node child order of the generalized GODDAG, but also introduce a

global document order with which it must be compatible. An additional orthogonality

constraint ensures that, as in XML, each node partitions the set of other nodes into

four sets: those that follow, precede, dominate, and are dominated by that node.

Definition 3.3.1 A globally ordered GODDAG (GOG) is a pair (G,<G) where

G is a GODDAG and <G is a strict partial order on the nodes of G such that:

1. (Compatibility) The child order <ν at each node ν ∈ T ∪E is the restriction of

<G to the children of ν.

2. (Orthogonality) For any nodes µ, ν ∈ G, exactly one of the following is true:

µ = ν, µ→+ ν, ν →+ µ, µ <G ν, or ν <G µ.

We begin by proving two properties of globally ordered GODDAGs that are im-

portant to the connection between GOGs and markup serialization in Section 3.3.4.

First, we show that the globally ordered GODDAG satisfies a contiguity constraint

analogous to that of the restricted GODDAG, but applying to all descendants, not

just leaves.

Theorem 3.3.1 A globally ordered GODDAG (G,<G) is globally contiguous: If

π, α, β, γ ∈ (T ∪ E) such that π →+ α, π →+ γ, and α <G β <G γ, then π →+ β.
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Proof: Let π, α, β, γ ∈ (T ∪ E) satisfy the antecedent. Now consider the relation

between π and β. If π <G β then π <G γ by transitivity, contradicting orthogonality

between π and γ. Likewise, if β <G π then α <G π, contradicting orthogonality

between π and α. Finally, if β →+ π, then by transitivity β →+ α, contradicting

orthogonality between α and β. By orthogonality between π and β, then, we have

that π →+ β. �

Orthogonality results in the global order being compatible with the ancestor re-

lation in another way. Given two nodes related by <G, the descendants of the earlier

node alone precede (or are ancestors of) the common descendants of the two nodes,

which in turn precede (or are descendants of) the descendants of the later node alone;

and likewise for ancestors.

Theorem 3.3.2 Let µ and ν be two nodes of a globally ordered GODDAG (G,<G),

with µ <G ν. Every descendant of µ but not of ν precedes or is an ancestor of every

descendant of ν; every descendant of ν but not of µ follows or is an ancestor of every

descendant of µ; every ancestor of µ but not of ν precedes or is a descendant of every

ancestor of ν; and every ancestor of ν but not of µ follows or is an descendant of

every ancestor of µ.

Proof: We prove only the first statement; the others have analogous proofs. Let

µ, ν, α, β ∈ G such that µ <G ν, µ →+ α, ν 6→+ α, and ν →+ β. By transitivity, if

ν <G α then µ <G α, and if α→+ ν then µ→+ ν, both contradicting orthogonality.

Hence α <G ν. Again by transitivity, if β <G α then β <G ν, and if β →+ α then

ν →+ α, both contradicting orthogonality. Therefore either α→+ β or α <G β. �

The global order constraints are strictly stronger than the constraints on semi-

restricted GODDAGs.

Theorem 3.3.3 Each globally ordered GODDAG is a semi-restricted GODDAG.

Proof: Let <L be the restriction of the partial order <G to the leaf nodes of G.

Let x and y be two distinct leaf nodes of G; then neither x→+ y nor y →+ x, so by

orthogonality either x <L y or y <L x. Hence <L is a strict total order. Furthermore,

global contiguity implies the weaker contiguity constraint on <L. Hence G is a semi-

restricted GODDAG with leaf order <L. �
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Theorem 3.3.4 There exist restricted (and therefore semi-restricted) GODDAGs

that are not globally ordered.

Proof: Consider the GODDAG G in Figure 3.12 (page 48). Each of the non-

terminal nodes A, B, C, and D dominates a different, contiguous, subrange of the

terminal nodes p <L r <L s; hence G is a restricted GODDAG. Now suppose G were

globally ordered by <G. The compatibility constraint requires, among other relations,

that C <G D and p <G r. Then there are three possibilities for the relationships

among p, C, and s:

• If p <G C <G s, then contiguity is violated: A should dominate C, but it does

not.

• If s <G C then s <G C <G D, violating orthogonality because D →+ s.

• If C <G p then C <G p <G r, violating orthogonality, because C →+ r.

Since no choice of relationships between p and C and between s and C satisfies all of

the constraints of Definition 3.3.1, G is not globally ordered. �

3.3.1 XPath on globally ordered GODDAGs

The order relation <G on GOGs allows us to define the ordered XPath axes. Other

than using the global order <G rather than the extension <D of the child order, the

axes are defined identically to the axes on restricted GODDAGs (Definition 3.2.8).

Definition 3.3.2 An axis on a globally ordered GODDAG G is one of the following:

• One of the unordered axes (Definition 3.2.3).

• following = {(µ, ν)| µ >G ν}

• preceding = {(µ, ν)| µ <G ν}

• following-sibling = {(µ, ν) ∈ following| µ and ν have a parent in common}

• preceding-sibling = {(µ, ν) ∈ preceding| µ and ν have a parent in common}

• following-overlap = {(µ, ν) ∈ following| µ and ν have a descendant in common}

• preceding-overlap = {(µ, ν) ∈ preceding| µ and ν have a descendant in common}
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• following-strict = following \ following-overlap

• preceding-strict = preceding \ preceding-overlap

From this set of definitions, we may define the semantics of an XPath expression

on a globally ordered GODDAG. The syntax is as in Grammar 2.2.1, with the ad-

dition of new productions for the four new axes (following-overlap, preceding-overlap,

following-strict, and preceding-strict).

Definition 3.3.3 A multihierarchical core XPath expression is a string pro-

duced by Grammar 2.2.1 with the additional production

axis ⇒ following-strict
∣∣ following-overlap∣∣ preceding-strict
∣∣ preceding-overlap∣∣ descendant

∣∣ descendant-or-self

The semantics SMH[[E]]G of a multihierarchical core XPath expression E is the

function from sets of nodes from sets of nodes given by SC[[E]]G, with the semantics

of axes replaced with those from Definitions 3.2.3 and 3.3.2.

The semantics SMH[[E]] (G) of E on the globally ordered GODDAG G is⋃
ρ∈roots(G)

SMH[[E]]G (ρ).

If ν ∈ SMH[[E]] (G), we say that E matches ν in G.

We make use of these semantics when we define multihierarchical access control

policies in Section 4.5.

(a)

p r s

B

C C

A

root (b)

p r s

B

C C

A

root (c)

p r s

B

C C

A

root

Figure 3.15: Evaluating a multihierarchical XPath expression

As an example, consider the document D in Figure 3.15(a), and the path expres-

sion /descendant::C/preceding-sibling:: node() . The first location step selects descen-

dants of the root labelled C (Figure 3.15(b)). The second location step is evaluated
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in the context of those nodes and selects siblings that precede those nodes (Figure

3.15(c)): p as a sibling of the first C node (with shared parent A), and r as a sibling

of the second (with shared parent B).

3.3.2 Connection with tag- and range-based models

The new GOG structure reflects many of the constraints faced when serializing

markup in a text-and-tags form. To make the connection to serialization more clear,

and to make the constraints easier to verify, we develop an alternative formulation.

The global contiguity property of GOGs (Theorem 3.3.1) suggests that the struc-

ture avoids some of the problems encountered when attempting to serialize documents

such as the one in Figure 3.12. However, the question remains of how accurately

GOG documents may be serialized, and whether the GOG can represent all forms

of tag-and-text markup. We first note that, in the absence of empty text nodes, it

is impossible to represent spurious overlap (Definition 3.1.1) in the GOG: two nodes

overlap only if they share descendants (Figure 3.16), but a non-empty shared descen-

dant as in Figure 3.16(b) would cause the overlap to not be spurious. We consider

this limitation to be an advantage rather than a disadvantage, but it does raise the

question of whether there are other infelicities when attempting to model serializable

markup using globally ordered GODDAGs. To answer this question, we return to

the issue of modelling the text and tags serialization.

(a)

C

A

B

(b)

C

A

B

t

Figure 3.16: Spurious and non-spurious overlap. The nodes B and C overlap in both
(a) and (b), but this overlap is spurious only in (a).

The connection between serializable markup (in the TexMECS notation) and

GODDAGs was studied by Marcoux [52], who characterized the serializable GOD-

DAGs by deriving starts-before and ends-after relations on start tags and end tags

from a GODDAG’s child order: If these relations are acyclic, the document is se-

rializable. We take a similar but distinct approach, beginning with these tag order

relations and deriving from them the graph structure. In addition, unlike Marcoux,
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our construction avoids tag orders with spurious overlap; therefore, we avoid both

the ambiguity of empty text nodes and the inability to represent some documents

without using empty text nodes.

A tag-based serialization of a document with elements E and text nodes T may

be thought of as a total order <S on the tags E × {start, end} and text nodes T

of the document, where (ν, start) <S (ν, end) for every element ν. Spurious overlap

occurs when one element’s start tag is immediately before another node’s end tag. By

abstracting away the relative ordering of start tags and end tags, we can avoid this

situation by having a single representation for both adjacency and spurious overlap;

then the sequence of tags without spurious overlap can be taken as the canonical

order.

We remove the ordering between start and end tags by using two total orders

on the set of nodes, similar to the relations of Marcoux [52]. The order <o (“opens

before”) in a range GODDAG reflects the order of text nodes and start tags in

serialized markup; <c (“closes before”) reflects the order of text nodes and end tags.

Definition 3.3.4 A range GODDAG is a GODDAG along with two total orders

<o and <c over its nodes, such that:

1. (Domination) µ→+ ν if and only if µ <o ν and ν <c µ.

2. (Range compatibility) For each node ν, the restriction of <o to the children of

ν and the restriction of <c to the children of ν are both equal to the child order

<ν.

As we shall see in Theorem 3.3.7, this alternative formulation allows the GODDAG

to be reconstructed from the order relations alone. First, however, we show that the

globally ordered GODDAG and the range GODDAG are in fact equivalent structures.

Theorem 3.3.5 For each globally ordered GODDAG (G,<G), there is a correspond-

ing range GODDAG (G,<o, <c) with the same GODDAG structure G.

Proof: Let (G,<G) be a globally ordered GODDAG. Take <o to be <G ∪ →+,

and <c to be <G ∪ →+. Then <o ∩ >c= (<G ∪ →+) ∩ (>G ∪ →+). Since <G is

asymmetric, this relation is precisely the →+ relation. Thus a →+ b if and only if

a <o b and b <c a, satisfying the domination constraint.

Let a be a node of G. By antitransitivity, none of a’s children can can dominate the

another (lest a dominate a node both directly and indirectly). Hence the restrictions
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of <o and <c to this set of children is identical with the restriction of <G. Since <G

is compatible with <a, so are <o and <c. Hence the range GODDAG compatibility

constraint is satisfied.

Finally, it remains to be shown only that <o and <c are strict total orders (that

is, trichotomous and transitive). Let a and b be two distinct nodes of G. Then, by

orthogonality, exactly one of the expressions a <G b, b <G a, a →+ b, or b →+ a is

true. In each of these cases, either a <o b or b <o a is true, and either a <c b or

b <c a is true. On the other hand, neither a <o a nor a <c a is ever true. Hence both

of these orders are trichotomous.

Now we consider transitivity. Suppose we have a <o b <o c. Then either a <G b

or a→+ b; and either b <G c or b→+ c. If a <G b <G c or a→+ b→+ c it is clear by

transitivity of <G and →+ that a <o c. Therefore consider the two remaining cases:

• Suppose a <G b →+ c. It cannot be the case that c <G a, as then c <G b

by transitivity of <G, violating orthogonality between b and c (since b →+ c).

Likewise, it cannot be that c →+ a, for then b →+ a, also violating orthogo-

nality. Hence, by orthogonality between a and c, either a <G c or a →+ c, so

a <o c.

• Suppose a →+ b <G c. Again, we cannot have that c <G a, for then we would

have b <G a and violate orthogonality; and we cannot have c →+ a, for then

we would have c →+ b. By orthogonality, then, either a <G c or a →+ c, and

a <o c.

Since in every possible case we can show that a <o c, the <o relation is transitive.

Therefore it is a strict partial order. A similar case analysis, omitted here, shows that

<c is also transitive and hence a strict partial order. Therefore (G,<o, <c) is a range

GODDAG. �

Theorem 3.3.6 For each range GODDAG (G,<o, <c) there is a corresponding glob-

ally ordered GODDAG (G,<G) with the same GODDAG (graph and local order)

structure G.

Proof: Let (G,<o, <c) be a range GODDAG, and take <G=<o ∩ <c. As the inter-

section of two strict total orders, <G is itself irreflexive, asymmetric, and transitive,

and hence is a strict partial order. For each node a, both <o and <c are compatible

with <a, so their intersection is also compatible with <a. Hence the global compati-

bility constraint is satisfied.
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Given two distinct nodes a, b ∈ G, there are four possible ways they may be

related under <o and <c. Either a precedes b in both orders, so a <G b; b precedes

a in both orders, so b <G a; a precedes b in <o but follows it in <c, so a →+ b;

or a follows b in <o but precedes it in <c, so b →+ a. Since exactly one of these

is true when a 6= b, and none are true when a = b, the orthogonality constraint is

satisfied. Global contiguity is further satisfied by Theorem 3.3.1), so (G,<G) is a

globally ordered GODDAG. �

One benefit of the new definition is that the order relations alone completely

determine the GODDAG graph structure.

Theorem 3.3.7 Given a set V of nonterminal nodes and two total orders (<o, <c)

on V , there is a range GODDAG (G,<o, <c) over the nodes V ; and any two such

range GODDAGs have the same arc relation and child orders.

Proof: We begin by noting that the domination relation is uniquely determined

by <o and <c; specifically, it is the intersection of >o and <c. Along with the

antitransitivity constraint, this intersection determines the arcs of G: they are simply

the pairs in the transitive reduction → of →+.

Now consider a node a with children Ca. For our GODDAG to satisfy the range

compatibility constraint, the child order o(a) must equal the restriction of <o to Ca,

and also the restriction of <c to Ca. The child order is therefore uniquely defined, and

exists whenever the restrictions of <o and <c to Ca are equal. But they are equal:

if b <o c <c b, then b is an ancestor of c, violating antitransitivity. Hence the child

order at each node is uniquely determined. Therefore, there is (up to the labelling

function name) a unique GODDAG G such that (G,<o, <c) is a range GODDAG. �

Although Theorem 3.3.7 considers only nonterminal nodes, it is straightforward

to extend the result to documents with both terminal and nonterminal nodes, giving

the following corollary:

Corollary 3.3.1 Let N and T be disjoint sets of nonterminal and terminal nodes,

and <o and <c two total orders on N ∪ T such that every terminal node is minimal

under >o ∩ <c. Then there is a GODDAG G with nonterminal set N and terminal

set T such that (G,<o, <c) is a range GODDAG; and any two such GODDAGs have

the same arc relation and child orders.
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3.3.3 Update operations

We have seen that the range GODDAG model combines many of the useful prop-

erties of graph-based and tag-based models of multihierarchical markup. Another

advantage, particularly compared to the restricted GODDAG, is that we can define

update operations in such a way that the result is uniquely determined, and is itself

a range GODDAG.

In the generalized GODDAG, a new node may be inserted as the child of any

set of existing nodes, anywhere in the child orders of those nodes, subject only to

the constraint that it not be the child of both a node and one of its descendants.

However, in the semi-restricted GODDAG the situation is more complicated.

Inserting new nodes

A

B C

D

p r s

Figure 3.17: A multihierarchical document

A

B C

p srq

D

A

B C

D

p srq

Figure 3.18: Inserting a node into a GODDAG. Both documents result from inserting
q into Figure 3.17 as a child of C preceding r; only the document on the right is a
range GODDAG.

Consider the semi-restricted GODDAG in Figure 3.17, and suppose we wish to

insert a new terminal node q as a child of C preceding r. In order to avoid violating

the contiguity constraint at C, q must follow p; but then in order to avoid violating the

same constraint at B, q must also be a descendant of B. There are two possibilities

57



A
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D

p r s

E

Figure 3.19: Splicing a node into a GODDAG. E has been spliced into Figure 3.17
as a parent of D and s

(Figure 3.18): q can be a child of B preceding D, or q can be a child of D preceding

r. The former choice, though a valid restricted GODDAG, results in a document

without a contiguous serialization: D follows q as a child of B, and should thus be a

child of C as well; this situation is similar to the situation in Figure 3.12. The second

choice, making q a child of D, is the only option that results in a valid GODDAG

with a clear serialization.

Now consider Figure 3.17 as a range GODDAG; its order relations are

<o : (A,B, p,D,C, r, s)

<c : (p, r,D,B, s, C,A)

A child of C preceding r must lie between C and r in <o; hence the new <o

is (A,B, p,D,C, q, r, s). Furthermore, in order to preserve the total order on leaf

nodes, the new node must follow p and precede r in <c. Hence the new <c is

(p, q, r,D,B, s, C,A), giving us the second document from Figure 3.18.

It may also be desirable to insert a node as a parent of existing nodes. For

example, when annotating an electronic manuscript, we may wish to “tag” existing

text by making it the descendant of a new element [17]. The element inserted by this

“splice-in” operation must still be placed as a descendant of existing nodes, unless it

happens to be a root of the document. Figure 3.19, for example, shows the result of

inserting a node E that contains both D and s. We define the insert operation to

cover this case as well as the more traditional case of inserting a new leaf node.

Definition 3.3.5 A splice-in operation on a range GODDAG

G = ((Σ, L, T, E,A, text, label, order, attribute) , <o, <c)

is a tuple of the form S = (splice-in, α, β, `), where α, β ∈ T ∪ E ∪ {>} are two,

not necessarily distinct, nodes of G, or > indicating an end of the document; and

` ∈ L ∪ Σ+ is the name or text of the new node.
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The result S(G) of a splice-in S on the range GODDAG G is defined as follows.

If there exists a terminal node t such that t <o α and β <c t, the result is undefined

and S(G) = ⊥; likewise if ` ∈ Σ+ and there exists some node ν such that α <o ν and

ν <c β. Otherwise, S(G) is given by:

S(G) =
((

Σ, L, T P , EP , A′, textP , labelP , order′, attributeξ→∅
)
, (<o)ξ<α , (<c)ξ<β

+
)
,

where χ is a new node not in T ∪ E; P = (χ, `); xP is as in Definition 2.3.4; β+ is

the successor of β in <c (with the successor of > being the <c-minimal node, and the

successor of the <c-maximal node being >); and A′ and order′ are the arc and child

order relations obtained from the new <o and <c orders by Theorem 3.3.7.

Remark: We insert the new node by choosing a node α that it will immediately

precede in <o and a node β that it will immediately follow in <c. We use α = > to

indicate that the new node should be maximal under <o, and β = > to indicate that

it should be minimal under <c. The two undefined cases correspond to inserting a

new node as a descendant of a text node t, and to inserting a text node as an ancestor

of an existing node ν, respectively.

As an example, the document on the right of Figure 3.18 results from inserting q

such that it immediately precedes r in both <o and <c. The document in Figure 3.19

results from inserting E such that it immediately precedes D in <o and such that it

immediately follows s in <c.

Deleting nodes

In hierarchical models of documents, the delete operation typically removes an entire

subtree: the target node along with all descendants of that node. When extending

this operation to multihierarchical documents, there are at least two different notions

of ”subtree” available to us.

(a) A

B C

D

p r s

(b) A

C

s

(c) A

B C

D

p r s

(d) A

C

r s

Figure 3.20: Deleting a node from a GODDAG. (a) Broad subtree rooted at B. (b)
Document with the broad subtree deleted. (c) Narrow subtree rooted at B. (d)
Document with the narrow subtree deleted.
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Definition 3.3.6 Let G be a GODDAG with node set N , and ν ∈ N . The broad

subtree of G rooted at ν is the set of nodes χ ∈ N such that ν →∗ χ. The narrow

subtree of G rooted at ν is the set of nodes χ ∈ N such that χ is in the broad subtree

of G rooted at ν, and such that furthermore either χ = ν or every parent of χ is in

the broad subtree rooted at ν.

When deleting the subtree rooted at a particular node, we have the option of

removing all nodes in the broad subtree, or all nodes in the narrow subtree. As an

example, consider again the document from Figure 3.17, and suppose we wish to

delete the node B. The nodes p and D are in both the narrow and broad subtrees

rooted at B. On the other hand, r has a parent, C, that is neither B nor one of its

descendants. Hence r is in the broad but not the narrow subtree. Deleting the broad

subtree rooted at B results in the document shown in Figure 3.20(b); deleting the

narrow subtree results in the document in Figure 3.20(d).

A

p r s

B D

C

E

Figure 3.21: Non-triviality of narrow deletion. Deleting E while preserving r requires
making r a child of C.

We note here that deletion is not entirely straightforward: deleting a narrow

subtree may require adding additional links to the GODDAG in order to produce a

range GODDAG. For example, suppose we wish to delete the narrow subtree rooted

at E in Figure 3.21. The only node in this narrow subtree is E itself. However, simply

removing E would make C a leaf node, which cannot consistently be placed in the

<o and <c orders. Instead, it is necessary to make r a child of C in the resulting tree.

Instead, we return to the splice-out operation (Section 2.3.6). Recall that, in a

hierarchical document, this operation removes only a single node, replacing it with

the sequence of its children; hence descendant relations among the remaining nodes

are left intact. Unlike in hierarchical documents, it is not always necessary to add arcs

from the deleted node’s parent(s) to its children, though it often is. Figure 3.22(b)

shows the result of splicing out node B from Figure 3.17.
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Figure 3.22: Splicing a node out of a GODDAG. (a) Original tree with B highlighted.
(b) Tree with B spliced out.

The splice-out operation is more general than the broad and narrow subtree delete

operations described above, as these operations may be expressed as a sequence of

splice-out operations, one for each node in the broad (respectively, narrow) subtree.

Definition 3.3.7 A splice-out operation on a range GODDAG

G = ((Σ, L, T, E,A, text, label, order, attribute) , <o, <c)

is a tuple of the form X = (splice-out, ν), where ν ∈ T ∪ E is a node of G.

The result X(G) of a splice-out X on the range GODDAG G is:

X(G) =
((

Σ, L, T ∩N ′, E ∩N ′, A′, text|N ′ , label|N ′ , order′, attributeξ→∅
)
,

<o|N ′ , <
c|N ′
)
,

where N ′ = T ∪E \ {ν} is the set of nodes of G other than ν; and A′ and order′ are

the arc and child order relations obtained from <o|N ′ and <c|N ′ by Theorem 3.3.7.

Renaming nodes

Finally, nodes in a range GODDAG may be renamed. As with the rename opera-

tion on hierarchical documents (Definition 2.3.11, this operation does not affect the

document’s graph structure or order relations, but only its label and text functions.

Definition 3.3.8 A rename operation on a range GODDAG

G = ((Σ, L, T, E,A, text, label, order, attribute) , <o, <c)

is a tuple of the form R = (rename, ν, `), where ν ∈ T ∪ E is a node of G; and ` is a

name from L if ν ∈ E, or a text string from Σ+ if ν ∈ T .

The result X(G) of a splice-in S on the range GODDAG G is:

X(G) =
((

Σ, L, T, E,A, text(ν,`), label(ν,`), order, attribute
)
, <o, <c

)
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3.3.4 Converting between range and globally ordered GODDAGS

Dushnik and Miller [26] show that every partially ordered set can be written as the

intersection of a set of total orders (each a linear extension of the partial order) called

a realizer of P . In general there may be many distinct realizers for a given partial

order; the dimension of the partial order is the cardinality of (one of) the smallest

realizers of that set. We shall use these terms to refer also to strict partial orders:

a realizer of a strict partial order P is a set of strict total orders, the intersection of

which is P ; and its dimension is the minimum cardinality among its realizers. It may

be verified that {T1, T2, . . .} is a realizer of the strict partial order P if and only if

{T1 ∪ Id, T2 ∪ Id, . . .} is a realizer of the (non-strict) partial order P ∪ Id. We shall

therefore refer to strict and non-strict partial orders interchangeably.

By construction, the ancestor relation of a range GODDAG is a one- or two-

dimensional partial order, with realizer {<o, >c}; conversely, any two-dimensional

partial order can be represented as the ancestor relation of two distinct range GOD-

DAGs per realizer {A,B}, corresponding to the ordered pairs (A,B) and (B,A) of

total orders; and any one-dimensional (and therefore total) order P as the ancestor

relation of the single range GODDAG with <o=>c= P . The two range GODDAGs

corresponding to a single realizer are reverses of one another: (<o, >c) and (>c, <o)

have the same ancestor relation but the reverse precedes relation (and thus a reversed

child order at each node). The one-dimensional orders correspond to chains with no

choice of child order.

Algorithm 1 parents: find the parents (direct predecessors) of an element in a
two-dimensional partial order [51].

Require: X is a set
Require: P is a two-dimensional partial order on X with realizer {<a, <b}.
Require: ν ∈ X
Ensure: Returns the set of elements π ∈ X such that πPν and such that there is

no µ with πPµPν.
last ← min<b(X) // last parent under <b

for all π <a ν in descending <a order do
if π <b ν then // πPν

if ν ≥b last then // does not precede any parent
last ← π
parents ← parents ∪ {π}

end if
end if

end for
return parents
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Ma and Spinrad [51] define O (n2) algorithms for computing the transitive closure

and transitive reduction of two-dimensional partial orders given in any form (tran-

sitively reduced, transitively closed, or any intermediate form). In particular, it is

possible to find the parents of a single node in O (n2) time.

Lemma 3.3.1 Algorithm 1 runs in time O (n) and returns the direct predecessors of

ν in P .

Proof: Suppose π is a parent of ν. Then π <a ν, so the loop (lines 2–9) iterates

over it; and π <b ν so the outer conditional (line 3) executes. When the loop reaches

the iteration for π, all nodes µ such that π <a µ <a ν have been iterated over. Since

π is a parent of ν, none of these nodes had π <b µ <b ν. Hence π ≥b last , the

inner conditional (line 4) executes, and π is added to parents . Since parents grows

monotonically, π is therefore among the returned nodes.

Now suppose conversely that π is in the returned list. Then it was added to

parents , so the loop iterated over π (hence π <a ν) and both conditions were true (so

π <b ν and π ≥b first). Because π ≥b first , there was no previously-iterated µ (that

is, π <a µ <a ν) such that π <b µ <b ν. Hence πPν and there is no µ such that

πPµPν; that is, π is a direct predecessor of ν. �

This algorithm can help convert between a range GODDAG and its often more

convenient representation as a globally ordered GODDAG. We presume that a range

GODDAG is represented by two lists of its nodes, one in <o order and one in <c

order. A GOG, on the other hand, is represented in a more traditional GODDAG

form: an ordered list of pointers to the root nodes, with each node containing an

ordered list of pointers its child nodes.

Converting from a range GODDAG to a GOG is a straightforward application of

the algorithm of Ma and Spinrad. Given the listings Lo and Lc, we find the parents

of each node, and add that node to each parent’s child list (or to the list of root nodes

if there are no parents).

Theorem 3.3.8 The procedure range2goddag (Algorithm 2) runs in time O (n2).

For each node ν, children[ν] contains the list of children of ν in opening (and thus

closing) order; and roots contains the list of roots in opening (and thus closing) order.
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Algorithm 2 range2goddag: convert a range GODDAG into a GOG

Require: Lo is a list of n distinct nodes.
Require: Lc is a list of nodes that forms a permutation (perhaps the identity per-

mutation) of Lo.
Ensure: Returns a list R the root nodes of the range GODDAG (()Lo, Lc) as well

as a mapping children from nodes to lists of their child nodes.
// Compute the permutation φ from indexes of Lo to corresponding indexes of Lc.
φ← an array of n integers
for all i ∈ [1, n] do

for all j ∈ [1, n] do
if Lo[i] = Lc[j] then
φ[i]← j

end if
end for

end for
// Compute the transitive reduction of <o ∩ >c (Algorithm 1)[51].
children← an empty map from nodes to lists of nodes
roots← an empty list of nodes
for all c from 2 to n do

first ← n+ 1 // earliest-closing parent so far
for all p from c− 1 down to 1 do

if φ[p] > φ[c] then // an ancestor
if φ[p] ≤ first then // not the ancestor of any parent

first ← φ[p]
push(children[Lo[p]], Lo[c])

end if
end if

end for
if first = n+ 1 then // no ancestors

push(roots , Lo[c])
end if

end for
return (roots , children)
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Proof: Suppose ν is the ith node of Lo and that it is a parent of the jth node χ;

clearly i < j so j ≥ 2. Consider the iteration of the inner loop (lines 15–22) when

c = j and p = i. This loop is a straightforward translation of Algorithm 1; hence by

Lemma 3.3.1, it added χ to the child list of ν.

Now suppose conversely that χ was added to the child list of ν; this situation

occurs at iteration c = j. By Lemma 3.3.1, ν is a parent of χ.

Finally, note that a node ν with index i is added to its parents’ child lists in the

ith iteration of the outer loop (lines 13–26); hence it follows in each child list those

nodes with index less that i and precede those with index greater than i. Since the

index of a node corresponds to its position in Lo, each child list is sorted by <o.

Finally, we observe that the algorithm consists of two nested pairs of loops, each

iterating over up to n nodes. The body of these nested loops performs a constant

amount of work (assigning an array element and/or appending to a list); hence the

algorithm runs in time O (n2). �

This algorithm also allows us to update a GODDAG to account for a splice-in

operation. Recall that a splice-in operation (Definition 3.3.5) specifies the α and β

such that the new node immediately precedes α in <o and immediately follows β in

>c; the arc relation A′ and child orders order′ of the resulting GODDAG are specified

in terms of the globally ordered GODDAG corresponding to the new opening and

closing orders. Instead, we may apply Algorithm 1 to find the parents of the new

node in time O (n), and a straightforward variant (reversing all comparisons and

iterations) to find its children also in time O (n). For each parent, we iterate over

its child list, removing those nodes that also children of the new node (and hence no

longer children of the parent) and replacing them with the new node. In this way, we

can compute the updated GODDAG in time O (n+ p ∗ C), where p is the number of

parents of the new node and C the maximum number of children of all its parents.

Finally, we may proceed in the opposite direction, computing the range GODDAG

orders associated with a given GOG. Our algorithm uses only the GODDAG structure

(an ordered list of children of each node), not the global order.

In general, a GODDAG need not have a single root node; there may be multiple

nodes with no incoming edges. To simplify our algorithm, we assume that the doc-

ument D has been augmented with a single synthetic root node ρ with no parent,

and with the parentless nodes of D as its children. In a globally ordered GODDAG,

these parentless nodes are unrelated by the ancestor-descendant relation; by orthog-

onality, they are related to one another by the global order. There is therefore in a
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Algorithm 3 traverse: traverse a GODDAG, building lists of its nodes in opening
and closing order

Require: G is a GODDAG over the set N of nodes.
Require: children() is a function mapping nodes ofG to ordered lists of their children

(in child or document order).
Require: G is rooted with root ρ.
Ensure: Returns a pair of sequences of nodes generating a range GODDAG isomor-

phic to G.
for all ν ∈ N do

tovisit[ν]← in-degree of ν
uplink[ν]← empty list of nodes

end for
openorder← empty list of nodes
closeorder← empty list of nodes
visit(ρ)
return (openorder, closeorder)

Algorithm 4 visit: visit a node in a GODDAG, opening the node if all its parents
have been opened

Require: ν is a node of G
Ensure: If all of this node’s parents have been opened, open this element. Then,

if this element has been opened and either there are no children or the last child
element has been closed, returns true. Otherwise, if this element has been opened,
add it to the uplink list of its last child.
tovisit[ν]← tovisit[ν]− 1
if tovisit[ν] > 0 then

return false
else
started(ν)
for all c ∈ children(ν) do

if c is the last child of ν then
if visit(c) = false then

append ν to uplink[c]
return false

end if
else
visit(c)

end if
end for
ended(ν)
return true

end if

66



Algorithm 5 started: mark that a node has opened

Require: ν is a node of G
Append ν to openorder.

Algorithm 6 ended: mark that a node has closed

Require: ν is a node of G
Append ν to closeorder.
for all p ∈ uplink[ν] do
ended(p)

end for

globally ordered GODDAG only a single choice of child order at ρ. In a more general

GODDAG, we may choose this order arbitrarily.

Lemma 3.3.2 A call to traverse on a rooted GODDAG results in started being

called exactly once for each node in the document.

Proof: Define the depth of a node ν as the length of the longest path from the

root to ν. Since the document graph is rooted and acyclic, each node has a finite

depth, with nodes other than the root having nonzero depth.

We proceed by induction over the node depth. The root node ρ, with depth 0, is

visited directly from traverse(); its in-degree is zero, so started() is in fact called.

Furthermore, because no nodes contain ρ as a child, it is never visited again; hence

started(ρ) is called exactly once.

Now suppose that all nodes with depth less than d are visited exactly once. Con-

sider a node ν with depth d, and let k be its in-degree. Each of the k parents of ν

has depth < d. By the inductive hypothesis, started() is called on each of these

nodes exactly once. As a result, each child of these parents is visited once per parent;

in particular, ν is visited exactly k times. On the kth and final visit, tovisit[ν] is

decremented to zero, and started(ν) is called. Hence started(ν) is called exactly

once for each node of depth d; by induction it is called exactly once for each node. �

Lemma 3.3.3 In a single call to traverse() on a GOG, if π is an ancestor of ν,

then started(π) is called before started(ν).

Proof: Suppose π is a parent of ν. Recall that started(ν) is not called until ν has

been visited once per parent, and in particular from π. Since the algorithm visits the
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children of a node only after calling started() on that node, started(π) is called

before started(ν).

If π is an ancestor of ν, then there is some chain of parents ν = p0, p1, . . . , pn = π

leading from ν to π. We may apply the previous result inductively: started(ν) is

called after started(p1), which is called after started(p2), and so on; in particular,

started(ν) is called after started(π). �

Lemma 3.3.4 In a single call to traverse() on a GOG, if µ precedes B in the global

order, then started(µ) is called before started(B).

Proof: We proceed by induction on the greater of the depths of µ and ν; neither

can have depth 0, as by orthogonality the root node does not precede any node. If µ

and ν have depth 1, they are both children of the root node ρ (and only of ρ), with

µ <ρ ν. Hence µ is first visited before ν, and started() is called on each the first

time it is visited, so started(µ) is called before started(ν).

Now take as the inductive hypothesis that, for each node α with depth less than i

that precedes a node β with depth less than i, started(α) is called before started(β).

Let µ be a node with depth j ≤ i, and ν a with depth k ≤ i, such that µ precedes

ν. Consider the last parent π of µ under the global order. If π is a parent of ν,

then µ <π ν so µ is visited for the last time before ν is visited for the last time;

hence µ is started before ν. If π is not a parent of ν, then by Theorem 3.3.2 the last

parent σ of ν follows or is a descendant of π. In the former case, σ is started after

π by the inductive hypothesis; in the latter, it is started after π by Lemma 3.3.3.

Since started(µ) is called from visit(π) and started(ν) is called from visit(σ),

it follows that started(µ) is called before started(ν), concluding the induction. �

The converse of these two lemmata follows by the orthogonality constraint.

Corollary 3.3.2 In a single call to traverse() on a GOG, started(µ) is called

before started(ν) only if µ precedes or is an ancestor of ν.

Proof: If µ does not precede or ν and is not an ancestor of ν, then by orthogonality

either µ = ν, ν precedes µ, or ν is an ancestor of µ. In the first case, started(µ)

is the same call as started(ν), so does not precede it. In the second, we have by

Lemma 3.3.4 that started(ν) is called before started(µ) (and hence, by Lemma

3.3.2, not after it); likewise in the third case, by Lemma 3.3.3, started(ν) is called
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before started(µ). �

As with started(), the procedure ended() is called once per node.

Lemma 3.3.5 A call to traverse() results in ended() being called exactly once for

each node in the document.

Proof: Define the height of a node as the length of the longest path from that

node to a leaf. If π is an ancestor of ν, then π has a greater height than ν; leaf nodes

have height zero.

If ν is a leaf of the document, then it has no children, so the loop on lines 6–

15 of Algorithm 4 does not execute, and ended(ν) is called just after started(ν).

Furthermore, ν is never be marked as the uplink of another node, so ended(ν) is

not called other than immediately after started(ν). By Lemma 3.3.2, started(ν) is

called exactly once; hence ended(ν) is also called exactly once.

Now suppose that ended() is called exactly once for each node of height < h,

where h > 0. Let ν be a node with height h. Consider the last visit to ν, just

after started(ν) is called. If visit() returns true for the last child χ of ν, then

ended(ν) is called immediately, and ν is not the uplink of any node. Hence ended(ν)

is called once. If instead visit(χ) returns false, ν is added to the uplink list of χ,

and ended(ν) is called once for each call to ended(χ); by the inductive hypothesis,

ended(χ) is called exactly once. �

Lemma 3.3.6 In a single call to traverse() on a GOG, if µ precedes ν in the global

order, then ended(µ) is called before ended(ν).

Proof: We first note that, by Lemma 3.3.4, started(µ) is called before started(ν).

We proceed by induction on the height of µ. If µ is a leaf (height zero), then

ended(µ) is called immediately after started(µ), before any subsequent calles to

started(). In particular, it is called before started(ν) and thus before ended(ν).

Now suppose that the condition holds when the height of µ is less than i. Let

µ <π ν where µ has height i > 0 (and thus has at least one child), and consider the

rightmost (<G-maximal) children χµ and χν of µ and ν respectively. When ended(χµ)

is called, either µ is on the uplink list of χµ, or visit(χµ) was called from χµ. In either

case, ended(µ) is called after ended(χµ), before any node that is not an ancestor of

χµ; likewise for χν and ν, if the former exists. If there is no χν (because ν has no
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children), then ν follows χµ and is ended after it by the inductive hypothesis; and

since ν is not an ancestor of χµ, it is ended after µ.

If χµ = χν is a single node χ, then, because ν was started after µ, it follows µ

on the uplink list of χ if it appears there at all; if it is not on the uplink list, this

result is because it is the rightmost parent of χ, and thus the last to call visited(χ).

Therefore when ended(χmu) is called, µ is ended before ν.

Otherwise, by Theorem 3.3.2, χν follows or is an ancestor of χµ. If it follows χµ,

then by the inductive hypothesis it is ended after χµ; and since it is not an ancestor

of χµ, after µ. Hence ν is ended after µ. If instead χν is an ancestor of χµ, it follows µ

and is thus started after it; therefore when ended(χµ) is called, µ is in the uplink list

of χµ before χν or any of its descendants (if the latter is there at all), and is therefore

ended before χν and before ν. �

Lemma 3.3.7 In a single call to traverse() on a GOG, if χ is an descendant of ν,

then ended(χ) is called before ended(ν).

Proof: There are three possibilities. If visit(χ) returns true when called from

visit(ν), then visit(χ) called ended(χ) before returning and hence before the call

to ended(ν).

If visit(χ) returns false when called from visit(ν), and χ is the last child of ν,

then ν is added to the uplink of χ, and ended(ν) is called from ended(χ) (and hence

after it).

Otherwise, the call to visit(χ) from visit(ν) returned false, but the final child

µ of ν is not χ; by the previous cases, ended(ν) is called after ended(µ). By Lemma

3.3.6, ended(χ) is called before ended(µ) and thus before ended(ν). �

As before, the converse holds by orthogonality.

Corollary 3.3.3 In a single call to traverse() on a GOG, ended(µ) is called before

ended(ν) only if µ precedes or is an ancestor of ν.

Proof: Analogous to the proof of Corollary 3.3.2. �

Taken together, Lemma 3.3.2 through Corollary 3.3.3 demonstrate the correctness

of Algorithm 3.
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Corollary 3.3.4 After a call to traverse(), openorder is a list of all the nodes in

the document, sorted by <o; and closeorder is a list of all the nodes, sorted by <c.

The total runtime of the traverse algorithm may be easily derived. There is

one call to visit for each edge in the document; in the last call on each node, the

algorithm iterates over that node’s children. Thus the total amount of time taken

by visit is proportional to the number of edges, plus the sum over all nodes of the

number of children of that node (also proportional to the number of edges). started

and ended are each called once per node, performing a constant amount of work.

Therefore the entire algorithm executes in time O (V + E) where V is the number of

nodes and E the number of edges.

Finally, we note that Algorithms 2 and 3 may be used to verify that a GODDAG

is in fact globally ordered. First, run Algorithm 3 on the input GODDAG G to obtain

openorder and closeorder. Since each node is represented once in each list, the lists do

in fact represent total orders <o and <c; use Algorithm 2 to convert these lists back

into a (globally ordered) GODDAG. If the resulting GODDAG G′ is isomorphic to

G, then by Theorem 3.3.7, G corresponds to a range GODDAG and is thus globally

ordered. Although the general graph isomorphism problem is difficult, our algorithms

allow us to determine the bijection between nodes of G and nodes of G′. It is therefore

possible to check for isomorphism by comparing the arc and child order relations, in

time O (V 2).
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Chapter 4 Fine-grained access control

We present a rule-based model for fine-grained access control of update operations on

XML documents, based on models in the literature [27, 49] and the update operations

described in Section 2.3. We describe the operations permitted by a policy, and

consider a problem related to the the analysis of policies: to determine a posteriori

whether a document could have been constructed under a given access control policy.

This problem, which we call PGen, is motivated by a number of database admin-

istration and collaborative editing scenarios. For example, an administrator might

wish to audit a document by verifying that it was (or at least could have been) created

under the existing policy; auditing is particularly important when logs of previous

operations are missing or unavailable. Another application is to evaluate a proposed

policy change, by verifying that existing documents could be reconstructed under the

policy. Finally, an algorithm for PGen would allow administrators to verify that

particular undesirable document states are disallowed: that is, that the policy does

not generate particular trees. Therefore this problem has important implications for

document security, verifiability, and provenance.

4.1 Definitions

We begin with a collection of definitions. We use the term “tree” to refer to a

hierarchical document (Definition 2.1.3). We use T∅ to represent the empty tree,

containing no nodes. We consider the (simple) insert, delete, and rename operations

from Section 2.3.

Definition 4.1.1 The result of a sequence of operations 〈o1, . . . , on〉 on a tree T is

the tree on(on−1(· · · o1(T ))).

Remark: These operations are loosely based on those of XUpdate [48]. The rename

and delete operations are unchanged from their counterparts in XUpdate. Insert

serves as a combined version of the XUpdate operations InsertBefore, InsertAfter, and

Append, though as a simple insert it can only add a single node, not an entire subtree

as in XUpdate. More complicated insertions can be accomplished by a sequence of

operations, allowing all intermediate steps to be checked by access control rules.

Rules in FGAC policies identify potential targets of operations by means of path

expressions. Typically, path expressions are expressed in XPath [12] or some XPath
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fragment such as Core XPath or XPattern [31]. Our rules use the XP{[],∗,//} fragment

of XPath, described in Section 2.2.3. To briefly review, a path expression consists of

a sequence of location steps that select nodes along paths from the root to the target

according to their labels. If a location step is preceded by /, it selects (appropriately-

labelled) children of the preceding node; if preceded by //, it selects descendants of

that node. A location step may specify a label from the set L of element labels, or

one of three pseudo-labels: ∗ for any element regardless of label, text() for any text

nodes, or node() for any node, text or element. A location step may be followed by a

number of predicates, each a path expression surrounded by square brackets []; the

location step selects a node ν only if each predicate selects a nonempty set of nodes

when evaluated in context {ν}. Some examples:

• /∗ selects the root node, regardless of its label.

• //m selects every node labelled m.

• /w/x//y selects every y descendant of an x child of the root w node.

• //x[∗/q]/z selects every z node that is the child of some x node that has a

grandchild q.

With these preliminary definitions behind us, we may define the form of access

control rules in our model.

Definition 4.1.2 An access control rule over the set L of element labels is a tuple

with the form (s, insert, P, τ), (s, delete, P ), or (s, rename, P, τ), where: s is either +

or −; P is a path expression over L, possibly the empty path expression ε; and τ is a

node test (an element label or node type; Definition 2.2.2).

A rule is positive if s is +; otherwise it is negative. A rule is simple if its path

expression contains no predicates.

Definition 4.1.3 A rule R matches the operation O on tree T , written R ∼T O, if

and only if one of the following holds:

• R = (s, insert, ε, τ), O = (insert,>,>, `), T is empty, and τ matches `;

• R = (s, insert, P, τ), O = (insert, π, ν, `), π ∈ S[[P ]]T , and τ matches `.

• R = (s, rename, P, τ), O = (rename, ν, `), ν ∈ S[[P ]]T , τ matches `; or

• R = (s, delete, P ), O = (delete, ν), and ν ∈ S[[P ]]T .
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Note that rules never match operations (such as inserting a root into a non-empty

document) that would yield ⊥ on the tree.

Definition 4.1.4 A positive rule R with path expression P is active on tree T if it

matches some possible operation on T : that is, if S[[P ]]T is not the empty set; or if

T is the empty tree, P = ε, and R is an insert rule.

Definition 4.1.5 An access control policy is an unordered finite set of access control

rules over some finite set L of labels. A policy is positive if it contains only positive

rules; simple if it contains only simple rules; delete-free if it contains no positive

delete rules; rename-free if it contains no positive rename rules; and monotone if

it is both delete-free and rename-free.

Definition 4.1.6 The policy P permits the operation O on tree T , written P `T O,

if there exists some positive rule R ∈ P such that R ∼T O and there does not exist a

negative rule R− ∈ P such that R− ∼T O.

Remark: Our model uses “deny overwrites” and “default deny” conflict resolution

[28, 33]: if an operation is matched by both positive and negative rules, or is matched

by no rule, it is not permitted.

Lemma 4.1.1 It may be verified whether policy P permits operation O on tree T in

time O (|P| |T |).

Proof: Gottlob, Koch, Pichler [31] describe an algorithm for evaluating core XPath

expressions that runs in time O (|P | |T |), where P is the path expression and T the

tree. This algorithm allows us to test whether a single rule R matches an operation

O in time O (|R| |T |). To determine whether P permits the operation O, we test

whether each rule matches O and return true if some positive rule, and no negative

rule, matched; this operation requires time
∑

R∈P O (|R| |T |) = O (|P| |T |). �

Remark: Although we have defined the result of the operation (insert, ε, `) on non-

empty trees (Definition 4.1.1), Definition 4.1.3 ensures that no rule ever matches

such an operation on a non-empty tree. Hence every permitted insert operation adds

precisely one node to the tree, a fact that will be important later.

Remark: In order to facilitate analysis of fine-grained access control rules and

policies, we have made some simplifying assumptions. First, we disregard subjects

in our model of policies. Even when multiple users are present, many important
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questions can be expressed in terms of subject-less policies, either by considering

only rules governing a particular subject, or by considering all rules regardless of

subject. Secondly, our rules ignore the issue of document order: If a rule permits

inserting a new node as a child of an existing node, the new node may be inserted

anywhere in the child list of the existing node.

Finally, we extend the definition of permission to sequences of operations.

Definition 4.1.7 If S = 〈o1, . . . , on〉 is a finite sequence of operations, we say that

P permits S on tree T (P `T S) if P `Ti−1
oi for each 1 ≤ i ≤ n, where T0 = T and

Ti = oi(Ti−1).

We use these definitions to formally define the problem PGen.

Definition 4.1.8 The language LT (P) generated by a policy P from the set T of

trees is the set of trees T such that there exists a sequence of operations S and a

tree T0 ∈ T such that P `T0 S and S(T0) = T . We write L (P) for L{T∅} (P), the

language of trees generated by P from the empty tree.

Definition 4.1.9 The problem PGen is: Given a pair (P , T ), where P is an access

control policy and T is a tree, is T ∈ L (P)?

We also define restricted forms of this problem. PGen+ is the restriction of PGen

to positive policies; PGens the restriction to simple policies; PGeni the restriction

to monotone policies; PGeni,d the restriction to rename-free policies; and PGeni,r

the restriction to delete-free policies. These restrictions may be combined to give a

4×4 table of subproblems; for example PGeni,d+s is the restriction of PGen to simple,

positive, rename-free policies. We demonstrate lower and/or upper bounds on the

computational complexity of each of these subproblems, as indicated in Tables 4.1

and 4.2.

4.2 Sub-problems with NP algorithms

4.2.1 Positive monotone policies

Recall from Definition 4.1.5 that a monotone policy is one that is both delete-free

and rename-free; that is, where every positive rule specifies the insert operation. Since

an insert operation adds exactly one node to the tree, any permitted sequence that

yields a tree T consists of exactly |T | insert operations. This fact significantly limits

the decision tree for PGeni and PGeni+.
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Table 4.1: Subproblems of PGen and lower bounds on their complexities. N is the
size of the tree and M is the total size of the policy’s rules.

PGeni PGeni,r PGeni,d PGen

PGen+s
Ω (N +M) NP-hard Ω (N +M) NP-hard
(input size) (Sec. 4.3.1) (input size) (Sec. 4.3.1)

PGens
Ω (N +M) NP-hard Ω (N +M) NP-hard
(input size) (Sec. 4.3.1) (input size) (Sec. 4.3.1)

PGen+
Ω (N +M) NP-hard PSpace-hard PSpace-hard
(input size) (Sec. 4.3.1) (Sec. 4.3.2) (Sec. 4.3.2)

PGen
Ω (N +M) PSpace-hard undecidable undecidable
(input size) (Sec. 4.4.6) (Sec. 4.4.5) (Sec. 4.4)

Table 4.2: Subproblems of PGen and upper bounds on their complexities. N is the
size of the tree and M is the total size of the policy’s rules.

PGeni PGeni,r PGeni,d PGen

PGen+s
O (N3M) ∈ PSpace ∈ P ∈ PSpace

(Sec. 4.2.1) (Sec. 4.3.1) (Sec. 4.2.3) (Sec. 4.3.1)

PGens
∈ NP ∈ PSpace ∈ NP ∈ PSpace

(Sec. 4.2.2) (Sec. 4.3.1) (Sec. 4.2.3) (Sec. 4.3.1)

PGen+
O (N3M) ∈ PSpace

(Sec. 4.2.1) (Sec. 4.3.1)

PGen
∈ NP ∈ PSpace

(Sec. 4.2.2) (Sec. 4.3.1)

Our algorithm for PGeni+ (Algorithm 4.1) determines whether P generates T by

attempting to construct T . In doing so, we keep track of the current tree S and the

set C of candidate nodes: those nodes of T that have not yet been inserted into

S, but whose parents have been. At a given step in the algorithm, the candidate

nodes are those that can be inserted into S with a single (not necessarily permitted)

operation.

Lemma 4.2.1 In Algorithm 4.1, the following four invariants hold when the condi-

tion of the while loop on line 6 is being evaluated:

1. nodes(S) ⊆ nodes(T );

2. for each non-root node µ ∈ T , if µ ∈ S then parent(µ) ∈ S;

3. C ⊆ nodes(T ) \ nodes(S)

4. C consists precisely of those nodes µ ∈ nodes(T ) \ nodes(S) such that either

µ = root(T ) or parent(µ) ∈ S.
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Figure 4.1: Algorithm for deciding PGeni+ (positive monotone policies)

Require: T is a tree over the set L of labels
Require: P is a positive monotone policy over L

1: S ← T∅ // the tree generated so far
2: if T = T∅ then
3: return true
4: end if
5: C ← {root(T )} // the candidate nodes
6: while C 6= ∅ do
7: found ← false
8: for all ν ∈ C do
9: π ← parent(ν), or ε if ν = root(T )

10: o← (insert, π, label(ν))
11: if P ` (o, S) then
12: C ← (C ∪ children(ν)) \ {ν}
13: S ← o(S)
14: found ← true
15: end if
16: end for
17: if found = false then
18: return false
19: end if
20: end while
21: return true

Furthermore, in each iteration, S contains more nodes than in the previous iter-

ation.

Proof: If T is empty, the algorithm terminates (line 3) before reaching line 6,

vacuously satisfying the lemma. Suppose then that T is not empty.

On entry to the while loop, S = T∅, satisfying invariants 1 and 2; and C contains

the root node of T , satisfying invariants 3 and 4. Now suppose the invariants held

on iteration i of the while loop and that C 6= ∅ (i.e., the loop continues); we wish to

show that the invariants hold on iteration i+ 1.

Since C 6= ∅, the for loop (lines 8–16) executes at least once. Each time, it may

modify S and C, by removing a node ν from C, adding ν’s children to C (line 12),

and adding the node ν to S. Let Ci and Si be the values of C and S before these

lines are executed, and Ci+1 and Si+1 their values after these lines are executed.

• Because Si ⊆ nodes(T ) (invariant 1) and the added node ν is in Ci ⊆ nodes(T )

(invariant 4), nodes(Si+1) ⊆ nodes(T ). Hence invariant 1 is preserved.
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• Either ν = root(T ) or parent(ν) ∈ Si (invariant 4). If the former is true,

invariant 2 continues to be satisfied, as no non-root nodes have been added to

S and no nodes removed. If instead parent(ν) ∈ Si, then parent(ν) ∈ Si+1, and

invariant 2 continues to be satisfied.

• The nodes added to Ci+1 are all children of ν ∈ Ci, which was not present

in Si by invariant 3. By invariant 2, then, these added nodes were not in Si

and are thus not in Si+1. Furthermore, the single node ν that was added to S

was removed from C in line 12. Hence Ci+1 ∩ Si+1 is empty, and invariant 3

continues to be satisfied.

• Each node in Ci+1 was either in Ci (hence having a parent in nodes(Si) ⊆
nodes(Si+1)), or is a child of ν ∈ Si+1, satisfying the forward condition of

invariant 4: every node in Ci+1 is the root of T or has a parent in S.

Conversely, suppose µ is a node in T \ Si+1 such that parent(µ) ∈ Si+1 (µ

cannot be the root because Si+1 is non-empty and hence contains the root of T

by invariant 2). Then either parent(µ) ∈ Si and µ 6= ν; or parent(µ) = ν. In

the former case, µ ∈ Ci, and since only ν was removed from C, µ ∈ Ci+1; in the

latter, µ was added to C on line 12, so µ ∈ Ci+1. Hence invariant 4 is satisfied.

Therefore each iteration of the for loop either leaves S and C unchanged or adds a

single node to S and preserves the invariants. Hence, if the invariants hold on iteration

i of the while loop, they continue to hold on iteration i+1. Furthermore, if no nodes

were added to S, then found is false and the algorithm terminates (line 18). Hence we

furthermore have that, in each iteration, S is strictly larger than in the previous. �

Corollary 4.2.1 When the condition on line 6 is evaluated, C = ∅ if and only if

S = T .

Proof: If S = T , then since C = nodes(T )\nodes(S) by invariant 3 of Lemma 4.2.1,

C = ∅.
Now suppose C = ∅. Then by invariant 4, there are no nodes in nodes(T ) \

nodes(S) that are either the root of T or have a parent in S. Hence root(T ) ∈ S.

Now let ν be a node of T , and let parent(ν) = π1, π2, . . . πk = root(T ) be its chain

of ancestors. Since πk ∈ S and no nodes in nodes(T ) \ nodes(S) have a parent in S,

πk−1 is also in S, as is the entire chain and ν itself. This argument demonstrates that
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every node in T is in S; along with invariant 1, we have that T = S. �

Theorem 4.2.1 Algorithm 4.1 terminates in time O
(
|T |3 |P |

)
, returning true if

T ∈ L (P), and false otherwise. Hence it is a correct polynomial-time algorithm

for PGeni+ (and its subproblem PGeni+s).

Proof: In each iteration of the while loop (lines 6–20), either one or more nodes

is added to S (line 13) and found is true; or no nodes are added, found is false, and

the algorithm terminates in line 18. Each iteration of the while loop either adds one

or more nodes to S from nodes(T ) \ nodes(S) or terminates; because the algorithm

terminates when S has the same (finite) size as T , the while loop runs for at most

|T | iterations before terminating. In each iteration, the inner for loop (lines 8–16)

executes |C| ≤ |T | times, each time checking whether P contains a rule permitting a

particular operation. Since this last task can be solved in time O (|T | |P |) (Lemma

4.1.1), the algorithm terminates in time O
(
|T |3 |P |

)
.

If the algorithm returns true, then S = T (line 6 and Corollary 4.2.1). Since P
permitted adding each node in S (line 11), S = T ∈ L (P).

If the algorithm returns false, then there is some tree S with nodes(S) ( nodes(T ),

such that P does not allow adding to S any node from D = nodes(T ) \ nodes(S).

Because P is positive, removing nodes from S can only reduce the set of active rules,

and therefore does not permit adding nodes from D. Hence it is not possible to add

a node from D to any tree that contains only nodes from nodes(T )\D. Furthermore,

since P is monotone, no tree that contains a node not in nodes(T ) can possibly yield

the tree T . Hence it is not possible to obtain the tree T from the empty tree by a

sequence of permitted operations, and T 6∈ L (P). �

4.2.2 Monotone policies

If P is monotone but not positive, Algorithm 4.1 will not necessarily be success-

ful. In particular, a negative rule with predicates might establish a constraint on

the order of insertion of two nodes. For example, if the policy contains the rule

(−, insert, /a[b], ∗), we must be careful not to insert the node b until every other

child of a has been inserted.

Still, if T is generated by P , there is some permitted sequence of |T | insertions that

results in T . The nondeterministic Algorithm 4.2 decides whether such a sequence

exists.

79



Figure 4.2: Nondeterministic algorithm for deciding PGeni (monotone policies)

Require: T is a tree over the set L of labels
Require: P is a monotone policy over L

1: S ← T∅
2: N ← nondeterministically choose a permutation of nodes(T )
3: for all ν ∈ N do
4: π ← parent(ν), or ε if ν = root(T )
5: o← (insert, π, label(ν))
6: if P `S o then
7: S ← o(S)
8: else
9: return false

10: end if
11: end for
12: return true

We begin by nondeterministically choosing a permutation of the nodes of T

(line 2). We then test whether P permits inserting the nodes in that order (lines 3–11).

If this test succeeds for some permutation, then P generates T (line 12); otherwise it

does not.

Theorem 4.2.2 Nondeterministic Algorithm 4.2 always terminates in time polyno-

mial in |T | and |P|, returning true if T ∈ L (P) and false otherwise. It is thus a

correct algorithm for PGeni and its subproblem PGenis.

Proof: The loop that tests whether the nodes of T may be inserted in a particular

order (lines 3–11) runs for |T | iterations. In each iteration we check whether a partic-

ular insertion is permitted; this check may be performed in polynomial time (Lemma

4.1.1). Hence, for any choice of N , the loop terminates after a polynomial amount of

time.

Since P is monotone, if T ∈ L (P), then T can be obtained by some sequence

of |T | insert operations. In this case, for the corresponding N all insertions are be

permitted, the for loop completes, and the algorithm returns true on line 12.

If T 6∈ L (P), no sequence of operations results in T . Hence for each permutation

of nodes(T ), some node cannot be inserted, and each execution path of Algorithm 4.2

returns false. �
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4.2.3 Simple policies with delete

An important feature of simple rules is that whether or not a node is matched by

such a rule depends only on the labels of that node and its ancestors:

Definition 4.2.1 The label path, LP(ν), of a node ν is the sequence of labels

〈`k, · · · , `0〉, where k is the depth of ν, `0 is the label of ν, and `i is the label of

the ith ancestor of ν.

Lemma 4.2.2 Let ν1 ∈ T1 and ν2 ∈ T2 be two nodes, possibly from different trees,

with the same label path; and let P be a predicate-free path expression. Then ν1 ∈
P (T1) if and only if ν2 ∈ P (T2).

Proof: A predicate-free path expression is of the form a1t1 . . . antn, where each ai

is either / or //, and each ti is either a label ` or the symbol ∗. Such an expression

selects a node ν if and only if LP(ν) is of the form p[o1]p[a1] . . . p[on]p[an], where p[/]

is the empty sequence of labels; p[//] is an arbitrary sequence of labels; p[`] is the

label `; and p[∗] is a single arbitrary label. Since ν1 and ν2 have the same label path,

P selects either both nodes or neither. �

Another important property of simple policies is that delete rules may be ignored:

any permitted sequence of operations may be converted into a permitted sequence of

non-delete operations that results in the same tree.

Lemma 4.2.3 Let P be a simple policy. Define PM as the policy obtained by remov-

ing all delete rules from P:

PM = P ∩
(
{+,−} × {insert, rename} × XP{[],∗,//}

)
,

Then L (PM) = L (P).

Proof: If PM permits some sequence of operations, that sequence consists only of

insert and rename operations, so P permits the same sequence. Therefore, L (PM) ⊆
L (P).

Now consider the converse; suppose there is some sequence of operations Q such

that P ` Q. For each delete operation o ∈ Q, remove that operation as well as

every preceding operation that inserted the target νo of o or a descendant of νo. The

resulting sequence QM of operations produces the same tree as Q. Furthermore,

by Lemma 4.2.2, any of the remaining operations that was permitted by P is also
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permitted by PM , as its target is outside the deleted subtrees and the path expressions

in the policy’s rules do not contain predicates. Hence P ` Q, and since Q contains

no delete operations, PM ` Q; thus L (P) = L (PM).

�

As a result, any instance of PGeni,ds (resp. PGeni,d+s) may in polynomial time be

converted into an instance of PGenis (resp. PGeni+s); and any instance of PGens

(resp. PGen+s) into an instance of PGeni,rs (resp. PGeni,r+s). We can therefore

extend the results of Theorems 4.2.1 and 4.2.2.

Corollary 4.2.2 PGeni,d+s is in P, and PGeni,ds is in NP.

4.3 Lower bounds for more complicated subproblems

4.3.1 Delete-free policies

Delete-free policies extend the monotone policies by adding rules that permit rename

operations. The presence of such rules allows modifying generated trees by changing

the labels of nodes, even internal nodes. This ability makes solving PGeni,r+ more

difficult than solving PGeni+. We show that, in fact, the problem is NP-hard, by

reduction from the classic vertex cover problem.

Definition 4.3.1 The vertex cover problem VC is: Given a graph G = (V,E) and

a natural number k, is there a set C ⊂ V of size ≤ k such that, for each (vi, vj) ∈ E,

at least one of vi, vj is in C?

Given an instance (G = (V = 〈v1, . . . , vn〉 , E) , k) of the vertex cover problem, we

construct a simple positive delete-free policy PG,k over the language V ∪E∪{root, vtx}
of element labels.

PG,k = (+, insert, ε, root) (4.1)

For each vi ∈ V :

(+, insert, //∗, vi) (4.2)

(+, rename, //vi, vtx) (4.3)
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For each ej = (u, v) ∈ E:

(+, insert, //u, ej) (4.4)

(+, insert, //v, ej) (4.5)

(+, insert, //u//∗, ej) (4.6)

(+, insert, //v//∗, ej) (4.7)

We ask if this policy generates the tree TG,k containing a root node labelled root,

a chain of k descendants labelled vtx, and for each e ∈ E, one child of the kth

descendant labelled e (Figure 4.3(c)).

(a) root

1c

nc

c1

c1

k

(b) root

c1

cn

1e em

c1

(c) root

vtx

1e em

vtx

k

Figure 4.3: Steps of the vertex cover simulation. (a) Rules 4.1 and 4.2 allow inserting
a root root and a chain of k vertex nodes. (b) Rules 4.4–4.7 permit adding nodes for
covered edges. (c) Rule 4.3 permits renaming vertex nodes, yielding TG,k.

Theorem 4.3.1 TG,k ∈ L (PG,k) if and only if (G, k) ∈ VC.

Proof: First suppose (G, k) ∈ VC, so G has a cover C = 〈c1, . . . , cn〉 of size n ≤ k.

The following sequence of operations generates TG,k from the empty tree:

ν0 = (insert, ε, root)

ζ1 = (insert, ν0, c1)

ζi = (insert, ζi−1, ci) for i = 2 . . . n

ζj = (insert, ζj−1, c1) for j = n . . . k

(insert, ζk, ei) for ei ∈ E

(rename, ζi, vtx) for i = 1 . . . k.
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The first operation is permitted by Rule 4.1. The next k operations are permitted by

instances of Rule 4.2, and yield the tree in Figure 4.3(a). Since C is a vertex cover of

G, at least one endpoint of each edge is contained in C, so the next |E| operations are

permitted by instances of Rules 4.4–4.7, yielding the tree in Figure 4.3(b). Finally, the

k rename operations are all permitted by instances of Rule 4.3, and yield the tree TG,k

in Figure 4.3(c). Thus this sequence of operations is permitted, and TG,k ∈ L (PG,k).
Conversely, suppose PG,k generates the tree TG,k. For each edge e ∈ E, this tree

contains a node labelled e. This node could only have been created by an instance of

Rules 4.4–4.7; hence some predecessor tree contained a node labelled with one of the

endpoints of e. Since nodes labelled with vertices cannot be removed, only inserted

or renamed to vtx, and since TG,k contains no nodes with vertex labels, each such

endpoint node is reflected in one of the vtx nodes in TG,k. Because there are k such

V nodes, at most k different vertex nodes belonged to the collection of predecessor

trees. Hence there is some subset of k or fewer vertices that covers every e ∈ E, and

(G, k) ∈ VC. �

Together with the fact that the instance (PG,k, TG,k) may be constructed in poly-

nomial time, and that VC is NP-complete [44], we have:

Corollary 4.3.1 PGeni,r+s (and thus PGeni,rs , PGeni,r+ , PGen+s, and PGens) is

NP-hard.

There remains the question of whether this bound is tight; that is, whether

PGeni,r+s is in NP. There is some evidence that it may not be: we can construct

a simple positive delete-free policy and tree such that the tree is generated by the

policy, but only after exponentially many operations. The following policy generates

every tree with labels from the set {a, b, c}, but generating a tree of height h requires

O
(
2h
)

operations.

Pexp = (+, insert, ε, a) (+, insert, //c, a)

(+, rename, /a, b) (+, rename, //c/a, b)

(+, rename, /b, c) (+, rename, //b/b, c)

(+, rename, /c, a) (+, rename, //a/c, a)

The existence of such policies eliminates the possibility of an NP algorithm that uses

as a witness of membership the sequence of operations generating the tree. However,

we can establish an upper bound by noting that no intermediate tree can grow larger
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than the final tree. This bound allows us to decide the general delete-free case with

a polynomial-space algorithm.

Algorithm 7 Nondeterministic algorithm for deciding PGeni,r

Require: T is a tree over the set L of labels
Require: P is a delete-free policy over L

1: S ← T∅
2: while |S| ≤ |T | ∧ S 6= T do
3: `← nondeterministically choose a label from L
4: if S = T∅ then
5: o← (insert, ε, `)
6: else
7: ν ← nondeterministically choose a node of S
8: x← nondeterministically choose insert or rename
9: o← (x, ν, `)

10: end if
11: if P 6`S o then
12: return false
13: end if
14: S ← o(S)
15: end while
16: return S = T

Lemma 4.3.1 Nondeterministic Algorithm 7 requires space polynomial in the size of

its input, and returns true if and only if T ∈ L (P).

Proof: First, note that this algorithm requires only space to store the policy P ,

the current intermediate tree S, and a single operation on this tree; and to check

whether the operation is permitted. The number of nodes in S is bounded by the size

of the input tree T and the operation can be checked in polynomial time (and hence

polynomial space); therefore the algorithm requires space polynomial in the size of

the input.

Suppose that T ∈ L (P). Then there is some finite permitted sequence Q of insert

and rename operations such thatQ(T∅) = T , and a corresponding sequence of trees S.

The first such operation must be an insert operation with target ε; each subsequent

operation must have as its target a node in the corresponding tree. Therefore it

is possible to nondeterministically select that operation in (lines 3–10). Since Q is

permitted, the condition in line 11 is never true, and in each iteration line 14 produces

the next tree in S. After applying the last such operation, we have S = T , thus ending
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the while loop (line 2) and returning true (line 16). Therefore there is an accepting

computation path.

Now suppose that T 6∈ L (P). Then there is no such permitted sequence Q; since

non-permitted operations are excluded by lines 11–12, we can never produce the final

tree T in line 14. Hence there is no accepting computation path. �

Finally, we note that Algorithm 7 need not terminate: a sequence of rename

operations may leave S unchanged after one or more iterations of the loop, thus

resulting in an infinite computation path. However, the space upper bound allows

us to limit the number of iterations. Let s(P , T ) ∈ O
(
| (P , T ) |k

)
be the number of

bits of space required by the algorithm. Then, if any computation path succeeds,

one does so after no more than 2s(P,T ) iterations. Hence, after this many iterations

we can be certain that the algorithm will never return true; the algorithm can thus

terminate and return false. This argument gives us:

Theorem 4.3.2 PGeni,r and its subproblems PGeni,r+ , PGeni,rs , and PGeni,r+s are

in PSpace.

Lemma 4.2.3 allows us to extend the result for PGeni,rs to policies that also include

delete operations:

Corollary 4.3.2 PGens and its subproblem PGen+s are in PSpace.

4.3.2 Positive policies

We saw in Lemma 4.2.3 that, in simple policies, delete operations can be ignored

entirely; however, the presence of predicates in more general classes of policies requires

that we take such operations into account. As a result, generating a desired tree might

require constructing a much larger intermediate tree, making the problem PGen+

substantially more difficult than PGeni+.

We show that PGeni,d+ (and thus PGen+) is PSpace-hard by showing a poly-

nomial-time reduction from a well-known PSpace-complete problem. We choose the

true quantified Boolean formula problem (Tqbf) for this purpose. Tqbf is

the problem of determining whether a first-order sentence over a finite set of Boolean

variables (a so-called quantified Boolean formula or QBF) is true. We assume that

the formula is presented in prenex negation-normal form (PNNF) [29]. That is, the

formula consists of a number of quantifiers governing an unquantified propositional

formula φ; and in φ the Boolean negation operator always has a single atom as its
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operand. By repeatedly lifting quantifiers, renaming clashing variables, and applying

De Morgan’s laws, it is always possible to convert a QBF into an equivalent PNNF

formula in polynomial time [29]. Hence this assumption does not affect the run-time

complexity of Tqbf.

Let F = Q1x1 . . . Qkxkφ(x1, . . . , xk) be a QBF in PNNF. Write X for the set

{x1, . . . , xk} of variables. We construct a policy PF , with size polynomial in the size

of F , that generates the tree /F/proved if and only if F is true.

F

t t

1ft1

2 2 2 2f f

Figure 4.4: Semantic tree for a QBF on two variables.

First, the policy PF allows constructing a tree that represents certain partial

valuations of X. This semantic tree corresponds to the decision tree used by many

QBF solvers [29]. In this tree, the node ti represents that variable xi is true in this

particular computation path, and fi that it is false. As an example, the semantic tree

for a formula on two variables (and hence with two quantifiers) is shown in Figure 4.4.

The portion of the policy that constructs this semantic tree, PT , consists of 3 + 4k

rules:

PT =



(+, insert, ε, F)

(+, insert, /F, t1)

(+, insert, /F, f1)

For each i, 1 < i ≤ k:

(+, insert, //ti−1, ti)

(+, insert, //ti−1, fi)

(+, insert, //fi−1, ti)

(+, insert, //fi−1, fi)

The semantic tree algorithm for Tqbf operates by recursively splitting the QBF

into two subproblems with fewer quantifiers: Qixi F
′ becomes F ′[xi = 0] and F ′[xi =

1]. The nodes generated by PT correspond to these subproblems.
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Definition 4.3.2 Let ν be a node in some tree generated by the policy PT . The node

formula of ν, form(ν), is defined recursively.

• If ν is the root node (labelled F), then form(ν) = F .

• Otherwise, ν has the label ti or fi, for some 1 ≤ i ≤ k. Let vν be 0 (false)

if the label is fi and 1 (true) if the label is ti. Furthermore, let G be the node

formula of ν’s parent; this formula has the form Qixi · · ·Qkxk φG, where φG is

an unquantified formula over the variables xi, . . . , xk. Then the node formula

of ν is

Qi+1xi+1 . . . QkxkφG[xi = vν ].

It may be verified that this formula has the required form.

We additionally have a subpolicy that allows us to perform unquantified deduction

at the leaves of the semantic tree. These leaves, labelled tk and fk, have unquantified

node formulae. We perform structural induction on these formulae, inserting a node

corresponding to a subformula only if that formula can be proved from the valuation

or from already-proved subformulae. This unqualified deduction policy Pφ consists

of at most 2m+ 3 rules, where m is the size of φ (the number of subformulae):

Pφ =



(+, insert, //tk, phi)

(+, insert, //fk, phi)

(+, insert, //∗[phi/psi1], proved)

R(i) for each subformula ψi of φ

Where, for each subformula ψi of φ, R(i) consists of one or two rules:

R(i) =



(+, insert, //tj//phi, psii) ψi = xj

(+, insert, //fj//phi, psii) ψi = ¬xj(
+, insert, //phi[psih][psij], psii

)
ψi = ψh ∧ ψj

(+, insert, //phi[psih], psii) ,(
+, insert, //phi[psij], psii

)
ψi = ψh ∨ ψj

Lemma 4.3.2 Let ν be a leaf node of the semantic tree constructed by policy PT . The

policy Pφ permits inserting a child node of ν labelled proved if and only if form(ν) is

true.
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Proof: By Definition 4.3.2, the node formula of a leaf node is an unquantified

formula φ[Vν ], where Vν is a complete valuation. This valuation is determined by the

label path of ν: V (xi) = 0 if fi appears in the label path, or 1 if ti appears. It may

be verified that exactly one of these two labels is present in the label path of each

leaf node ν. Furthermore, since ν is a leaf node, its label is tk or fk, so Pφ permits

inserting a child labelled phi.

Since φ is in negation-normal form, each subformula is either a variable, the

negation of a variable, or the conjunction or disjunction of two other subformulae. A

subformula consisting of a variable xi is true if and only if that variable is true in the

node formula of ν: that is, if ti appears as an ancestor. Likewise the subformula ¬xi is

true if and only if fi appears. The rules of R(i) allow us to insert a node representing

the subformula ψi in precisely these cases. Furthermore, a conjunction is true if and

only if both of its subformulae are true; and a disjunction if and only if at least one

of its subformulae is true. Hence R(i) allows us to insert a node corresponding to

subformula ψi if and only if ψi is true in valuation Vν . In particular, we can insert

the node psi1 if and only if ψ1 = φ is true in valuation Vν .

Finally, the third rule of Pφ allows us to insert a proved child of ν when and only

when we have inserted the psi1 node. Therefore, we can insert this node if and only

if φ[Vν ] = form(ν) is true. �

As an example, consider the QBF F = ∀x1∃x2(x1∨¬x2). Figure 4.4 demonstrates

the semantic tree for F , which may be constructed following PT . The subpolicy Pφ
allows inserting nodes labelled phi as children of each leaf of the semantic tree, and

children of these phi nodes representing the unquantified subformulae x1, ¬x2, and

x1∨¬x2 that are true in those branches of the tree (Figure 4.5). For example, a node

corresponding to ¬x2 may be inserted only in those parts of the semantic tree where

x2 is false: that is, as a descendant of f2.

Once we have proved some of the unquantified node formulae at the tk and fk

nodes, we can perform logical inference up the tree, following the semantic tree al-

gorithm for Tqbf. The presence of a child node named proved indicates that the

node formula of a node ν has been proved. In Figure 4.5, for example, a proved node

may be inserted as the child of each shaded node, in bottom-up order. The quan-

tified deduction subpolicy PQ consists of between k and 2k rules, depending on the

quantifiers of F .
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Figure 4.5: Tree for a QBF and its subformulae. The formula is F = ∀x1∃x2(x1∨¬x2);
shaded nodes correspond to true quantified formulae.

PQ =



For each Qi, 1 < i ≤ k:

If Qi = ∀:

(+, insert, //∗[ti/proved][fi/proved], proved) ;

otherwise, Qi = ∃:

(+, insert, //∗[ti/proved], proved)

(+, insert, //∗[fi/proved], proved)

Lemma 4.3.3 In the policy PM = PT ∪Pφ∪PQ, it is possible to insert a child proved

of a node ν only if the node formula of ν is a true QBF.

Proof: We saw in Lemma 4.3.2 that the statement holds for each node ν with an

unquantified node formula. This result establishes a basis for our induction.

Now suppose ν has a node formula with j > 0 quantifiers, and that our statement

holds for every node formula with fewer than j quantifiers. Then form(ν) has the form

Qk+1−jxk+1−jΦ, where Qk+1−j is a quantifier and Φ is a possibly quantified formula

with the free variable xk+1−j. Furthermore, ν’s children have the node formulae

Φ[xi = 0] and Φ[xi = 1].

If Qi = ∀, then QixiΦ is true if and only if Φ[xi = 0] and Φ[xi = 1], the node

formulae of ν’s children, are both true. By hypothesis, each of these children can

contain a proved node if and only if its node formula is true; hence the first rule

schema of PQ allows us to insert a proved child of ν only if form(ν) is true.

90



Otherwise, Qi = ∃; then form(ν) is true if and only if at least one of the children’s

node formulae is true. The second and third rule schemata of PQ allow inserting a

proved node only if one of the children contains a proved node. Again, since by our

inductive hypothesis these children can contain proved nodes if and only if they are

true, the same is true of form(ν). Therefore, ν can contain a proved child if and only

if form(ν) is true. �

We have seen that the positive monotone policy PM allows constructing a tree

that models the decision tree and inference rules of a QBF solver—and hence the

proof of a QBF F . In particular, this policy allows constructing a tree containing a

node with label path F proved if and only if F is a true QBF. However, the tree in

question may be huge: in the worst case, it has size exponential in the number of

quantifiers in F . We add a single delete rule that permits paring down this tree to a

fixed size.

PD = (+, delete, /F[proved]//∗)

Theorem 4.3.3 PGeni,d+ (and thus PGen+) is PSpace-hard.

Proof: Let F be an instance of Tqbf. The policy PF consists of a number of

rules polynomial in the number of subformulae of F . If F is not true, we cannot

insert a proved child of F, and PD has no effect. If F is true, then such a node can be

generated by Lemma 4.3.3, and the remaining nodes can be deleted by PD. Hence the

tree TF consisting of a root node F with a single child proved can be generated by PF
if and only if F is a true quantified Boolean formula. This construction establishes a

polynomial-time many-to-one reduction from Tqbf to PGeni,d+ , so the latter problem

is PSpace-hard. �

4.4 General policies

The general problem PGen combines the features studied in previous sections: insert,

rename, and delete operations, positive and negative rules, and predicates. The com-

bination of these features (or, as we shall see in Section 4.4.5, all of these features

except rename operations) results in a much more complex language of generated

trees. In fact, we prove that PGen is undecidable. As in Section 4.2, we proceed by

reduction from a problem of known complexity, in this case the halting problem for
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deterministic Turing machines. We show how to encode a Turing machine M and

initial tape S as an access control policy PM,S such that PM,S generates a particular

tree Thalt if and only if M halts on input S.

We represent a Turing machine as a 7-tuple of a set of states, an initial state, a

set of final (accepting) states, a tape alphabet, an input alphabet, a blank symbol,

and a transition function.

M = (Q, q0 ∈ Q,QF ⊆ Q,Γ,Σ ⊂ Γ, b ∈ Γ \ Σ, δ)

We consider deterministic Turing machines with left and right moves only, where no

transitions are permitted from final states: that is, the transition function δ maps

from (Q \QF )× Γ to Q× Γ× {L,R}. Furthermore, we assume the tape is bounded

on the left.

Definition 4.4.1 A configuration is a tuple (q, t, p) of a state q ∈ Q, a tape t ∈ Γ∗,

and a tape position 1 ≤ p ≤ |t|. We write CM,S
0 for the initial configuration of Turing

machine M on input S, namely (q0, S, 1). We write ∆ for the function taking a

configuration to the successive configuration.

4.4.1 Modelling Turing configurations as trees

tm

state tape

run cell

curr
cell

sym

ph

sym

[1]t

t [2]

q

Figure 4.6: A configuration tree

A tree generated by PM,S represents a configuration of M , as well as additional

bookkeeping information necessary to the simulation. Figure 4.6 shows an example

of (part of) such a configuration tree.

Definition 4.4.2 Let C = (q, t, p) be a configuration of the Turing machine M =

(Q, q0, QF ,Γ, b,Σ, δ). Write K for the larger of the input tape size and the index of

the rightmost visited cell. The configuration tree conftree(C) is the tree with:
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• a root node labelled tm;

• three children, labelled ph, state, and tape;

• one child of the ph node, labelled run;

• one child of the state node, labelled q;

• one child C1 of the tape node, labelled cell;

• each cell node Ci (1 ≤ i ≤ K) having:

– one child labelled sym, itself having a child labelled with the tape symbol

t[i];

– if i < K, one child Ci+1 labelled cell;

– if i = p, one child labelled curr.

Cells to the right of cell K all have label b; they are omitted from the tree, but will be

added if the cell is subsequently visited.

4.4.2 The policy PM,S

Let M = (Q, q0, QF ,Γ,Σ, b, δ) be a Turing machine, and S = S1S2 . . . Sn ∈ Σ∗ an

initial tape for M . The policy PM,S simulates the action of M on input S. In the

following presentation of the policy we use the notation (x)n to represent n repetitions

of the path expression fragment x. PM,S consists of the subpolicies Pstruct, Pinit, Pbuild,

Pb→r, Prun, Pwrite, Pmove, and Pcleanup.

We begin with a subpolicy Pstruct consisting of a number of negative rules that

enforce certain constraints on the tree. These structural rules ensure that there is

only one copy of each top-level node (ph, state, and tape); that the state and ph nodes

have only a single child each; that no tape cell contains two symbols or two successor

tape cells; and that no cell is marked as “current” or “new” twice.

(−, insert, /tm[ph], ph) (4.8)

(−, insert, /tm[state], state) (4.9)

Pstruct = (−, insert, /tm[tape], tape) (4.10)

(−, insert, /tm/ph[∗], ∗) (4.11)

(−, insert, /tm/state[∗], ∗) (4.12)

(−, insert, //∗[cell], cell) (4.13)

(−, insert, //cell[curr], curr) (4.14)

(−, insert, //cell[new], new) (4.15)

(−, insert, //cell[sym], sym) (4.16)

(−, insert, //sym[∗], ∗) (4.17)

4.4.3 Simulation phases

Our Turing machine simulation proceeds from one configuration tree to the next by

proceeding through a number of phases. The tree’s current phase is indicated by the
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label of the child of the ph node. In each phase, a particular sequence of operations

is permitted, ending with a transition into the successor phase. There are three

independent phases build, run, and cleanup; and 2|Q \ QF | · |Γ| phases that depend

on the simulated machine’s state q and the contents γ of its current tape cell; these

phases are labelled write-q-γ and move-q-γ.

The build phase

At the beginning of our simulation, the tree is empty, and hence does not have a

phase. In this stage, the subpolicy Pinit constructs enough of the tree to enter the

build phase:

(+, insert, ε, tm) (4.18)

Pinit = (+, insert, /tm, ph) (4.19)

(+, insert, /tm/ph, build) (4.20)

Because every other positive rule in PM,S requires the existence of a child of the

/tm/ph node, only the rules in this subpolicy are active at this point. We therefore

have the following:

Lemma 4.4.1 Any sufficiently long sequence of operations that is permitted on the

null tree produces an intermediate tree containing exactly: a tm root, one ph child of

the root, and one build child of that node.

Remark: Because an operation that would insert a root node is not permitted on

a non-empty tree, Rule 4.18 can be used only once. Likewise, structural Rules 4.8

and 4.11 prevent Rules 4.19 and 4.20 from being activated again as long as the tree

contains a ph node. Hence we shall disregard Pinit in the following lemmas.

In the build phase, we complete the initial configuration tree, including the state

and tape nodes and their descendants. Subpolicy Pbuild consists of 2|S|+ 5 rules:

(+, insert, /tm[ph/build], state) (4.21)

(+, insert, /tm[ph/build], tape) (4.22)

(+, insert, /tm[ph/build]/state, q0) (4.23)

(+, insert, /tm[ph/build]/tape, cell) (4.24)

(+, insert, /tm[ph/build]/tape/cell, curr) (4.25)

(+, insert, /tm[ph/build]/tape//cell, sym) (4.26)

(+, insert, /tm[ph/build]/tape/cell/sym, S1) (4.27)
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For each i, 1 < i ≤ |S|:(
+, insert, /tm[ph/build]/tape(/cell)i−1, cell

)
(4.28)(

+, insert, /tm[ph/build]/tape(/cell)i−1[sym/∗]/cell/sym, Si
)

(4.29)

At the end of this phase, once the entire initial configuration tree is constructed, we

permit transitioning to the run phase:

Pb→r =
(

+, rename, /tm[state/q0][tape/(/cell)|S|/sym/S|S|]/ph/build, run
)

(4.30)

Lemma 4.4.2 Any sufficiently long sequence of operations permitted on the null tree

produces the tree conftree(CM,S
0 ) as an intermediate step.

Proof: By Lemma 4.4.1, a sufficiently long sequence of operations permitted on the

null tree produces as an intermediate step a tree with a /tm/ph/build node, ph and

tm ancestors, and no other nodes. On such a tree, only Rules 4.21 and 4.22 permit

further operations.

Once a state node has been inserted by Rule 4.21, Rule 4.23 permits inserting a

q0 child; Rules 4.9 and 4.12 ensure that at most one state node and one child of that

node are inserted.

After applying Rule 4.22 to insert a tape node, Rules 4.24–4.27 allow inserting a

cell child; curr and sym grandchildren; and a S1 child of the sym node. Once the cell

node has been inserted, the instances of Rule 4.28 allow inserting i−1 cell descendants,

each a child of the previous node. Rule 4.13 ensures that neither the tape node nor

the cell nodes may contain multiple cell children; and Rule 4.14 prevents applying

Rule 4.25 again.

For each of the cell nodes, Rules 4.26 and 4.29 allow inserting sym children, and

grandchildren labelled with the appropriate symbol. Furthermore, the [sym/∗] pred-

icate in the latter rule ensures that no symbol is inserted until the previous symbol

(and hence all preceding symbols) are inserted.

Finally, Rule 4.30 allows renaming the build node to run, but only after the q0

node and last cell’s symbol (and hence all |S| symbols) have been inserted.

Since all other positive rules contain predicates that require that the ph node

contain some child other than build, these are the only rules that permit operations

before Rule 4.30 is applied. Along with the structural rules, this result ensures that

any sequence of 3 + 2 + 1 + 4 + 3|S − 1| = 3|S| + 7 operations results in a tree

where Rule 4.30 is the only applicable positive rule that is not blocked by negative

rules. Applying this rule results in precisely the tree conftree(CM,S
0 ). Hence any
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permitted sequence of length 3|S| + 8 yields this tree, and any longer permitted

sequence produces this tree as an intermediate result. �

The run phase

The run phase represents a Turing machine configuration. This phase can be entered

from the build phase (Rule 4.30), or from the cleanup phase (Rule 4.46). The only

operations permitted in this phase are to rename the run node to the next phase, one

of the write phases (Rule schema 4.31); to insert a finished node if the configuration is

a final one (Rule schema 4.32); and to delete most of the tree when the finished node

is present (Rule 4.33), obtaining a fixed tree with two nodes (a tm root and a deleted

child). Subpolicy Prun consists of |Γ|(|Q| − |QF |) + |QF |+ 1 rules:

For each non-final state q ∈ Q \QF and each tape symbol γ:

(+, rename, /tm[state/q][tape//cell[curr][sym/γ]]/ph/run, write-q-γ) (4.31)

For each final state qf ∈ QF :

(+, insert, /tm[ph/run][state/qf ], finished) (4.32)

One single rule:

(+, delete, /tm[finished]//∗) (4.33)

Lemma 4.4.3 If C is not a final configuration (that is, its state is not a member of

QF ), then exactly one operation is permitted on conftree(C), resulting in a tree Tw,

otherwise identical to conftree(C), but with a write-q-γ node replacing the run node,

where q is the state of C and γ is the symbol in the current tape cell of C.

Proof: Other than Rules 4.18–4.20, which are blocked by structural rules, the only

positive rules whose predicates are satisfied by a tree in the run phase without a

finished node are instances of Rule schemata 4.32 and 4.31; only the latter is active

for a non-final configuration. This rule transforms the tree into precisely Tw. �

If the simulation has reached a final configuration, a finished node is inserted, and

the tree is pared down to just the tm and finished nodes.

Lemma 4.4.4 If C = (qf , t, p) is a final configuration (that is, qf ∈ QF ), there

is a sequence of operations permitted on T = conftree(C) that yields the tree Thalt

containing a root node labelled tm, a child node labelled finished, and no other nodes.
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Proof: The tree T contains nodes with paths /tm/ph/run and /tm/state/qf ; hence

Rule 4.32 is active and it is permitted to insert a finished node. Once this node has

been added, Rule 4.33 becomes active, allowing any non-root node in the tree to be

deleted. In particular, it is permitted to delete the ph, state, and tape nodes, leaving

precisely Thalt. �

The write phases

For each transition, that is to say each pair (q, γ) ∈ (Q \QF )×Γ, the phase write-q-γ

allows changing the configuration tree’s state and current tape symbol. It is followed

by the move-q-γ and cleanup phases, where the position of the tape head is adjusted.

Subpolicy Pwrite consists of 3|Γ|(|Q| − |QF ) rules. For each transition:(
+, rename, /tm[ph/write-q-γ]/tape//cell[curr]/sym/γ, γ′

)
(4.34)(

+, rename, /tm[ph/write-q-γ]/state/q, q′
)

(4.35)(
+, rename, /tm[state/q′][tape//cell[curr]/sym/γ′]ph/write-q-γ, move-q-γ

)
(4.36)

Lemma 4.4.5 Let C be a Turing machine configuration with state q and current

symbol γ; let Tw be the tree resulting from Lemma 4.4.3; and let (q′, γ′, D) = δ(q, γ).

Any permitted sequence of operations on Tw that results in a tree without a write-q-γ

node produces as an intermediate step a tree Tm that differs from Tw in that: the child

of the ph node is labelled move-q-γ; the child of the state node is labelled q′; and the

child node of the sym sibling of the curr node is labelled γ′.

Proof: In this phase, only Rules 4.34–4.36 are active. Only the last of these rules

permits renaming the write-q-γ node. This rule’s predicates allow it to be used only if

the state node has a child labelled q′ and the current tape cell node ζ has a grandchild

labelled γ′. These are precisely the state and tape value specified by δ(q, γ).

Rule 4.35 permits renaming the state node q to q′; and Rule 4.34 permits renaming

the γ grandchild of ζ to γ′; since these are the only three active rules, no other

operations are permitted in this phase. Hence, immediately after applying Rule 4.36,

the tree is precisely the described Tm. �

Remark: Unlike in the other phases, it is not necessarily the case that any suffi-

ciently long sequence of operations leads to the next phase. If a cell is being re-written

with the same symbol, or the transition does not change the Turing machine state, it
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is possible to apply Rule 4.34 or 4.35 an arbitrary number of times.However, since in

this case the rule in question does not alter the tree, the result does not differ from

applying the rule only once.

This difficulty could be avoided by maintaining a second marked set of labels

representing the tape symbols, using the marked version of q′ in Rules 4.34 and 4.36,

and renaming the node with the non-marked label in the cleanup phase. Because our

proof is not adversely affected by the presence of such cycles, we do not complicate

the policy in this way.

The move phases

When the move-q-γ phase is entered, the tree’s state and current tape symbol have

been updated. It remains to move the tape head, adding a new cell if necessary. This

operation is accomplished in two phases: in the move phase, we mark the updated

tape head position as “new” and remove the “current” mark. Then, in the cleanup

phase, we change the “new” mark to “current”. This separation of phases allows

us to ensure that the tape head is moved exactly one step. First, subpolicy Pmove

consists of between 4|Γ|(|Q| − |QF |) and 7|Γ|(|Q| − |QF |) rules. For each transition

δ(q, γ) = (q′, γ′, D):

(+, delete, /tm[ph/move-q-γ][tape//new]/tape//curr) (4.37)

(+, rename, /tm[tape//cell/new]/ph/move-q-γ, cleanup) (4.38)

(−, rename, /tm[tape//cell/curr]/ph/move-q-γ, ∗) (4.39)

If D = L:

(+, insert, /tm[ph/move-q-γ]/tape//cell[cell/curr], new) (4.40)

Otherwise, D = R:

(+, insert, /tm[ph/move-q-γ]/tape//cell[curr], cell) (4.41)

(+, insert, /tm[ph/move-q-γ]/tape//cell, sym) (4.42)

(+, insert, /tm[ph/move-q-γ]/tape//cell[curr]/cell/sym, b) (4.43)

(+, insert, /tm[ph/move-q-γ]/tape//cell[curr]/cell[sym/∗], new) (4.44)

Lemma 4.4.6 Let C = (q, t, p) be a Turing machine configuration; let Tm be the tree

resulting from Lemma 4.4.5; and let D be the directional component of δ(q, γ).

If the p = 1 and D = L (a hanging configuration), no operations are permitted

on Tm. Otherwise, let ζ be the cell node of Tm containing a curr child. Any sufficiently

long sequence of permitted operations of Tm produces as an intermediate step the tree
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Tc that is otherwise identical to Tm, but without a curr node, with the move-q-γ node

replaced with cleanup node, and with changes depending on D and p:

• If D = L and p > 1, then the parent of ζ in Tc contains a child labelled new.

• If D = R and p = |t|, then ζ in Tc contains a new cell child, containing two

children labelled new and sym, with the latter having a child node with the blank

cell label b.

• Otherwise, D = R and p < |t|; then the cell child of ζ in Tc contains a child

labelled new.

Proof: The positive rules active in this phase are instances of Rules 4.37 and 4.38;

if D = L, Rule 4.40; and if D = R, Rules 4.41–4.44. Furthermore, the negative

Rules 4.13, 4.15, 4.16, 4.17, and 4.39 are relevant to the operation of this phase.

Rules 4.37 and 4.38 are not active on Tm, because the tree contains no new node.

We consider separately the two directions in which the tape head may move. If

D = L, only Rule 4.40 is active on Tm. This rule permits inserting a new node as a

child of the parent cell node of ζ. If p = 1, the parent of ζ is the tape node; hence

no operations are permitted. Otherwise, after inserting the new node, Rule 4.15

prohibits inserting another such node; and Rule 4.37 becomes active. Once this rule

is used to delete the curr node, Rule 4.39 is no longer active, leaving Rule 4.38 as the

only active rule; applying this rule renames the move-q-γ node to cleanup, yielding

Tc. Hence, any permitted sequence of three operations yields Tc.

If D = R, there are two cases to consider. If p < |t|, only Rules 4.41 and 4.44 are

active; and because ζ has a cell child, Rule 4.13 prohibits inserting a node with the

former rule. Hence the only permitted operation is to insert a new child of the cell

child of ζ. After this insertion, the argument from the D = L case applies: the next

operation must be to delete the curr node and deactivate Rule 4.39, then to rename

the move-q-γ node. Hence any permitted sequence of three operations yields Tc.

If p = |t|, Rule 4.44 is not active, because ζ has no cell children. Thus the only

permitted operation is to insert a new cell child of ζ by Rule 4.41; Rule 4.13 prohibits

inserting more than one such node. After this node has been inserted, Rule 4.42

permits inserting a sym node (but only once because of Rule 4.16). Then Rule 4.43

allows inserting a blank symbol node b as a child of this node, but only once because

of Rule 4.17. Once these three operations have been performed, Rule 4.44 is active

and the other rules inactive; then we may proceed as in the p < |t| case. Hence any
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permitted sequence of six operations yields Tc. �

The cleanup phase

After the write and move phases, the tree has almost completely been updated to

reflect the new Turing machine configuration. The only remaining steps are to replace

the new marker node with a curr node, and to enter the run phase again, yielding the

tree for the successor configuration.

Pcleanup = (+, rename, /tm[ph/cleanup]//new, curr) (4.45)

(+, rename, /tm[tape//curr]/ph/cleanup, run) (4.46)

Lemma 4.4.7 Let C be a Turing machine configuration and let Tc be the tree resulting

from applying Lemmas 4.4.3, 4.4.5, and 4.4.6 to conftree(C). Any sufficiently long

sequence of operations permitted on Tc produces as an intermediate result the tree T ′,

otherwise the same as Tc, but with a curr node in place of the new node, and a run

node in place of the cleanup node.

Proof: In the cleanup phase, positive Rules 4.45 and 4.46 are active; the latter is not

active on Tc because it contains no curr node. Hence the only permitted operation

is to rename the new node to curr by the former rule. Performing this operation

deactivates Rule 4.45, because there is no longer a new node. Hence the second

operation must be to rename the cleanup node to run by Rule 4.46, resulting in the

desired tree T ′. Thus any permitted sequence of two operations on Tc yields T ′. �

4.4.4 Correctness of simulation

Lemma 4.4.8 Let C be a non-final Turing machine configuration, and let Q be a non-

empty sequence of operations permitted on T = conftree(C) such that Q(conftree(C))
contains a node labelled /tm/ph/run. Then Q produces conftree(∆(C)) as an inter-

mediate result, representing the successor configuration ∆(C). Furthermore, if C is

not a hanging configuration, such a sequence Q exists.

Proof: After applying Lemmas 4.4.3 through 4.4.7 to the tree T = conftree(C),
we have a tree T ′ that is otherwise identical to T , except that: its state is q′; the

symbol of the previous tape cell ζ (the cell that was current in conftree(C)) is γ′; the
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parent (if D = L) or child (if D = R) cell of ζ is marked as current; and if ζ had

no cell children and D = R, a new child cell with symbol b has been inserted. These

are precisely the changes necessary to transform conftree(C) into conftree(∆(C)). If

any of these changes had not been performed, the resulting tree could not have a

/tm/ph/run node. �

Figure 4.7 demonstrates the sequence of phases for a typical transition involving a
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Figure 4.7: Simulating a Turing machine transition. Shown is the Turing machine
transition δ(qi, γ1) = (qk, γ

′, R). First row: a configuration tree in phase run, and
the tree at the end of phases write, move. Second row: the tree at the end of phase
cleanup, and the successor configuration tree.

rightwards move.

Theorem 4.4.1 Let M be a Turing machine and S ∈ Σ∗ an initial tape of M ; and

let Thalt be the tree containing only a tm root and a finished child. Then PM,S generates

Thalt if and only if M halts on input S.

Proof: By Lemmas 4.4.1 and 4.4.2, PM,S generates the tree T1 = conftree(CM,S
0 ),

and any sufficiently long permitted sequence of operations produces this tree as

an intermediate step. If M halts on input S after k steps, then k applications of

Lemma 4.4.8 produces a configuration tree for a final configuration. From such a

tree, by Lemma 4.4.4 there is a permitted sequence of operations that yields Thalt.
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Now suppose M does not halt on input S. Then either M eventually enters a

hanging configuration, or there is an infinite sequence of configurations 〈C0, C1, . . .〉
such that each Ci+1 = ∆(Ci). In the former case, by Lemma 4.4.6 the simulation

does not advance beyond the hanging configuration, and thus does not produce Thalt.

Consider then the second case, where there is an infinite sequence of successive con-

figurations. Suppose S were a permitted sequence of operations resulting in Thalt. By

Lemma 4.4.8, S produces as an intermediate result the tree conftree(C1). Repeated

applications of Lemma 4.4.8 demonstrates that S subsequently produces intermedi-

ate results conftree(C2), conftree(C3), and in general conftree(Ci) for each i ∈ N, none

of which permit inserting a finished node. This result means that S is an infinite

sequence, contradicting the assumption that it is a permitted sequence. Hence no

such sequence exists, and PM,S does not generate Thalt. �

Corollary 4.4.1 PGen is undecidable.

Proof: Given a Turing machine M and input tape S, it is possible to construct

the policy PM,S algorithmically (in fact, in polynomial time). Combined with The-

orem 4.4.1, this construction establishes a many-to-one reduction from the halting

problem to PGen. Since the halting problem is undecidable, so too is PGen. �

4.4.5 Policies without rename

In fact, we do not need the full generality of PGen for undecidability. It is possible

to construct a modified version of PM,S that excludes rename rules, yet still correctly

simulates a Turing machine. We begin by noting that, in the trees in L (PM,S), no

node that can be the target of a permitted rename operation can have children. Fur-

thermore, in all cases but one (Rule 4.45), there exist structural rules that prohibit

the renamed node from having a sibling. We take advantage of these facts to pro-

duce a policy that permits sequences of insert and delete operations (and only those

sequences) that simulate the rename operations being eliminated. We do so by insert-

ing additional signal nodes, indicating that a particular rename operation is being

simulated, and prohibiting all operations on other parts of the tree while the signal

node exists. Once the simulated rename is complete, we permit the signal node to be

removed.
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A significant portion of the rename-free policy is identical with PM,S. In particular,

Pstruct, Pinit, and Pbuild are used unmodified. The subpolicies for the other simulation

phases, however, contain rename rules that must be replaced.

We replace Rule 4.30 with the subpolicy P i,db→r:(
+, insert, /tm[state/q0][tape/(/cell)|S|/sym/S|S|][ph/build], sig-build-run

)
(4.47)

(+, delete, /tm[sig-build-run]/ph/build) (4.48)

(+, insert, /tm[sig-build-run]/ph, run) (4.49)

(+, delete, /tm[ph/run]/sig-build-run) (4.50)

(−, insert, /tm[sig-build-run], ∗) (4.51)

In subpolicy P i,drun we maintain Rules 4.32 and 4.33, while replacing Rule 4.31 with:

(+, insert, /tm[state/q][tape//cell[curr][sym/γ]][ph/run], sig-write-q-γ) (4.52)

(+, delete, /tm[sig-write-q-γ]/ph/run) (4.53)

(+, insert, /tm[sig-write-q-γ]/ph, write-q-γ) (4.54)(
+, delete, /tm[ph/write-q-γ]/sig-write-q-q′

)
(4.55)

(−, insert, /tm[sig-write-q-γ], ∗) (4.56)

Subpolicy P i,dwrite differs the most from its counterpart in PM,S, as we we replace all

three of its rules (4.34–4.36):(
+, insert, /tm[ph/write-q-γ][tape//cell[curr]/sym/γ], sig-γ-γ′

)
(4.57)(

+, delete, /tm[sig-γ-γ′]/tape//cell[curr]/sym/γ
)

(4.58)(
+, insert, /tm[sig-γ-γ′]/tape//cell[curr]/sym, γ′

)
(4.59)(

+, delete, /tm[tape//cell[curr]/sym/γ′]/sig-γ-γ′
)

(4.60)(
−, insert, /tm[sig-γ-γ′], ∗

)
(4.61)(

+, insert, /tm[ph/write-q-γ][state/q], sig-q-q′
)

(4.62)(
+, delete, /tm[sig-q-q′]/state/q

)
(4.63)(

+, insert, /tm[sig-q-q′]/state, q′
)

(4.64)(
+, delete, /tm[state/q]/sig-q-q′

)
(4.65)(

−, insert, /tm[sig-q-q′], ∗
)

(4.66)
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(
+, insert, /tm[state/q′][tape//cell[curr]/sym/γ′][ph/write-q-γ], sig-move-q-γ

)
(4.67)

(+, delete, /tm[sig-move-q-γ]/ph/write-q-γ) (4.68)

(+, insert, /tm[sig-move-q-γ]/ph, move-q-γ) (4.69)

(+, delete, /tm[ph/move-q-γ]/sig-move-q-γ) (4.70)

(−, insert, /tm[sig-move-q-γ], ∗) (4.71)

(−, insert, /tm[sig-move-q-γ]/tape//∗, ∗) (4.72)

(−, delete, /tm[sig-move-q-γ]/tape//∗) (4.73)

In subpolicy P i,dmove we preserve Rules 4.37 and 4.40–4.44, replacing the positive

Rule 4.38 and the negative Rule 4.39 with:

(+, insert, /tm[tape//cell/new][ph/move-q-γ], sig-cleanup-q-γ) (4.74)

(+, delete, /tm[sig-cleanup-q-γ]/ph/move-q-γ) (4.75)

(+, insert, /tm[sig-cleanup-q-γ]/ph, cleanup) (4.76)

(+, delete, /tm[ph/cleanup]/sig-cleanup-q-γ) (4.77)

(−, insert, /tm[sig-cleanup-q-γ], ∗) (4.78)

(−, insert, /tm[sig-cleanup-q-γ]/tape//∗, ∗) (4.79)

(−, delete, /tm[sig-cleanup-q-γ]/tape//∗) (4.80)

(−, insert, /tm[tape//cell/curr], sig-cleanup-q-γ) (4.81)

And finally, we replace both Rules 4.45 and 4.46, yielding subpolicy P i,dcleanup:

(+, insert, /tm[ph/cleanup]//cell[new], curr) (4.82)

(+, delete, /tm[ph/cleanup]//cell[curr]/new) (4.83)

(−, insert, /tm[tape//cell[curr][new]], ∗) (4.84)

(+, insert, /tm[tape//curr][ph/cleanup], sig-cleanup-run) (4.85)

(+, delete, /tm[sig-cleanup-run]/ph/cleanup) (4.86)

(+, insert, /tm[sig-cleanup-run]/ph, run) (4.87)

(+, delete, /tm[ph/run]/sig-cleanup-run) (4.88)

(−, insert, /tm[sig-cleanup-run], ∗) (4.89)

First we consider the more common case, exhibited by Rules 4.30, 4.31–4.36, 4.38,

and 4.46. Each of these rules permits a leaf node of the tree to be renamed. In each
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case, a structural rule (Rule 4.11, 4.12, or 4.17) prohibits inserting a sibling of the

node in question. Furthermore, the parent of the renamed node (the target of the

eventual insert) can be located even after the original node has been deleted. This

combination of facts allows us to simulate rename with a deletion then insertion, and

to construct a set of rules that permits this sequence of operations, and disallows all

others until the sequence is complete. As a concrete example, consider Rule 4.34.

(+, rename, /tm[ph/write-q-γ]/tape//cell[curr]/sym/γ, γ′)

For each instance of this rule schema, we introduce a signal node sig-γ-γ′ (Rule 4.57).

When this signal node is present, we permit removing the target γ node (Rule 4.58)

and inserting a node labelled γ′ in its place (Rule 4.59). Rule 4.60 ensures that the

new node is present when the signal node is deleted, and the structural Rule 4.17

ensures that the new node had no siblings. Finally, Rule 4.61 ensures that, until the

sig-γ-γ′ node is deleted, no other signal nodes can be inserted. Since only rename

operations are permitted in a write phase, this prohibition on signal nodes is enough

to ensure that no operations interrupt the simulated rename. In other cases, such as

Rules 4.36 and 4.38, other insertions are allowed in the relevant phases, and we must

prevent those as well. As a result, multiple negative rules (4.71–4.73 and 4.78–4.80,

respectively) are required in the replacement of the rename rule.

Now we consider the exceptional case, Rule 4.45. This rule, active in the cleanup

phase, permits the new marker to be replaced by a curr marker. Unlike the rules

considered above, it is not sufficient here to first delete the new node then insert a

curr node, because the presence of the new node indicates where curr may be placed.

Instead, we take advantage of the fact that our structural rules do not prohibit a

single node from having both curr and new children, and simulate the rename by

inserting the curr node then removing the new node.

The only other positive rule active in the cleanup phase is Rule 4.46, which permits

us to enter the run phase. This rule is a rename rule, and is thus itself simulated

with a signal node (Rule 4.85). Therefore, to prevent other operations from being

interspersed between the insert and delete, it suffices to prevent a signal node from

being inserted while both a curr and node node are present. As a result we can in

this case dispense with the signal node entirely (Rules 4.82–4.84).

Finally, with all positive rename rules accounted for, we turn our attention to the

the negative Rule 4.39. This rule acts to prohibit Rule 4.38 (a rename rule) from

firing before the curr node has been removed from the tree. We can gain the same

effect in our rename-free policy by prohibiting insertion of the corresponding signal
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node while curr exists; see Rule 4.81.

The resulting policy P i,dM,S generates all the trees generated by PM,S, as well as

additional trees containing signal nodes. In particular, P i,dM,S generates Thalt if and

only if PM,S does. Therefore we have the following.

Theorem 4.4.2 The problem PGeni,d, the subset of PGen where the policy contains

no rename rules, is undecidable.

4.4.6 Policies without delete

It is also possible to produce a delete-free policy that simulates a Turing machine.

However, the absence of delete operations means that the final tree is no smaller than

the largest configuration tree produced by the simulation, which could be arbitrarily

large. As a result, it is not possible to specify a target tree that would allow us

to reduce the halting problem to PGeni,r. If we limit the size of the tape, the

size of the largest configuration tree is bounded and it is possible to perform the

reduction from the simpler halting problem for linear bounded automata (LBAs), a

PSpace-complete problem [36].

Suppose M is a linear bounded Turing machine and S an input tape. It is pos-

sible to obtain a linear reduction in the number of tape cells used by constructing a

new machine with more tape symbols; and this transformation can be done in time

polynomial in |M | [36]. Hence we may without loss of generality assume that M ’s

constant factor is 1; that is, it requires no tape cells beyond the input. Thus any

reachable configuration contains exactly the same number of cells as the input tape.

As with our rename-free policy, we can use Pstruct and Pinit unaltered; we can

also carry over Pb→r, Pwrite, and Pcleanup without changes, as they consist entirely of

rename rules.

In P i,rbuild we make two changes to ensure uniformity of our tree, requiring that

every cell node have an child labelled curr, new, or inactive. The new Rule 4.90 allows

us to insert an inactive child beneath each cell node we construct, other than the

first (which has a curr child). Furthermore, we replace Rule schema 4.29 with Rule

schema 4.91, which requires these inactive nodes to be present before we insert the

tape symbol children of the same cells. As a result, Rule 4.30 allows us to leave the

build phase only when each cell node has a curr or inactive child.

(+, insert, /tm[ph/build]/tape/cell//cell, inactive) (4.90)(
+, insert, /tm[ph/build]/tape(/cell)i−1[sym/∗]/cell[inactive]/sym, Si

)
(4.91)
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In the subpolicy Pmove we first note that, because M requires no cells beyond the

input tape, we can eliminate Rules 4.41–4.43, which were responsible for extending

the tape. Next, it is necessary to replace instances of Rule 4.37, which delete the

curr node. Instead of deleting this node, the policy renames it to inactive (Rule

schema 4.92). We also modify instances of Rules 4.40 and 4.44 so that we do not

produce cells with both inactive and new children. Rather than inserting the new

node, we rename the inactive node, resulting in Rule schemata 4.93 and 4.94:

(+, rename, /tm[ph/move-q-γ][tape//new]/tape//curr, inactive) (4.92)

(+, rename, /tm[ph/move-q-γ]/tape//cell[cell/curr]/inactive, new) (4.93)

(+, rename, /tm[ph/move-q-γ]/tape//cell[curr]/cell[sym/∗]/inactive, new) (4.94)

Our resulting policy, then, cannot add a new curr, new, or inactive node after the

build phase, but can only rename them. Hence each cell has exactly one such child

at any point after the build phase. In fact, after these modifications, the only node

that can be inserted outside of the build phase is the finished node (Rule 4.32).

Finally, we replace the sole remaining delete Rule 4.33 in subpolicy Prun, resulting

in the new Rule 4.95:

(+, rename, /tm[finished]//∗, finished) (4.95)

Instead of deleting every node other than the finished node, this replacement rule

renames them to finished. Therefore, if M terminates on input S, it is possible to

produce a tree with root tm and with every other node labelled finished. Since only

the finished node can be inserted after the build phase, we know the shape of the final

tree: It is the tree T
|S|
fin obtained by relabelling each non-root node in conftree(CM,S

0 )

to finished, and adding one additional finished child of the root. This tree has size

linear in |S| and in fact only depends on |S|, not any other feature of the input tape,

the Turing machine, or the accepting computation. Furthermore, by a simple variant

of Theorem 4.4.1, it is only possible to generate this tree if M halts on input S. We

therefore have the result:

Theorem 4.4.3 PGeni,r is PSpace-complete.

Proof: We have shown that, from an instance (M,S) of the halting problem

for LBAs (HPLBA), we can in polynomial time create an instance
(
P i,rM,S, T

|S|
fin

)
of

PGeni,r; and that this instance is in PGeni,r if and only if M halts on input S.

This construction establishes a reduction from HPLBA to PGeni,r. Since the for-

mer problem is PSpace-complete [36], the latter is PSpace-hard. Furthermore, we

107



showed in Theorem 4.3.2 that this problem is in PSpace. Therefore, PGeni,r is

PSpace-complete. �

4.5 Fine-grained access control for multihierarchical markup

As discussed in Chapter 3, hierarchical structures are not always enough to repre-

sent complex text documents, particularly those with multiple layers of analysis. We

therefore proposed in that chapter a model of multihierarchical markup. Since mul-

tihierarchical documents are often edited the product of collaborative editing efforts

[34, 45, 46], it is natural to ask whether fine-grained access control can be applied to

such documents.

We consider the three update operations from in Section 3.3.3: splice-in, splice-out,

and rename. These operations correspond to the insert, delete, and rename operations

on hierarchical documents; however, they have properties that suggest some changes

to the forms of access control rules and the definition of matching between rules and

operations. Significantly, the splice-in operation targets not a single parent node, but

rather two nodes that may or may not be children of the target. Furthermore, the

splice-in operation can add nodes that become ancestors of existing nodes; in order

to maintain invariants on the parent-child relationships of elements, it is therefore

necessary to constrain the operation based on the descendants, and not just the

ancestors, of the new node. This constraint is already possible with delete and rename

rules, as it is possible to check the children of the existing target nodes with a predicate

on the path expression’s final location step. However, since a node being spliced in

is not yet part of the document, an XPath expression on the document cannot easily

refer to the nodes that will become its children (or parents). To solve this problem,

we add to the insert rules an additional list of predicates that should be satisfied on

the new node in the updated document.

Definition 4.5.1 An multihierarchical access control rule over the set L of la-

bels is a tuple with the form (s, splice-in, P, τ, Q), (s, splice-out, P ), or (s, rename, P, τ),

where s is either + or −; P is a multihierarchical path expression over L, possibly the

empty path expression ε; L is a node test (Definition 2.2.2); and Q is a predicate-list

(from Grammar 2.2.2).

A rule is positive if s is +; otherwise it is negative. A rule is simple if its path

expression contains no predicates and, if it is a splice-in operation, Q is empty.
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Rules with splice-out and rename operations correspond respectively to delete and

rename rules in hierarchical documents, and have similar semantics.

Definition 4.5.2 A splice-out rule X = (s, splice-out, P ) matches the operation O

on document G, written X ∼G O, if O = (splice-out, ν) and ν ∈ SMH[[P ]] (G)

Definition 4.5.3 A rename rule R = (s, rename, P, τ) matches the operation O on

document G, written R ∼G O, if O = (rename, ν, `), ν ∈ SMH[[P ]] (G), and τ matches

`.

However, splice-in rules are more difficult to specify. As with insert rules on hi-

erarchical documents, a rule’s path expression is checked against the parents of the

new node. However, since the splice-in operation is not specified in terms of the

node’s parents, and since splice-in rules contain an additional list of predicates on the

newly-inserted node, the matching criterion is somewhat more complex. We begin

by identifying the existing nodes that will be ancestors and parents of the new node.

Definition 4.5.4 The potential ancestor set of a range (α, β) ∈ T∪E∪{∞}), written

pa(α, β), is the set of nodes ν ∈ T ∪ E such that

• α is ∞ or ν <o α; and

• β is ∞ or ν >c β.

The potential parent set of (α, β), written pp(α, β), is the set of nodes ν ∈ pa(α, β)

such that there is no node χ ∈ pa(α, β) with ν →+ χ.

The potential ancestor and potential parent sets of a splice-in operation O =

(splice-in, α, β, `) are the potential ancestor and parent sets of (α, β).

The potential ancestors of a range are the nodes that open before the beginning

of the range (treating∞ as following the last-opening node) and close before the end

of the range (treating ∞ as preceding the first-closing node). These nodes will be

ancestors of the new node, which will immediately precede α in <o and immediately

follow β in >c. The potential parents are the potential ancestors that do not contain

other potential ancestors; these nodes would hence directly contain the new node.

Unfortunately, although it is possible to define the potential children of the new node

in a similar manner, this definition does not allow us to easily apply the predicate

list Q; instead, we apply relative expressions in those predicates in the updated tree.
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Definition 4.5.5 A splice-in rule S = (s, splice-in, P, τ,Q) matches the operation

O on document G, written S ∼G O, if:

• O = (splice-in, α, β, `);

• either P = ε and pp(α, β) = ∅, or P 6= ε and there exists some node π ∈
pp(α, β) such that π ∈ SMH[[P ]] (G);

• τ matches `; and

• for each predicate q ∈ Q consisting of a relative path expression, the new node

ξ ∈ SQ
MH[[q]]OG; and for each predicate q′ ∈ Q consisting of an absolute path

expression, SQ
MH[[q′]]G is not empty.

The matched parents of operation O with respect to rule S are the potential

parents that are selected by the rule’s path expression.

mp(O, S) = pp(α, β) ∩ SMH[[P ]] (G)

Note that we treat relative and absolute path expressions in the predicate list Q

differently. Relative path expressions are evaluated in the updated document, since

they refer to children and descendants of the new node. Absolute path expressions,

on the other hand, are evaluated in the original document, so that they may assert

the presence of an existing node without being fooled by the new node. In particular,

this observation allows a rule (−, splice-in, ε, ∗, [/∗]) that prohibits inserting a root

node into a document that already contains one.

At the cost of some complexity in defining different semantics for the predicate list

Q and its components, we could eliminate the references to O(G) in this definition.

The bottom-up semantics of predicates by Gottlob et al.[31] would assist in these

definitions.

Before moving from individual rules to complete policies, we note one additional

complexity. Unlike the hierarchical case, where nodes have at most one parent and

one path from the root, a multihierarchical node may have many parents. It may be

overly permissive to allow the operation whenever an operation is matched through

just one of many parents, because this ability would allow adding children to nodes

that are not referenced by any positive rule, a violation of the principle of least

surprise. Instead we require that every potential parent of the operation be matched

by a positive rule (and none by a negative rule). Doing so allows us to add splice-in

rules for particular types of parent nodes without being concerned that these rules

allow manipulation of other nodes that happen to overlap the desired ones.
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Definition 4.5.6 A multihierarchical access control policy is a finite set of multi-

hierarchical access control rules over some set L of labels.

The policy P permits the operation O on globally ordered GODDAG G, written

P `G O, if there is no negative rule R− ∈ P such that R− ∼G O, and either:

• O is a rename or splice-out operation and there exists some positive rule R+ ∈ P
such that R+ ∼G O; or

• O is a splice-in operation, R is the set of positive rules matching O in G, R is

non-empty, and pp(O) =
⋃
r∈Rmp(O, r).

We may ask about the extension PGenMH of the problem PGen to multihierar-

chical documents.

Definition 4.5.7 The language LG (P) generated by a multihierarchical access con-

trol policy P from the set G of globally ordered GODDAGs is the set of globally ordered

GODDAGs G such that there exists a sequence of operations S and a GODDAG

G0 ∈ G such that P `G0 S and S(G0) = G. We write L (P) for L{G∅} (P), the

language of globally ordered GODDAGs generated by P from the empty tree.

Definition 4.5.8 The problem PGenMH is: given a pair (P , G), where P is a multi-

hierarchical access control policy and G is a globally ordered GODDAG, is T ∈ L (P)?

As might be expected, this version of the problem is also undecidable. We begin

by constructing a multihierarchical version of the policy PM,S from Section 4.4.

Definition 4.5.9 Let M = (Q, q0, QF ,Γ,Σ, b, δ) be a Turing machine and S ∈ Σ∗

an initial tape of M . The multihierarchical access control policy PMH
M,S is given by

PMH
M,S = Phier ∪

⋃
R∈PM,S

MH (R) ,

where Phier contains the rules:

(−, splice-out, //∗[∗]) (4.96)

(−, splice-in, //∗, ∗, [∗]) (4.97)

(−, splice-in, ε, ∗, [/∗]) , (4.98)
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and where MH, transforming hierarchical rules into multihierarchical rules, is defined

as

MH (s, insert, P, `) = (s, splice-in, P, `, ε)

MH (s, delete, P ) = (s, splice-out, P )

MH (s, rename, P, `) = (s, rename, P, `).

Rename rules have essentially the same semantics in hierarchical and multihier-

archical documents, and hence remain unchanged. Rules for delete and splice-out

rules have different semantics, as the former remove entire subtrees while the latter

remove only a single node; however, if the target of a splice-out rule is a leaf node, the

semantics are similar. In PM,S there are two delete rules, Rule 4.37 and Rule 4.33.

The former targets nodes labelled curr, which can only occur as leaves in documents

generated by PM,S. The latter rule becomes active only after a final configuration is

reached; at this point in the simulation, it is important only that the nodes of the

document other than the root and finished can be deleted, not the order in which

they are deleted; in particular, the nodes can be deleted in a bottom-up order, so

that delete operations always target leaf nodes. Rule 4.96 ensures that, in fact, only

leaf nodes may be deleted, as every non-leaf node is selected by //∗[∗].
The additional Rules 4.97 and 4.98 control splice-in operations, ensuring that no

node can be added as a parent of an existing node or as a new root of a non-empty

document. As a result, any non-empty document constructed under PMH
M,S is rooted,

and must be constructed in a top-down fashion, with each node spliced into the tree

as a leaf. The insert rules themselves are translated into splice-in rules that permit

adding rules in the same contexts; in particular, since Phier prohibits splicing in nodes

as parents of existing nodes, these translated rules may have empty predicate lists.

Furthermore, permitted sequences of operations generate only trees

Lemma 4.5.1 Every document generated by PMH
M,S is a tree, possibly the empty tree,

with identical structure to a tree generated by PM,S.

Proof: Let S be a sequence of operations permitted by PMH
M,S. We show by induction

that D = S(T∅) is a tree. As our base case, we note that, if S is empty, D is the

empty tree.

Assume now that every document produced by a sequence of n operations per-

mitted by PMH
M,S is a tree generated by PM,S. Consider a sequence of operations

S = 〈o1, . . . , on, on+1〉 permitted by PMH
M,S. By the inductive hypothesis, Dn =

on(· · · o1(T∅)) is a tree.
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If on+1 is a rename operation, then D = on+1(Dn) has the same graph structure as

Dn, but with different labels, and is hence a tree itself; furthermore, PM,S permitted

the identical operation on Dn, so D is generated by PM,S. If on+1 is a splice-out

operation, then by Rule 4.96 it targets a leaf node. Splicing out a leaf node from a

tree results in a tree, so D = on+1(Dn) is a tree; and the same node may be deleted

from Dn under PM,S, so D is generated by PM,S.

Now consider the case where on+1 is a splice-in operation. As demonstrated by

Lemmas 4.4.1–4.4.7, at most one positive insert rule is active in Dn, with at most

a single permissible target. As a result, only the corresponding rule of PMH
M,S is ac-

tive, and it likewise matches at most one target node. Since a splice-in operation is

permitted only if every parent of the new node is selected by some positive splice-in

rule, the operation on+1 splices in a node with at most one parent. Since Rules 4.97

and 4.98 furthermore prohibit splicing in a node except as a leaf node, the document

D = on+1(Dn) consists of a tree with a new leaf node added as a child of a single

node; hence it is the tree resulting from the corresponding insert operation under

PM,S, concluding the induction. �

Finally, we may use the correspondence between documents generated by PMH
M,S

and those generated by PM,S to extend Theorem 4.4.1 to multihierarchical policies.

Theorem 4.5.1 There exists a reduction from the halting problem for Turing ma-

chines to PGenMH.

Proof: By Lemma 4.5.1, the documents generated by PMH
M,S are those trees generated

by PM,S. In particular, Thalt is generated by PMH
M,S if and only if it is generated by PM,S

(so, by Theorem 4.4.1, if and only if M halts on input S). Furthermore, PMH
M,S can

be constructed by a straightforward linear-time transformation of PM,S. Therefore,

the function mapping each (M,S) to PMH
M,S is a reduction from the halting problem

to PGenMH. �

We can therefore extend our main complexity result for PGen to multihierarchical

policies.

Corollary 4.5.1 PGenMH is undecidable.
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Chapter 5 Conclusions and future research directions

5.1 Thesis contributions

We have made several contributions dealing with problems of text encoding and

collaborative editing for complex documents. Our results have focused on the topics

of modelling multihierarchical markup and fine-grained access control, as well as

issues that arise in the intersection of these topics.

We have shown that augmenting the GODDAG [61] structure with an ordering of

nodes meeting certain requirements results in a model of markup, the globally ordered

GODDAG, that reflects precisely those documents that can be serialized in text-and-

tags form without spurious overlap. This structure provides an alternative to the

approach of Marcoux [52], while also permitting us to simply define the semantics of

update operations on such documents. We furthermore introduced a variant of core

XPath [12, 31] that supports the globally ordered GODDAG, allowing queries based

on the expanded range of relationships found in a multihierarchical document.

We also investigated fine-grained access control for updates of XML documents,

in particular access control policies that use XPath expressions to select the nodes

that may or may not be affected by different kinds of updates. We showed that, even

if such expressions are restricted to limited subset XP{[],∗,//} of XPath, the problem

PGen of determining whether a document could be constructed under the access

control policy is undecidable. We additionally showed that even restricted variants

of this problem, limiting the permitted of operations and the subset of XPath even

further, have often high lower bounds on their complexity, although a polynomial

time algorithm exists for at least one simple variant.

Finally, we have introduced a model for fine-grained access control of updates to

multihierarchical documents in our globally ordered GODDAG. Such a model can

allow for tighter management of collaborative editing scenarios, with administrators

defining the types of markup and portions of the document that may be edited by

particular users.

5.2 Future work

Although we have contributed several results, our work also raises new questions

related to both multihierarchical markup and fine-grained access control.
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We have shown that globally ordered GODDAGs and range GODDAGs are equiv-

alent, and that updates to such a document may be specified in terms of the range

GODDAG orders. However, it is likely to be prohibitively expensive to convert be-

tween the two forms of markup every time the document is updated. Future research

should address the problem of efficiently maintaining the two representations side-by-

side. Dynamic transitive closure and transitive reduction algorithms [59] may help

to maintain both the arcs of the globally ordered GODDAG and the order relations

of the range GODDAG.

Because the GOG faithfully represents overlapping markup with a text-and-tags

serialization, it shares the limitations of such serializations. Further work is required

to extend the GOG to represent discontinuous features [62] such as damaged regions of

a manuscript [43]. Furthermore, some documents, such as palimpsests or bidirectional

texts, are best represented with several order relationships rather than a single global

order. Effectively representing such documents requires us to extend, or possibly even

abandon, the text-and-tags serialization.

The results on the complexity of PGen, and in particular the undecidability of

the full problem, suggests the need for models of fine-grained access control for XML

updates that are less expressive, and thus better suited to analysis, while remaining

practical and flexible. Two possibilities we have considered are positive insert-only

and simple rename-free policies. However, although these policy languages do make

PGen tractable, their expressiveness is greatly lacking: The former cannot account

for documents that change in any way other than the accumulation of new text and

markup, and the latter is unable to express constraints on sibling nodes such as “A

section may be assigned a copyright only if it has an author”. It may be necessary,

then, to abandon the use of XPath altogether in fine-grained access control for XML

updates. Two proposed models appear promising and warrant further investigation:

schema-based access control [7, 8] and multi-level security of trees [11].

Adapting schema-based access control to multihierarchical markup will present

its own set of challenges. Although there has been some research into schemata

for multihierarchical markup [25, 38], such schemata are typically associated with

the concurrent hierarchies model (Section 3.2.1), where the document’s markup is

partitioned into a number of separate hierarchies. Some work has considered the

interaction of nodes in these separate hierarchies [20, 60], but further work is required

to specify schemata for documents with self-overlap and other situations that prevent

modelling documents as overlapping trees.

116



Copyright c© Neil Moore, 2012.

117



Bibliography

[1] Early Manuscripts at Oxford University. http://image.ox.ac.uk/, 2000.

[2] Wikipedia: The free encyclopedia. http://www.wikipedia.org/, Accessed 8

February 2012.

[3] Wikipedia: Why create an account? http://en.wikipedia.org/?title=

Wikipedia:Why_create_an_account%3F, Accessed 8 February 2012.

[4] Vidur Apparao, Steve Byrne, Mike Champion, Scott Isaacs, Arnaud Le Hors,

Gavin Nicol, Jonathan Robie, Peter Sharpe, Bill Smith, Jared Sorensen,

Robert Sutor, Ray Whitmer, and Chris Wilson. Document Object Model

(DOM) level 1 specification, version 1.0. http://www.w3.org/TR/1998/

REC-DOM-Level-1-19981001/, 1998. World Wide Web Consortium Recommen-

dation.

[5] Elisa Bertino, M. Braun, Silvana Castano, Elena Ferrari, and Marco Mesiti.

Author-X: A Java-based system for XML data protection. In Proceedings IFIP

TC11/WG11.3 Fourteenth Annual Working Conference on Database Security:

Data and Application Security, Development and Directions, pages 15–26, 2000.

[6] Elisa Bertino, Barbara Catania, Elene Ferrari, and Paolo Perlasca. A logical

framework for reasoning about access control models. ACM Trans. Inf. Syst.

Secur., 6(1):71–127, 2003.

[7] Loreto Bravo, James Cheney, and Irini Fundulaki. Repairing inconsistent XML

write-access control policies. In Marcelo Arenas and Michael I. Schwartzbach,

editors, DBPL, volume 4797 of LNCS, pages 97–111. Springer, 2007.

[8] Loreto Bravo, James Cheney, and Irini Fundulaki. ACCOn: checking consis-

tency of XML write-access control policies. In Alfons Kemper, Patrick Valduriez,

Noureddine Mouaddib, Jens Teubner, Mokrane Bouzeghoub, Volker Markl, Lau-

rent Amsaleg, and Ioana Manolescu, editors, EDBT, volume 261 of ACM Inter-

national Conference Proceeding Series, pages 715–719. ACM, 2008.

[9] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau,

and John Cowan. Extensible markup language (XML) 1.1. http://www.w3.

118

http://image.ox.ac.uk/
http://www.wikipedia.org/
http://en.wikipedia.org/?title=Wikipedia:Why_create_an_account%3F
http://en.wikipedia.org/?title=Wikipedia:Why_create_an_account%3F
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/REC-xml11-20040204/


org/TR/2004/REC-xml11-20040204/, Feb 2004. World Wide Web Consortium

Recommendation.

[10] Bogdan Cautis, Serge Abiteboul, and Tova Milo. Reasoning about XML up-

date constraints. In PODS ’07: Proceedings of the twenty-sixth ACM SIGMOD-

SIGACT-SIGART symposium on Principles of database systems, pages 195–204,

New York, NY, USA, 2007. ACM.

[11] SungRan Cho, Sihem Amer-Yahia, Laks V.S. Lakshmanan, and Divesh Srivas-

tava. Optimizing the secure evaluation of twig queries. In Proceedings 28th

VLDB Conference, 2002.

[12] James Clark and Steve DeRose. XML path language (XPath), version 1.0.

http://www.w3.org/TR/1999/REC-xpath-19991116, 1999. World Wide Web

Consortium Recommendation.

[13] Unicode Consortium. The Unicode Standard. The Unicode Consortium, Moun-

tain View, California, 2012.

[14] Ernesto Damiani, Sabrina de Capitani di Vimercati, Stefano Paraboschi, and

Pierangela Samarati. Securing XML documents. In Proceedings 2000 Interna-

tional Conference on Extending Database Technology (EDBT2000), 2000.

[15] Ernesto Damiani, Majirus Fansi, Alban Gabillon, and Stefania Marrara. Securely

updating XML. In Bruno Apolloni, Robert J. Howlett, and Lakhmi C. Jain,

editors, KES (3), volume 4694 of LNCS, pages 1098–1106. Springer, 2007.

[16] A. Dekhtyar and I. E. Iacob. A framework for management of concurrent XML

markup. Data Knowl. Eng., 52(2):185–208, 2005.

[17] A. Dekhtyar and I. E. Iacob. xTagger: a new approach to authoring document-

centric XML. In Proceedings of the 5th ACM/IEEE-CS Joint Conference on

Digital Libraries (JCDL ’05), pages 44–45, June 2005.

[18] A. Dekhtyar, I. E. Iacob, J. W. Jaromczyk, K. Kiernan, N. Moore, and D. C.

Porter. Database support for image-based electronic editions. In Proceedings

of the 10th International Workshop on Multimedia Information Systems (MIS

2004), Aug 2004.

[19] A. Dekhtyar, I. E. Iacob, J. W. Jaromczyk, K. Kiernan, N. Moore, and D. C.

Porter. Support for XML markup of image-based electronic editions. Interna-

tional Journal on Digital Libraries, 6(1):55–69, 2006.

119

http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/1999/REC-xpath-19991116


[20] A. Dekhtyar, I. E. Iacob, and W. Zhao. XPath extension for querying concurrent

XML markup. In Proceedings 30th VLDB Conference, 2004.

[21] S. DeRose. Markup overlap: a review and a horse. In Proceedings of Extreme

Markup Languages, 2004.

[22] S. J. DeRose, D. Durand, E. Mylonas, and A. Renear. What is Text, Really?

Journal of Computing in Higher Education, 1(2):3–26, 1990.

[23] Alin Deutsch and Val Tannen. Containment of regular path expressions under

integrity constraints. In Knowledge Representation Meets Databases, 2001.

[24] Denise Draper, Peter Fankhauser, Mary Fernández, Ashok Malhotra, Kristof-
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