9-6-2011

Infectious cDNA Clone of the Modified Live Virus Vaccine Strain of *Equine Arteritis Virus*

Udeni B. R. Balasuriya
University of Kentucky, ubalasuriya@uky.edu

Peter J. Timoney
University of Kentucky, ptimoney@uky.edu

Jianquan Wang
University of Kentucky, jianquanwang@gmail.com

Follow this and additional works at: http://uknowledge.uky.edu/gluck_patents
Part of the [Veterinary Medicine Commons](http://uknowledge.uky.edu/gluck_patents)

Recommended Citation
Balasuriya, Udeni B. R.; Timoney, Peter J.; and Wang, Jianquan, "Infectious cDNA Clone of the Modified Live Virus Vaccine Strain of *Equine Arteritis Virus*" (2011). Veterinary Science Faculty Patents. 4.
http://uknowledge.uky.edu/gluck_patents/4

This Patent is brought to you for free and open access by the Veterinary Science at UKnowledge. It has been accepted for inclusion in Veterinary Science Faculty Patents by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.
INFECTIONOUS CDNA CLONE OF THE MODIFIED LIVE VIRUS VACCINE STRAIN OF EQUINE ARTERITIS VIRUS

Inventors: Udeni B. R. Balasuriya, Lexington, KY (US); Peter J. Timoney, Lexington, KY (US); Jianqiang Zhang, Lexington, KY (US)

Assignee: University of Kentucky Research Foundation, Lexington, KY (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 57 days.

Appl. No.: 12/436,242
Filed: May 6, 2009

Prior Publication Data

Related U.S. Application Data
Provisional application No. 61/156,595, filed on Mar. 2, 2009.

Int. Cl.
C12N 7/00 (2006.01)
C12N 15/63 (2006.01)
C12N 15/85 (2006.01)

U.S. Cl. 435/235.1; 435/320.1; 435/325

Field of Classification Search None
See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
6,500,662 B1 12/2002 Calvert et al.

OTHER PUBLICATIONS

ABSTRACT
An isolated polynucleotide molecule includes a DNA sequence encoding an infectious RNA molecule encoding a modified live virus strain of an Equine arteritis virus, wherein the DNA sequence is SEQ ID NO:1 or a degenerate variant thereof. Also provided are transformed or transfected host cells including that sequence, vectors including the sequence, and isolated infectious RNA molecules encoded by the sequence. Further, a modified DNA sequence encoding an infectious RNA molecule encoding a modified live virus strain of an Equine arteritis virus is provided wherein the DNA sequence is SEQ ID NO:2 or a degenerate variant thereof, including a silent point mutation allowing distinguishing the modified sequence from the parent and other strains of Equine arteritis virus.

9 Claims, 2 Drawing Sheets
Figure 1
This utility patent application claims the benefit of priority in U.S. Provisional Patent Application Ser. No. 61/156,595 filed on Mar. 2, 2009, the entirety of the disclosure of which is incorporated herein by reference.

TECHNICAL FIELD

The present invention relates to an infectious clone of the modified live virus (MLV) vaccine strain of Equine arteritis Virus (EAV). In particular, the invention relates to an infectious cDNA clone of the MLV vaccine strain allowing generation of full length, infectious transcripts of MLV EAV. Use of the functional, infectious recombinant virion of EAV derived from an attenuated vaccine strain in marker vaccines, companion diagnostic tests, and the like is contemplated.

BACKGROUND OF THE INVENTION

Equine arteritis virus (EAV) is a member of the genus Arterivirus, family Arteriviridae in the order Nidovirales (Cavanaugh, 1997), and is the causative agent of equine viral arteritis (EVA) of horses (Doll et al., 1957a). Outbreaks of EVA are characterized by any combination of systemic illness of adult horses, abortion of pregnant mares, interstitial pneumonia of young foals and persistent infection of stallions (Doll et al., 1957a; Doll et al., 1957b; Gollnik et al., 1981; Timoney et al. 1986; Timoney et al., 1987; Timoney et al., 1992; Carman et al., 1988; Vaala et al., 1992; Del Piero et al., 1995; Del Piero et al., 1997). EAV is horizontally transmitted either by aerosol during outbreaks of EVA or generically via the breeding of an infected stallion to susceptible mares, and vertically through congenital infection of foals born to mares infected late in gestation (Timoney et al., 1987; Timoney et al., 1992; Vaala et al., 1992; Timoney and McCollum, 1993; Glaser et al., 1996).

Dissemination of EAV by fomites such as vehicles, twitches, artificial vaginas and shanks can be an important source of infection in some outbreaks (Collins et al. 1987; Timoney and McCollum, 1988; Timoney and McCollum, 1993). The persistently infected carrier stallion clearly plays an important role in perpetuation and sexual dissemination of EAV. The persistence of EAV in the male reproductively tract is testosterone-dependent (Timoney and McCollum, 1993). It was recently shown that EAV behaves as a quasi-species during persistent infection of carrier stallions, with regular emergence of novel genotypic and phenotypic viral variants (Hedges et al., 1999).

The EAV genome is 12.7 kb and contains 5' and 3' untranslated regions and nine functional open reading frames (ORFs; Snijder and Meulenberg, 1998. Snijder et al., 1999]). ORFs 1a and 1b encode two replicase polyproteins [pp1a and pp1ab; (de Vries et al., 1997; Snijder and Spaan, 2006; Snijder and Meulenberg, 1998)], and the remaining seven ORFs (2a, 2b and 3-7) encode structural proteins of the virus. These include four membrane glycoproteins GP2 (25 kDa), GP3 (3642 kDa), GP4 (28 kDa) and GP5 (30-44 kDa), respectively encoded by ORFs 2b, 3, 4, and 5, two unglycosylated membrane proteins E (8 kDa) and M (17 kDa) encoded by ORFs 2a and 6, and the phosphorylated nucleocapsid protein N (14 kDa) encoded by ORF7 (de Vries et al., 1992; Snijder et al., 1999, Wieringa et al., 2002).

Prevention and control of EVA in North America is achieved by vaccination of horses with the modified live virus vaccine strain of EAV (ARVAC®, Fort Dodge Animal Health; Moore, 1986). Although the current modified live virus (MLV) vaccine against EVA is safe and efficacious, there is resistance to using it in horses in many countries (e.g. European Union) regardless of the seroprevalence of EAV infection. One of the major concerns is the safety of the current MLV vaccine in pregnant mares, in particular the ability of the attenuated virus to cross the placenta and infects the unborn foal. The vaccine is only recommended for use in stallions and nonpregnant mares. It is not recommended for use in pregnant mares, especially during the last two months of gestation, or in foals less than 6 weeks of age, unless they are at high risk of natural exposure. Furthermore, horses that are vaccinated with the current MLV cannot be distinguished from naturally infected animals. Following the recent multi-state EAV occurrence in the United States there is a strong industry demand for a marker vaccine to distinguish vaccinated animals from the naturally infected animals, as well as to develop a MLV vaccine that is totally safe for use in pregnant mares. Thus, there remains a need in the art for novel means for control of outbreaks of EAV. The advent of recombinant DNA technology has helped to develop new generation vaccines against a number of veterinary pathogens. These include live-vectored vaccines, gene deletion mutants and DNA vaccines.

SUMMARY OF THE INVENTION

To solve the aforementioned problems, there is provided an isolated polynucleotide molecule comprising a DNA sequence which encodes an infectious RNA molecule encoding a modified live virus vaccine strain of an Equine arteritis virus. That polynucleotide sequence is derived from an Equine arteritis virus modified live virus vaccine strain (ARVAC®, Fort Dodge Animal Health). In one embodiment, the polynucleotide sequence is SEQ ID NO:1 or a degenerate variant thereof. Vectors, including plasmid vectors, comprising the polynucleotide molecule are provided. Still further, an isolated infectious RNA molecule encoded by the isolated polynucleotide molecule is provided, which encodes a modified live virus vaccine strain of the Equine arteritis virus.

In another aspect, there is provided an isolated polynucleotide molecule comprising a DNA sequence which encodes an infectious RNA molecule encoding an Equine arteritis virus, wherein the DNA sequence is SEQ ID NO:2 or a degenerate variant thereof. In this embodiment, a silent point mutation is introduced, allowing recognition and distinguishing the sequence from the parent strain Equine arteritis virus or other strains of the virus. Vectors, host cells transfected with the polynucleotide molecule, and infectious RNA molecules encoded by the polynucleotide molecule are provided also.

These and other embodiments, aspects, advantages, and features of the present invention will be set forth in the description which follows, and in part will become apparent to those of ordinary skill in the art by reference to the following description of the invention and referenced drawings or by practice of the invention. The aspects, advantages, and features of the invention are realized and attained by means of the instrumentalities, procedures, and combinations particularly pointed out in the appended claims. Various patent and non-patent citations are discussed herein. Unless otherwise indicated, any such citations are specifically incorporated by reference in their entirety into the present disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings incorporated in and forming a part of the specification, illustrate several aspects of the present invention, and together with the description serve to explain the principles of the invention. In the drawings:

FIG. 1 presents a schematic in flow diagram form of a cloning strategy for constructing a full-length infectious cDNA clone of the Equine arteritis virus modified live vaccine strain (ARVAC®); and
FIG. 2 shows immunofluorescent staining of BHK-21 cells transfected with in vitro transcribed RNA from the cDNA clone shown in FIG. 1.

DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

In the following detailed description of the illustrated embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. Also, it is to be understood that other embodiments may be utilized and that process, reagent, software, and/or other changes may be made without departing from the scope of the present invention.

EXAMPLE 1

FIG. 1 shows in flow diagram the strategy employed for construction of a full-length infectious cDNA clone of EAV MLV. The experimental details for this strategy have been previously set forth (Balaauriya et al., 2007; incorporated herein by reference). Briefly, the pRSB plasmid sequence (McKnight et al., 1996) used in making in the virulent pEAV/VBS infectious cDNA clone (Balaauriya et al., 2007; GenBank accession no. DQ846751) was used as the backbone to construct the EAV MLV clone.

The viral RNA of EAV MLV strain (ARVAC®, Fort Dodge Animal Health) was RT-PCR amplified using four pairs of synthetic oligonucleotide primers (a & b, c & d, e & f, and g & h), designed according to the EAV MLV nucleotide sequence (GenBank accession no. EU568275) to obtain four overlapping fragments (termed AB, CD, EF, and GH). Long PCR was carried out according to the manufacturer’s instructions with the Expand Long Template PCR system (Boehringer Mannheim). The primers used are set forth in Table 1.

With reference to FIG. 1, in step 1 a shuttle vector pBluEAVrVBS(Xhol-EcoRV) was constructed by replacing the fragment Xhol-EcoRV of the plasmid pBluSV2Kp with the fragment Xhol-EcoRV of the full-length clone pEAVrVBS. Next (step 2), the fragment AB was digested with restriction enzymes Xhol and EcoRV and then cloned into the shuttle vector pBluEAVrVBS(Xhol-EcoRV) which was also cut with the same restriction enzymes, to obtain the recombinant plasmid pBluEAVMLV(Xhol-EcoRV). In step 3, the plasmid pBluEAVMLV(Xhol-EcoRV) was digested with restriction enzymes Xhol and EcoRV and then cloned into the full-length clone pEAVrVBS which was also cut with the same restriction enzymes, to obtain the recombinant plasmid pEAVrVBSMLV(Xhol-EcoRV).

The fragment GH was digested (step 4) with restriction enzymes BamHI and XhoI and then cloned into the plasmid pEAVrVBSMLV (Xhol-EcoRV) which was also digested with the same restriction enzymes, to obtain the recombinant plasmid pEAVrVBSMLV(Xhol-EcoRV&BamHI-XhoI). Following, (step 5) the fragment EF was digested with restriction enzymes BlnI and BamHI and then cloned into the plasmid pEAVrVBSMLV(Xhol-EcoRV&BamHI-XhoI) which was also digested with the same restriction enzymes, to obtain the recombinant plasmid pEAVrVBSMLV(Xhol-EcoRV&BlnI-XhoI). Finally, in step 6, the fragment CD was digested with restriction enzymes EcoRV and BlnI and then cloned into the plasmid pEAVrVBSMLV(Xhol-EcoRV&BlnI-XhoI) which was also cut with the same restriction enzymes, to obtain the full-length clone pEAVrVLSMLV. Following assembly, the EAV MLV cDNA (SEQ ID NO:1) was immediately downstream of a 17 promoter for generation of full-length in vitro transcripts of EAV MLV.

EXAMPLE 2

Once assembly of the full-length clone was complete, its authenticity was confirmed by sequencing. That sequence is

<p>| TABLE 1 | Primers used for reverse transcription and PCR amplification of the EAV MLV (ARVAC) fragments AB, CD, EF and GH. |
|---|
| Table 1. Primers for RT-PCR amplification of the EAV MLV vaccine strain (ARVAC) |</p>
<table>
<thead>
<tr>
<th>Primer</th>
<th>Reverse Primer</th>
<th>Digestion with restriction enzymes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fragment 5'GGCCAG3'</td>
<td>GATTTATGAGTTGTC</td>
<td>XhoI</td>
</tr>
<tr>
<td>(SEQ ID NO: 5)</td>
<td>(SEQ ID NO: 6)</td>
<td>EcoRV</td>
</tr>
<tr>
<td>Fragment 5'GGGCGCTTGGCTGA</td>
<td>TGCTCAAGG</td>
<td>BlnI</td>
</tr>
<tr>
<td>(SEQ ID NO: 8)</td>
<td>(SEQ ID NO: 9)</td>
<td>BamHI</td>
</tr>
<tr>
<td>Fragment 5'GGAGCAAGCCG</td>
<td>TGCTCAAGG</td>
<td>BlnI</td>
</tr>
<tr>
<td>(SEQ ID NO: 11)</td>
<td>(SEQ ID NO: 12)</td>
<td>BamHI</td>
</tr>
<tr>
<td>Fragment 5'GCCACGCTTGGCTGA</td>
<td>TGCTCAAGG</td>
<td>BlnI</td>
</tr>
<tr>
<td>(SEQ ID NO: 14)</td>
<td>(SEQ ID NO: 15)</td>
<td>BamHI</td>
</tr>
</tbody>
</table>
The cloned virus sequence (EAVrMLV) had 100% nucleotide identity to the master sequence of the parental MLV vaccine strain (GenBank accession no. EU586275).

EXAMPLE 3

Plasmid containing the full-length sequence of the MLV vaccine (pEAVrMLV; SEQ ID NO: 3; GenBank Accession No. FJ798195) was XhoI-linearized and in vitro transcribed (IVT) RNA was generated for electroporation into baby hamster kidney cells (BHK-21; ATCC CCL10) according to published methods (Balasuriya et al., 1999). The electroporated cells were seeded onto culture plates and incubated at 37°C. Until complete cytopathic effect (CPE) was observed to confirm infectivity. When 100% CPE was observed the tissue culture fluid was harvested and stored at ~80°C.

EXAMPLE 4

The infectivity of the IVT RNA was confirmed also by indirect immunofluorescence (IFA; FIG. 2; see Balasuriya et al., 2007) to detect viral protein synthesis in BHK-21 cells transfected with synthetic full-length RNA. Electroporated cells were plated directly onto chamber slides and incubated. The cells were labeled with anti-mlv monoclonal antibody 12A1 (Mab; FIG. 2b) and anti-nucleocapsid MAb 3E2 (FIG. 2a) at 24 hours post transfection. Mock-transfected cells were also stained with the same Mabs as controls (FIG. 2a, c).

EXAMPLE 5

To distinguish the cloned virus from the parental strain and from other field and laboratory EAV strains, a silent point mutation (bp12,423 C→G) was introduced into the cDNA clone described in Example 1, providing another infectious cDNA clone termed pEAVrMLV.B (SEQ ID NO:4; GenBank Accession No.: FJ798196). The silent point mutation was introduced using QuickChange II site-directed mutagenesis kit (Stratagene) and the mutagenesis primers EAV12423Pmut (5'-GATGGGGTCCCGAAACCGC-CGCCGAAC-3'; SEQ ID NO: 17) and EAV12423mmut (5'-CGCGGGGTTCGCCACCCCAC-3'; SEQ ID NO:18). This clone contained a unique restriction site Bsp EI (5'-TGCCGG-3') at positions 12,419-12,424. This restriction site is lacking in pEAVrMLV.

EXAMPLE 6

A vaccine is formulated according to conventional methods, incorporating virus, plasmid, or other vectors comprising SEQ ID NO:2 and including acceptable carriers, including standard buffers, stabilizers, diluents, preservatives, and the like, and may be formulated for extended release. Adjuvants or other immunomodulators may be included, such as Freund's complete and incomplete adjuvant and the like. An effective amount of vaccine can be determined conventionally by methods known to the skilled artisan, such as administering sequentially increasing doses of virus, plasmid, or vector comprising SEQ ID NO:1 and other additives as described to ascertain proper dosages and any side effects. Single or multiple administrations of vaccine are contemplated. Immune response to the vaccine is monitored by conventional methods, such as seroconversion and antibody titer post-vaccination.

EXAMPLE 7

A marker vaccine is formulated according to conventional methods, incorporating virus, plasmid, or other vectors comprising SEQ ID NO:2 and including acceptable carriers, including standard buffers, stabilizers, diluents, preservatives, and the like, and may be formulated for extended release. Adjuvants or other immunomodulators may be included, such as Freund's complete and incomplete adjuvant and the like. An effective amount of vaccine can be determined conventionally by methods known to the skilled artisan, such as administering sequentially increasing doses of virus, plasmid, or vector comprising SEQ ID NO:1 and other additives as described to ascertain proper dosages and any side effects. Single or multiple administrations of vaccine are contemplated. Immune response to the vaccine is monitored by conventional methods, such as seroconversion and antibody titer post-vaccination.

REFERENCES

ggcgttacaa tttcttggac ctgtgcacac acccggcttt cggccacagtgt cggtggtcttg
540
atgtcatgctt agccagttaaa gaggcaagtgt tggtaatttc cactgaacac gcgctgtgctta
600
agcgtttccc tccggtctgta tttgcgcgctca acggcgtagt gttgtgctgg
660
gccggtgctt aaacattggtt atatactgacct tggatatggaa acaagacggttt ttcctgcgtg
720
taaatacttt accatcggac ggcgtgtgacg cctgtgttct gttgatatcc aaccattacc
780
gcgaacaaag caagcgggtgg cttgcttacaa aacgacgtctgt ttagttgggt gggagactgg
840
gttgggtcct caatgggtgc cttgacggggg tggaaattcct caattgagct cttgagccctc
900
agcagacgctgc atctatccaa aacgcgggat gcaagcgtgag tgggtggaga caacacgat
960
tcctctgaagc agctcgtgcc ttgctgtcgc cttgcagcttc ttagtggaca aaatccctcaag
1020
gggagggagc ttgaggttac aagttgcttg cttctatgaa tcgctgcccc ctgttgtccg
1080
tcgtggtcag ttcctgacttg tggggtgtag ttagtgggtc tttcattgct tttgtaattt
1140
caccacgcgt ttcagcgctt attccaggtga cgggagtttg tcggaatgcc aagtacgcaaa
1200
tgatattgta caagccacag cttgaggtcgt aagtcgaaaa cgggctggtgct cttgtgtcttg
1260
atgaaacgctg ttctagggcc aacctgcaat gccaacgtag gtaggggatg ttaaaccgcac
1320
cggtgtcagc aggctggtggt actaacattc tggagggctg gcaggggtgc aacggttgtgc
1380
tggatatacc tgaagggagc ccaagccccc tcaaaagcgg ggaagatgcc tggatcaccct tcccgccgca
1440
acctctttag agatgcctaaa actgctggcgc ctggcattgc aggatccagaa aacagggaca
1500
agctggtcctt ccctacgacc ccagctggcct gcagatcagc cagtcgcaac ccacagatgg
1560
gaggccgat caccagcacc ccagctggcct gcagatcagc cagtcgcaac ccacagatgg
1620
ggggtgttggc ccaaaacctctg tacagcccttg cggagctggtct tggagggact gcaacacagcatt
1680
gttgtgcttg cttgaggagc atctcagatcc cccgaacacc ccaaaagcgg ggaagatgcc tggatcaccct tcccgccgca
1740
agcgtgtacgc tagctttaggtc aagattgatgc tggatcagc ctcggtggtgc cgggagtttg ttagggtgcggt cggccactaa tggtagtgctg agacgcgtcc
1800
gttgactccct cgtgatcctgc gttggggttc atctctctct tccacattgc ccaatcccttt tggggttgcggt cggccactaa tggtagtgctg agacgcgtcc
1860
ctaggggtcc cttggtgggtc atacccagct tgggmcataa tggtagtgctg agacgcgtcc
1920
tggatcttcatgctgttagcctggcggcagct cagcgtttcggcgcacagtgt gggtggtcttg
1980
tagcctttctg ggaagaagaa cacatttata gacgggttcgg tggggtcggcc attacacgacgctgctggcttct cttccggctgct gttgctggctg cttggtgtatg
2040
cggtgtgctg cttgctgtcaat tcaggggtcg cggaggtgacg tggagggact gcaacacagcatt
2100
atggcagcata tggctgcttg caccctgtgc actgggtgctgt tggagggact gcaacacagcatt
2160
gtgtgcaacctc ctggctggtgctt tgcgggtgctg acttggtgttg acgtggtggtct gcaggccggtc
2220
ccccctggtta cacacctggca cgggtgggctt cttggtgtatg tggagggact gcaacacagcatt
2280
cacccagaca cccctggtta cacacctggca cgggtgggctt cttggtgtatg tggagggact gcaacacagcatt
2340
gacggcgcgct tcaggcggcgt cggggtggttg ctggagggacg tggagggact gcaacacagcatt
2400
agagggctagc attgtaacct gatgggtttcct cttccggctgct gttgctggctg cttggtgtatg
2460
gctgtgactg cgtgtggtatg gcagcggggtt cggggtggttg ctggagggacg tggagggact gcaacacagcatt
2520
cgggtgtcagc aggctggtggt actaacattc tggagggctg gcaggggtgc aacggttgtgc
2580
tggccacgcc aacgggttgac ccgggtgtcagc aggctggtggt actaacattc tggagggctg gcaggggtgc aacggttgtgc
2640
cagggtgata cccctggtta tctccggctgct cttgaggtgct cggaggtgacg tggagggact gcaacacagcatt
2700
ggttcaggtct cttccggctgct cttgaggtgct cggaggtgacg tggagggact gcaacacagcatt
2760
cacctctttct ggctgttcatgctgttagcctggcggcagct cagcgtttcggcgcacagtgt gggtggtcttg
2820
gattgtttctg ttcctgacttg tggggtgtag ttagtgggtc tttcattgct tttgtaattt
2880
gogctgaagg catctctctg gacctctctg ggttaactca gttacaagct tatggaatgg 2940
cagcgctcaac tagcaggatt tggatcttct tggctgcccc aecgctgtgac acaaacagct 3000
tgacactgtt gactctctgt tccctcttag tggacgcttgc gatcatctctg 3060
ggtttttact tgttgcaagtt ctgctgctggt tggctgguat aataacagtgg tgggaaagcc 3120
cttctggatct cttctctctt ccctcaacta ccctctctac ggtgagttcc gccgtggtg 3180
tggtggtcctt ggctctttcc atctctcttg tggctgctcc tgggagcgtg cagagacaga 3240
tgatcctggt ccagcugtac tggactctgtg ctgactgagc acaaacagcc ccaagctctg 3300
atctcaacag cacaaactctgc ttgatataat cccacggagt cgggattggt tttgaaagcc 3360
tacagcagtc aacggaaccc ccggccagct tggctgctcc tgggagcgtg cagagacaga 3420
cagggcgtcgt gctgctcgtg cagcagcagc aacaagctgc agaagctgcc atctggtgct 3480
ccgctgctac tggctgctcg aaaaaaaaaa aatagtgtgct gactctcttg 3540
gccccagctt ccacatctgt tgggactgtc acacagcagc gctgctcgag gacagcagt 3600
aaactgctcg gttgctgcct cagcgtgcgg gccggtggtg tggctgctcg aacaagctgc 3660
atctgtttaa gctccccgct ccacagcagc gctgctgctcc tgggagcgtg cagagacaga 3720
aacaaagcgg gctgctgtgg tgggagcgtg cagagacaga 3780
tgctcagtct gcaccccttg ccggccagct tgggagcgtg cagagacaga 3840
tgctcagtct gcaccccttg ccggccagct tgggagcgtg cagagacaga 3900
caactgcgtt ctcgtgcttc gacagcagt 4020
atgagagag ccgcggttac gtaactctctgtgctt cagcagcagc gctgctcgag gacagcagt 4080
atctcactcct caccagcagc gctgctcgag gacagcagt 4140
tgccccagctt ccacatctgt tgggagctct gctgctgtgg tgggagcgtg cagagacaga 4200
caacggtgctt ctcgtgcttc gacagcagt 4260
tgatatctct tgggaccttc acacatctctgc tgggagctct gctgctgtgg tgggagcgtg 4320
tgctgctcatt cccctctctt cagcagcagc gctgctcgag gacagcagt 4380
ggcttccctt cccccctctt tgggagctct gctgctgtgg tgggagcgtg 4440
aatgctctttt actctggttg cccggtgttc cctctctctc gtcggtgttc tctctctctc 4500
aatgctctttt actctggttg cccggtgttc cctctctctc gtcggtgttc tctctctctc 4560
gcaccaccaat taccacggg gatccagcgg gacaataagg cccggtgttc tctctctctc 4620
tccagcagcagc gctgctgtgc gctgctgctcc tgggagcgtg cagagacaga 4680
gcggccagct cctctctctc gtcggtgttc tctctctctc gtcggtgttc tctctctctc 4740
tgctgctctctgctt cccggtgttc tctctctctc gtcggtgttc tctctctctc gtcggtgttc 4800
aatgctctttt actctggttg cccggtgttc cctctctctc gtcggtgttc tctctctctc 4860
aatgctctttt actctggttg cccggtgttc cctctctctc gtcggtgttc tctctctctc 4920
gcggccagct cctctctctc gtcggtgttc tctctctctc gtcggtgttc tctctctctc 4980
aatgctctttt actctggttg cccggtgttc cctctctctc gtcggtgttc tctctctctc 5040
aatgctctttt actctggttg cccggtgttc cctctctctc gtcggtgttc tctctctctc 5100
aatgctctttt actctggttg cccggtgttc cctctctctc gtcggtgttc tctctctctc 5160
aatgctctttt actctggttg cccggtgttc cctctctctc gtcggtgttc tctctctctc 5220
aatgctctttt actctggttg cccggtgttc cctctctctc gtcggtgttc tctctctctc 5280
ggagagcaac atttgctgttg ggtgctgttc tggatccac acatgattac caaccttacag 7740
tacgatcaag gggtctgttg tgaataaagc ctctgaagaac ggcgcgactc ctgagtaagt 7800
ggaagaccc cctggagagt gaagatctt cctcctgtgc aaagatgtcg tagcctgttg 7860
cggtaagcgc aacctgggtgc ttgcaacccca ggggcgtcatg cttggactgca tttaacagtt 7920
caacagcgg gggcgcctgat cattaccttg ctggcccaag ttatcaactc ttgacttcctc 7980
cgaagcgtgcc aagctgaaac ccacagcagct gtcggaaacta gtcggaggag 8040
aactctttgtg gatgaggtcg ctatactccca aaccagcttgat cggcgccgac ttttaaccca 8100
gggtcgactc aagggtaacg tgtgattttaa tacgctcggg tggctcgagc ccgagcagct 8160
gcgcagataac ccctggtctcc gccatatttg gcacgcttgag cccttgcgag tggccacatc 8220
atctcgcggct gcctgttgat atttgacaa gggcattttat ccttatattg aagcaagctt 8280
aatctatgc ccaagcttctag ttggtgcaca aaccgattcag ggaaggaggt tagcaatcaca 8340
cgcctaccaaa aacagcgcggc tctctggtca cccgcaatatt gacataacct aaggtctgtac 8400
attctcgttt gattagcctca gccgcttccc gaccaacctca gccaggccgc ccgagcagct 8460
tggtgcgggatt aactgagcgtct ctcaagatatt atcacatctac gcccccttttc atcagcttag 8520
cgcgtttgtct gtagcttcga aaggagaaca ggacagtggc tgggtcaca ggcgcacagtc 8580
agcatgcacac cgggcacacaa aatgtgcc ctgggtccacag ggggctctcg aatactcaca 8640
ggaagtaaaca ccctgcttca ccaacgcccc ctcagaggtg tgtatcatac acaagttacc 8700
taatgtygcc cctctgcttgg gctttggaaaa ctaaaccaca aaatttcgtg gccttcggag 8760
aggtgcacaca aattgctgtgcc acaatcttc ccagaaattc ccagaattttt gcccctaca 8820
gaagaacactg gttgagcatt ggcgcctgtgct ctgaatcatg atacagcttcgaa 8880
aatacctta cagacaatgtgtgataa cgccttcgta ctggttcaagct tgggattctgca 8940
aatccctgttt tttggtcgca cggcctggtgat gacatcttac tggtttactg aagtggctca 9000
cgcgcaacatgc tgtcttatcc cagatcttcct aatgccgttgct gtagtggtcag agaccacagc 9060
cgcgcctttcc tttgctggaag ccagagaaaa atttgccgcct gtctaccctc atgcctgttt 9120
gggagaaatt caataagcct ccctgctggagct acacacatc ctaatctccct caattactaacc 9180
accacgcctta ccagcgagccg cccttggtcct ggttagtggt ctatggtgcct ggagagttgca 9240
taaaagctccttggctgattctt ggtcaacctc tggtaaactct actacaccc 9300
tgagacaacttt gcgtagcttttg ttggatagttg tataattttag aagccggtta ggcggattg 9360
gtgagacaac ggcggtttttt atgtgcaaga ggggtgttag gcagtcctatc caggacagtc 9420
agctgtgtcc aacactatca aagggcgccc cataagctct gtttcaacct atgtggaatc 9480
aggttacaca aacaacgccc cttgttcgccc ccagcttacta atccactgtgtag cggctaaccg 9540
cgagggagct gcacatcgcct cggcactcaag cgggctgcttg tattcatgct tcggcgatag 9600	tagttgaag gccttcctcc gttcaacagca aagttgctgg tgcgcgaggg ggtgcttgctc 9660
tttcccctcta ggcggacacaagg agaaggaggt aaccaacttg ttgacactgctt 9720
accaatatttt cttttctgctt ggccggccttg aagggctttg tttgggatgt gttgctcact 9780	ttatatcag cattctatgc ttattttgtg ctttttttgtg gttgagctgcgt ttattttccttt 9840
tctcagctata tgtatggtcccc tgtgtcctttt tggtgctctact cggctggcact 9900
gcgctcggct gttggctggtgct tggcttcacaag ggttcgccttt ttgaaggattt 9960
gcagttgggac aacatttgctcg gaaagactgg gtcctcggagt ctgggacatag ctgctgctag 10020
tgccccagttgg cagcttcgct atatgcttca ggtttggttgct ccggctgacg cccgcagga 10080
agttatgcct tcocatacact cgcgttatgg cggctttact cctgattgct tggaccatct 10140

ggagctctct acgtatgcct catttacaa tgccatcaggg cggcctaatt ttgagtcata 10200

ttcacaagag ctctgcctgc aagccgtcaca ccgtaasitg cttgcggctgg tgcacacggc 10260

atgtgaaacc actaacaatc tagacaattg gacgcaacgc gcaoaatggg tagtgcctac 10320

agtggcagat tgcacacttt atgtctcttc ctcttatattt ggtcagcttg tgaagatgtt 10380

ggagcacaatt actacactct tggactgcat accactagtg acaagagttt acatctcattt 10440

tacgoggtact atctcagctt cccgtgcacc ttcacagggc accttgccgcg gccgcaagat 10500

ctttagagtgc acgccgctta tgaatagcgc gggctcactct tggtagtgcac ctgctgtggc 10560

acactgtgtc cgtgcttctc caggttagttt aatgttttcc gccctgtgaa tgcgtttgttct 10620

aatgtccttt ggtgtagagt ggtttgtagt cattacaaact caaactctgg ctggctttcga 10680

cctccttgtt gtagttcaga tgaagacttc ccgtggtcata ctagccctcat tettaattgct 10740

tgatgctgcc tggctgtcagt gcacttctctt cccatggcac gctacagagg ctcgcaaatattt 10800

tacttatctg actctagtgt cgcggcagct gcaagcgctag gggctgtgta ggaattttactt 10860

taatgtcatct ctctctctcttt taaactccact acctttcactcg cgcggctgat 10920

acactgttgt ctactcaggct ttcggcagc ccacatttgcg caacccaaaccttcacctcttg 10990

gcggcagcttg cagccgcttg ggttagcttg ggttgctgcat gctacgtgcac actctggaaga 11040

gatggaaggg cactcactAct ttaaccttt gagaagggagc gttctttcccg tggcttttgct 11100

ggttagtatt tattgtccttt taaactattg actctagtct gcaagtggct caaactctgt ctcttagatt 11160

tgatgtgtat cttcttgttgc ggtgtggcctc tcaatgcctt acatcctcta ctcacactct 11220

cagctgctttc cagactctcaag ctttggctcag ttagcagacc gcggctttat cggctaatgg 11280

tgcgtatagg atgctgcacttg tcttggctac aatgtttcgg ccaggtataac cggtttggtt 11340

tggcaacacc gggccttcggaa gataccacag tttggacccg atgttagtga caactacagg 11400

tgcccccttt ttatattcacttg gcggcgtgaa ttcggcactgt tggtagtgagg tggctttttag 11460

tttatatcactc tttttcttttt tctgttactac cttcactga ttcagctcatc gttctttctc 11520

gaaattgttgt tattcacttct cttatattct cagggccccatt ccacttgggctc 11580

gttgtagctt cagggcactc ctggcttcac ccggtttcttg caggtatcagt ctggcttcctc 11640

tggatgtgatc ctggctttttt ctgctccagc gttgtagttt tgggttttttg 11700

tggttagcttg ggcatgtgcgg atacgctgtgc acgtctttttt acatcgtgcag 11760

gggcaattgt accctagctg acgcgggtcgc cccggtggcag tggctttgtca 11820

tgccaggtactt ggcacactca atgcacaccg gggctctggtg cggcaaatgtg 11890

gaggtgtaaaa gcggctgagg atgggccacttg gggctctggtg cggcaaatgtg 11940

tgtacagtttt actatctgtgg ccgctctgtct tgggtctgtgctacttggag 12000

tgcgtattgct ggcctcttgct ctttgcttcctg ctttctctctgcagctatt gttcttttctgcagctttttc 12060

gttctttttt gcggttttcttt gcggtttttcttccagctatt gttcttttctgcagctatt 12120

ttttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc 12180

ttttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc 12240

ttttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc 12300

ttttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc 12360

ttttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc 12420

ttttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc gtttccaggtgc 12480
<210> SEQ ID NO 2
<211> LENGTH: 12704
<212> TYPE: DNA
<213> ORGANISM: Equine arteritis virus
<400> SEQUENCE: 2

```
gatgtaaatc acacgccacg cgcocacctt tcgtgcaacg tacacgctt ctctatgatt 12540
ggcatggtt cctacgctc agatgccgga gatctccgtt acacgccagc tgggtgctct 12600
acccacacaa tcgccgacaa aatgctgcct cccgagaggc cgtagacagc ggtatatttc 12660
cctggtg gccgctctgaa gtagattata gcaaccaggg aacc 12704
```

<215> 5' UTR
ttggtttcattc agcataatt cttgccgcaa tggacctaca tgtggaagggt cggccttgct
1980
tagccttgtg ggagaagaat caaattttata aaggggtcct cttggccccc aatcagggcg
2040
cgtgctgtct tgtggtcaatt ttcctggggc aaaaagcttgc tgtagtcgct tccaccccttg
2100
atgcaatggatt tgtctcttcg acagtttgct aatctttgct caattgtat cttgcaacctt
2160
gctcctctcg tgtcttggaaga tgtcttggaac gcctgttgctg agtgggccc ccacgcaagt
2220
atatgggttc caacgagggaa caggttttca acatggcgct cattgtatgg t tgtgacccct
2280
tttgaaaagc caccatccag tttggttggca ttgcaacagc tttgacgctga ttgtaacagc
2340
gacacccgc aatggaggtgt cattgtgctct ctaagggtgca caaactcctcg ttcgacacag
2400
agagggcagc agcgatgttg tatactcccc ctcctgtcaaa caccgggtctt cggcctcgat
2460
gcctcaatct cattggtgaa ccagccatgt gttccacctg ctttgagggaa caaaccaggg
2520
cgttgctgac ggccgcctag agcacttcttt ttcaccctcc tctgtgctcg ttcaccaacct
2580
tggccacccgg accgctggcct acctggctct ccctctccct ttcacacggg tttcagaaat
2640
cagggtcgta cccgcatgta tttggtgttg ggcacagttta ttctctctat ttataccggtt
2700
gggctccgct cttggtttata cgtgatggtta cttgacttta cttgatgttg t ttctctctat
2760
caccgctaac cttgacacgca atcaagaccc aaagcgacgt ccacgtgctg ttttccagac
2820
genctggttgtt catctcctgg gccctgcttg ggttaactca gttaacagct tattctaggt
2880
cagcgctgcat ctagcagattt tgtgctgctct tggcctgcc ccctctccct ttcacgctctc
2940
tgggtctcgct gcacgccgtgct ttttcttttg gcaccagcata cccagacggc tcggacgggt
3000
ttgctgttcct tgttcctggctg tggctgtgata aattcaggtt tttggtgacgc
3060
gtggctctta ctgtggctttt ccgcaaggtta ccctctctct cttgggtgagc tcggacgggt
3120
tggccgctttt ggccggttac aattcctgcc gttgctgctg ggttaactc taatctggtt
3180
tttcctgctgc aggcctgcct gttgctggctg ggttaactc aatctctctct ggtgctgatc
3240
ttgcgtaaaa gaaacgcaac cttgtctctct ttttcttttg ccaccagcata cccagacggc
ttcgacgggt
3300
ttggcctcttg cttggccgct tggcctgctg ggttaactc aatctctctct ggtgctgatc
3360
tatcgagact acacacccgc acctgctgctg cctgctgcc ccacgctgcat cccagacggc
3420
ttggcttcct gcgctggcct gcacgcctgc ctgctgcc ccacgctgcat cccagacggc
ttcgacgggt
3480
ttttcttttg gcaccagcata cccagacggc tcggacgggt
3540
ttcgacgggt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
3600
atcagcattt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
3660
agaggggctt acacacccgc acctgctgctg cctgctgcc ccacgctgcat cccagacggc
ttcgacgggt
3720
atcagcattt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
3780
tttgttcttg gcaccagcata cccagacggc tcggacgggt
ttcgacgggt
3840
atcagcattt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
3900
atcagcattt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
3960
atcagcattt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
4020
atcagcattt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
4080
atcagcattt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
4140
atcagcattt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
4200
atcagcattt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
4260
atcagcattt gcacgctgcat cccagacggc tcggacgggt
ttcgacgggt
4320
aggtagtgata gcattaocca aacgcggggg tttgctactct ggagacctca tcacttcgcc 6780
atccaaatac acatatcatc tgggtcgtga ccccagaca cttgggtcatt tgtgagcttg 6840
agcctatttc ccagagagtc cagaaataac tttcttgagcc ggcctgagcc tgggacatgt 6900
gttcaagtct gttgagagtt acatatacata ggagatagtt gttcataaaca caccagaaaca 6960
gcattaagcg gccatccttgg acgcctgggt ccccccactctg cagcggcggg tattgttcta 7020
ggtgccacca aagaaaaatg tgaacccag ctcoccttcc ttttggtggt gcggcttcac 7080
gcaagtgggac gcgaagtgctt atcttgcccgat cctcttcgggac gctcatcaccc atcctcgttg 7140
ataccacatt gttgcaagaga atccctccga gtaactagaa gttgctgattt ccaaccttta 7200
ggaentccat atctctcgtgt atgaaatttg tgtgccagcc gtcctcatgcag aatcagtag 7260
cgtgcgcgtgt acctagcgag ttgatcttcc cacattggta aatttcactc ctcttccgac 7320
caacagatgt caaggtgcgtg tggcactgtg gttgctgccc gcacccgcttg ccaaggtcgg 7380
ttgctgaggg tggattcgttg gcacagttgt gctgctcaccgt gtggctccatt gtcacacac 7440
tctctcccttc gccaaacgcc aatccttggc aatcccttgg acttattttct gtgcctgctg 7500
tgaggttcac ccaaaacagca tcgctaacaa aagccccttggt ctatcctctgct tggcctgctg 7560
gtgcctaggt gcctgctgccct tgsaaagcag gatccttgg tcgcctgttg ccagcttgag 7620
aactaccccg ccgcgcgtgcg atcaagtggc ttcacaggtta gtcgctggtg ttcgagactg 7680
ggggagggcc aattgtggtg ttcgcttgcgt tcggaaacac ttcgagctctg agctgttctg 7740
tacgtcctag gcgtggtcgg tgaataagac tgcgaaacac gcggcgtcct ctgagactcg 7800
rgggagggca cctcagggct gcagacatgt tcatctctctg aagacagctgg taggcctgtg 7860
cgcctagcgc accttgggtgc tccgccacca gcggtctcattg tccaagtgca ttacaagctg 7920
cacaacgagc ggcgcgcatc tgaacctttg gttgcggcag tatacgctgt ttgctttcctc 7980
cagccgctggc agtttgccac ttcacgctgagacctccagag ttgaggaaagt 8040
aacttcttctgc ttcagctgggt ttcagctcttc aacagctgatgt tgtgcggcgca tttttaaccc 8100
gggctgagtc aagggctcgct gtgaattaac ttcgctgtgg tggctcggcg ccagcagcgt 8160
gcacaagctt cttgcgctcc gacattttgt gcagctgagtc cctcgctgag tggagcctcg 8220
attcgggctct gcgggggttgattgcattcaa ggggatatttt ccctattttg aggacagcctcg 8280
acatacaact aacgggtggtg tttgctgcaag ttcagacacct ggaagaaggtg tagctcattc 8340
cgcactaac aagacagcgc gcgttgcttca gcaacagcaatt gttcaacttg aagctgttgac 8400
attctgttgc ctgttcggct gacttcgcac acccctatcc ctaacgcgtcg cgcgctcgctg 8460
ttgctgaggtgt actaggctgt gtcagaaatt atacacatac gaccgcttttg atcagctctg 8520
ccgggtgttggt aagatacttc ccgaagcgac ggggctgtgg cggagctcag gcgcctccatc 8580
agsctgccac tggggccaaag aatgtagctt ggttgctcgct cagggctcctga aatattcaac 8640
gggaatttca gctgctgtaca cccacgtcgg cattcctagag tgtgttcatac acagttaccc 8700
taattggtgcc ctcgggtcct gcggggaaaa gccataccaa aaatattggt gcttcggctc 8760
aggggcacaa aatcgggtgt accactatcc ccaggttatc ccgcgttttc gcggcctacc 8820
gaaagacaat ggtgaacctc gcggcggagt gtcaccagat gatcagcggag atggtttgca 8880
aacacactta cagcagattc attaatcttg caccgctctg gatcggctctg ataggttttg 8940
acatacattg ttgtgtcgcag cgccttgtgt gcgcttcatct gtttgcatctg aatgggtcgc 9000
cggcgaagcgc gctgtgctcc cagatcattc atctctgctc gttaggctctg agatatcacag 9060
cgcgtttttc ctgcatggaag ccgagggaaa gtttgcggcgc gtcacccttc atgctgtttc 9120
ttctatccgg tttaagtctt gttttcttta tcagtactac cctagctac gttatattctt 11580
gaaatgtgct tactatctct gtttataact tttggcattt acaacgaggcc ctacttggcc 11640
atgggcatat ttgaggccac gcttgctata cttactaatg ttggctcccg ccaataatg 11700
tggttatgctg gtttgcttgcc ataagcggag acggtctcaag gctcccttat acaagctgag 11760
ggggaagtt gccaggtgaa ccggcaggcc caggttctgcc cccgggcgcag ttaggggct 11820
gtccacagtta gcgcaccagc gttgtgctaa ctgagcggcc gcaagacactg gctgtggtg 11880
aggtgggggg ccagcctgaggt atggagggcc tagattacat tgtgggtcag ggggattttg 11940
tgtagatttc agattatcttt attctgctgg cccactccct gctttgctctt actaggtgctg 12000
tgcactctgg tggcagttagt gtttgagctg cttgttcctta ttccttaga ttctcagctt 12060
atatttgagt tgcctacagt ggaagagcct tttccacctgct tttagctttt ggcgctctgg 12120
tgcctttttt gccatagaggt acaagatgag ttagctcag gatgccctgt cttggcgcca 12180
ttttaaccc tactggaacagc gttgtagctg attttctctg gaaagctctct ggcgcctggg 12240
cctacccgcc ttcaactact ctagatctgg ttcgggctcag ccggtaaccc gcaggtttga 12300
acaaagctgtg cggaggcttc aagaccgata ccgctggcag ccgctccttg tggaaacgga 12360
tggccggagcc cggccagcct catcagggct tcatacgttg ttcgggctcag cagctgggct 12420
cggaaaccg gcggccacca caactcagct attatctgcc agccctggaga cctatagcat 12480
gatttaatac aacgaggagc ggcacccttt tccgaggaac taacagctct tttcctagtt 12540
gggctaggttt cactcagtgc agatgcccgg gaacctcagct acacogtcag tggggtctct 12600
accaaaacaa ctagccgaga aatttgccct cccagagggc ogtaagagct ggatattcct 12660
cgggtgctgg ccactgtgga aatgtattata aacaccaggg aacc 12704

<210> SEQ ID NO 3
<211> LENGTH: 14553
<212> TYPE: DNA
<213> ORGANISM: Equine arteritis virus
<400> SEQUENCE: 3
gctgaagttc tgatgtggtg ccataacggc taaagccgca atgacgtgca agaattacta 60
tctttggtgg ccctctccgg taatacctag aggcctttcc ttcgtgattt ggcagatttcg 120
tgcattagtt acaagctggat cccctcttta cttactaatg ttcagtttgcc ggcagctgtgg 180
tgcaattgcct tacgtgctga ttcctatcag taaacgctgg aacgctctcg 240
tctatgctatt gggagtggtg cttgctgctga cggcttccgg aagctctgctg aagctctgctg 300
agcatggcgc gggtgttctgg tgtgacgatttg aacgttctcc caaatccgct ggtggctggc 360
gctgtgctgg aggccgctgc aattctgctgt tcagtttttct gagctgtgctg 420
gggtctcag tttgctctcc ccctggtgta aggggtgacta 480
atcattgttt gggcattggc gagggcagtg tgagtttttt ggcagctggc aacc 540
agctcgtccc cggctggat gtttgagcgc ttttcctggctgg gcctagctgg 600
agcttcccc cccggctgctg gctttacctc cctactcact cggttctgatg ttcgctggctg 660
ggcgctagctg caagccgcaaa cagcgctcttt gccgcgtgctg 720	taaacattg cccactagcg ccggctggc aacgaggctg 780
tgcaaaagcg gggcggcttg ctgctctcct gccgggggtt gccgacttgt 840
tctgggctct catttgccct cgaagtctgg ggtccggttc 900
agcagggcgc ccataccgct cagcggctgg caagctgagtt gccgtgctgg 960
tctctgaagc agacctgctcc tgttgcccgc ctggccactta caatccacccag 1020
ggacaagcgg tgtccctattc aggtgcttgg ccccctatgaa tggccgccccct tgtggtctcg 1080
cctgggtcag tctctagctc tgttggtgatg aagcttgctgcc ttcctaatgtg 1140
caccaaaaggt tataaagggcc acctaaatgc aagaaactgctca tggccgctgg 1200
tgatttgca caagctccgc cttggccgta caagttcgcag gggggctggc cttgtgttcg 1260
atgaaagctg ttcagggcgc aacagtccaaa gcaagagcagct gatgagctac caaagagca 1320
cggtttaacgc ccgctgtttta gataaaatata tgaaggccgc ggagactttc ggcctttcag 1380
ttgtataact cggagggcag ccaagcccgct taccacctg ggcagagcagct cctctgggca 1440
actcttcttg agagttctcaa gatactggcgc cctttgctgc agttacaaac ccaagagca 1500
agcctcgccaa aaccagggcct aagctccggc cccctcatcgc cagcggccag cgaactctga 1560
gggtccacac ccacacgccc cggctggtacg cgtggtatgg tccctatttg gcgcacaaaat 1620
ggcggctgtgg ccacaaatgtg tacagctccg cggagcgctc tgggaccaagct cttgtgactaa 1680
gtctggtgct cgtggtggg acgttgcttc aagctccgc gcaccacaaa ccaagagcttc 1740
agcctgtaatc aagagctccgc gttggtgttc ggtgcgtgtc ctctgttgcttc ggtacacagc 1800
gtgacctttt gggttgctgtc ggtgtgttgc ttcctatttg gcacactcttt ggttgtgcctc 1860
ttaggtccgc ctcggtggct atacaggttg tggccaaataa tgttgttgttg acagccgttc 1920
tgcttttaatc aagttctgca tggccgccaag ttcgttaaggt gggtgttgtg 1980
tagcttctgtg ggaagagaaa caattatta gacggcgctcc tggccgccccct cttacccggtgct 2040
cgtgtgcttc gttgctttct cttctgttgg ggtgctgtgtc agaggttcctgt tgtgcttgcttc 2100
atgcaagatttt tgtttctctag actctttggtg atcttttgccct tgttgctatttg tgtctttcttct 2160
gtcgaattgt tggcccgaga ggtgtgtgtgc agggggtgctgc gcaagagcttg 2220
tttttgggttc caccagggcc cgaagtggctt caraggtttggt tgggaccaagct 2280
ctccctaatgc cccctcatcgc tgtggccgta cttctggttgg cggctttcagc 2340
gaacggccgc aacgagctgc caggtgctgtc ctggcgtggc ccctctctctg tggccgctaa 2400
agaagtaagg aagatgtgtct tacccttcac cccctcttcga cagccggctct ggtgtggata 2460
gcctccagtct cagccttcag ctcgcctcct cttggtgggg ccaacaggag 2520
cgttggtgac gcggccctga cagcctcttt ctgtcttcctct gcgggtgcttc ctcgctttctc 2590
tcgccactg ccgctgtggtg acgtctgtgc cccctcagctt cgggtgtggat 2660
cagggtgttg ccctcttttt tgggggtgtg gcgaaggtta tttttaaaaa ttccttacgg 2730
gggtgtcgc ggtgtggagc aatggtggat agaatggtct tttttgggtgt gttgtggttgt 2760
caactttcct ccgctatctct aaattagttgg gcttttggtgttg ctggggtgc 2820
agatgttttc tggcgctcgg ttcagctttgc aacgagcttg cccctttttg ggtggttgt 2880
gcgtctttg ctcgcctgat gactttggag gactttggag gatggttcgta 2940
cagctgctgc aagctggtcct tggggtgcttg cggctgttggc ccgctttcagc 3000
tgggtcctttg ctcggctcttt cttggtgttt tgcgcttttg ggtgggtttg 3060
gggttttactt tgttggtgagc cttgggtgccct cttgggtgctgc cggcttttcgc 3120
cttcttttgca ctgggtgctgtc cttggggatt aatctggatt tggccggtgcc 3180
tctttttggc tttgggtttg tgcggctacgctc tcagttgtgc tggggtttg 3240
tgcgtggttc cggcgttggc aatggtggat ggtgtggagc gttgggtgcttc 3300
tgcggtggtg cggcgttggc aacatctgggct cggcgttggc 3360
atgtaaaggg cacaactcgg ctgtatatat ccacaggaga cggtatgctg tttaaggccc 3420
atcagatc acacaacggc ggacggcaac tctggctctct gcccttgctg ctgtaaggca 3480
cagttgtcct tggtaaaggg caacaactcgg gctggtattg tggggtatgctag tagtacaggca 3540
gcggctccc ataagggtaga ctggattgct cccagctgctg ctaattttcctg cttggattc 3600
aaaagggttc ttcggggaat gcggccagca ctcagctgctg ctaattttcctg cttggattc 3660
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 3720
aagggctctg ggcgtgtttggtgctgctg ctaattttcctg cttggattc 3780
ttggtgagtg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 3840
cagttcagca gacggcggca acggcggca acggcggca acggcggca 3900
cagtctgatg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 3960
ttcggctggc gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4020
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4080
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4140
ttcggctggc gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4200
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4260
ttcggctggc gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4320
ttcggctggc gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4380
ttcggctggc gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4440
ttcggctggc gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4500
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4560
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4620
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4680
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4740
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4800
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4860
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4920
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 4980
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5040
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5100
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5160
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5220
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5280
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5340
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5400
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5460
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5520
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5580
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5640
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5700
agggctatgg gggcggcaac aacagcagagg gcgcgattgct ctaattttcctg cttggattc 5760
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cggaggagcc gctgcacaca gcgttcacagc tgatcttggt gcagccttttc aaggggtacc</td>
<td>5820</td>
</tr>
<tr>
<td>cggagcctct tattctctag atgacaaggt ggcagctgct gtcagttgct acccgtaatcg</td>
<td>5880</td>
</tr>
<tr>
<td>gtcggacgcccc gcttctgata ccacccctgtt gggacacatt ccaatctctg tccacacca</td>
<td>5940</td>
</tr>
<tr>
<td>tgtttcggaa gcaacagcgt gtaacgctgt ggatgtcagc gcgtaactcg aegggacaa</td>
<td>6000</td>
</tr>
<tr>
<td>cgctatgcca acaatgtggc ctcctccgga gcacaacccc atacgggaca tccacaagag</td>
<td>6060</td>
</tr>
<tr>
<td>cgtgctggac aactgctgctg acacgctgct gtaacgctttc atagcgcccg cttgaggac</td>
<td>6120</td>
</tr>
<tr>
<td>agccctggtgcc gttgtatttag agaaataaaca cctatccacc caggttttaag tgtgtgcctag</td>
<td>6180</td>
</tr>
<tr>
<td>tgataatatcc atgttgctggg cgtactaaaa agaggaagt gggacatcg ccacacacta</td>
<td>6240</td>
</tr>
<tr>
<td>ctgtgattct acgtgatacc cttaaaaaatt cacaagccgg aataacgccg cttggttttc</td>
<td>6300</td>
</tr>
<tr>
<td>tacaaggtct ttacagagct atctgttttgat tgatgacatt gtgtcacaagt cctgaaaac</td>
<td>6360</td>
</tr>
<tr>
<td>caacatcaca aacgccacacc tggtgactttg ttaagcgcag taacctttat cttaatatat</td>
<td>6420</td>
</tr>
<tr>
<td>taggagcgatt ctggccaccca aacaaattat ccagctttaag tggcctttcg</td>
<td>6480</td>
</tr>
<tr>
<td>ggttgacgctt ccgtcataccaa aagctggtgaa attggtctca cagttttacc tgggcaggatc</td>
<td>6540</td>
</tr>
<tr>
<td>aaatcctgcc cggataaccct ccctctgaca gcacaactct ctgaagatttg</td>
<td>6600</td>
</tr>
<tr>
<td>tgtagctgcc aacccgatacg ggagactgga cttgctagct ttgagctactcctttaggt</td>
<td>6660</td>
</tr>
<tr>
<td>tgtgcacagcc gagttgtggtc agcaagcactg gtggatttggc tgtcaccagtc tagctgtgcc</td>
<td>6720</td>
</tr>
<tr>
<td>aagtgtagct gccataaccac aacgcgggga tttttctctct gggac atttcaagc</td>
<td>6780</td>
</tr>
<tr>
<td>ttccaatacc atctctctat tgtgctgtta cccccagcac atgtgctcat gtggactgga</td>
<td>6840</td>
</tr>
<tr>
<td>aagttatttg ccaccagatag ggaaaaataa tttggtgagtg aagctgaggct gggcggtgac</td>
<td>6900</td>
</tr>
<tr>
<td>gttaagatcg cttgaggtttg acacatatac ggaagagttg attttttatt tggtaaccac</td>
<td>6960</td>
</tr>
<tr>
<td>gcaatttgagc ggcagcatttt atcggtgcacc tttttattga cgggtgtcttg</td>
<td>7020</td>
</tr>
<tr>
<td>ggttgaccca aagaaaaactg tgaacaccac ccctctgttc tttttggggt ggcctttgca</td>
<td>7080</td>
</tr>
<tr>
<td>gcacatggagg gcggattggt gtttgacagc atctggtgcc cccctcgtct gcggctgctt</td>
<td>7140</td>
</tr>
<tr>
<td>atccacatgt ggtgtaaaga aacccatctg ctatctggaa gttgtctgct ttatatccta</td>
<td>7200</td>
</tr>
<tr>
<td>ggactctttt atctccgctg atgaaagttg gttgacggac ctctacgact atacagattgtg</td>
<td>7260</td>
</tr>
<tr>
<td>egtgcggctg actgacgagg ttgagtctccc cccccatgga attttaactt cctttccgac</td>
<td>7320</td>
</tr>
<tr>
<td>cagcagttag gaggcttgcc tgtgacactg ttggtggtc gcccctggttg ccaagtgctgc</td>
<td>7380</td>
</tr>
<tr>
<td>ttggaggtgg tgtgtcttgct gcgaaatttg cggtcaaccagtgtggctttc attcacaacc</td>
<td>7440</td>
</tr>
<tr>
<td>ctcgtccttc gcccctgaty ggacagcatac catgtatcgcct aatccattttc gcacatagtg</td>
<td>7500</td>
</tr>
<tr>
<td>tggaggtcttc ccaacaacaag tgggtaccaag atggttcctg ccgatcttgg actatattgt</td>
<td>7560</td>
</tr>
<tr>
<td>gtgcgaacgt gattacacgg gtaagaggag actatctcttg gtagggggtg atggctgagc</td>
<td>7620</td>
</tr>
<tr>
<td>aacttcccag cccggttgtg accaaaggttc acacaggttc tccaggtctg tgtgaacactg</td>
<td>7680</td>
</tr>
<tr>
<td>gggagccaaac atttgtggttt gtgtgggtcct gggatcacaac atgcaactac cacttctgga</td>
<td>7740</td>
</tr>
<tr>
<td>tgcggtctgg gggggttcg tgaataaactg ttagagaaaaa gggccggtctg ctagataagt</td>
<td>7800</td>
</tr>
<tr>
<td>ggagagcacc cctctggtcg ggaagascttc taccctttgtct aaggtgtggc tagccctgtg</td>
<td>7860</td>
</tr>
<tr>
<td>cggtaggctg acctttgtgg tgcocacacc cggtacactgtcgagctgcc taataaagag</td>
<td>7920</td>
</tr>
<tr>
<td>caaacaacag gcggcggcatc ataccctgtt ggtgcccaca tatacatggc tggacacccttcc</td>
<td>7980</td>
</tr>
<tr>
<td>cggccctggc atgtgacacc tgaacagctg ctcgcccagcg ttggaggtgcc</td>
<td>8040</td>
</tr>
<tr>
<td>aacattttgt ggtacagctg cttacccaact aacagtgggat cctggaggcct ctttacaac</td>
<td>8100</td>
</tr>
<tr>
<td>gggtcgagtc aaggggtgtcag tggacatgaa ctacctgctgg tgtgttcggac cccgagggctg</td>
<td>8160</td>
</tr>
</tbody>
</table>
gccagtaao ctttggtccg cacatttttg cagcttgtgag ccttggtgag tggcccatcg
attgggcgtc ggtggtgttg atttgatccaa ggggtatttt catctattat agccagtaac
acatacacte aatgtgggtt ttgtgtccca tcacatcattt gaggatttag tggatcatcc
eggtaaaco aaagaagcg ggtctgttg ccagcgtatcac aagcagttaac ccggaaccctc
ttgaggtggtg atcctggtgtg ttacgaacctat gagaacctacag agagatctcac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgggtt accaactacc tccagatattt ccagatattt gcccctatatc
tgttaaatcc ttgcgtgta ctggcgttgtg gtcactctgct gcgaccaggt ggtggtgttg
tgataaaccg cgggtgcgttc accactgttt accgatgttt gcgtggcgtgactgtac
ccggaggaacc accaaccg ggtgtggttt gcgaccaggt ggtggtgttg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ggagaacctc cttggtccag aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
gaaagaaaca aatgtgtgtg ctgggctaat cctgggtgctg aatattaccac
ccccagaaG ctggtagaag taataatgc tgaagatcag tggtgtgcac gagcggtgta
13020
catgaaaactg gactcacaac gggctagag tcttgagagtt tttgagcccg aggaacgttt
13080
tccaaatgtg aggaatatca aagtctgtct atgtgagcgc gcgtattctcc gcgtgtgggct
13140
cgggcaaga gaactgtggtg gctagcataa ctattttcaag aatgaacctgtg tgtaagactc
13200
accctgcaaac gaaacgcttt atacggaggg catgagctga agagaatatt gagctgctgtc
13260
cataaaccag actgtgaaac ctcgagggcag attactttctg acaagcagct gaggacagaa
13320
ggagcataac cgtctttttgtg acacacagtg ggtctcatga actcgccctgt atctgttggga
13380
acccggagtgg aatgaagca taccacaccg cgaaggtggcg acacagtagc ctgtgacatt
13440
ggaacacag tcgtcgacac ttaataatcg cgaactactt tctaataatg cccggcacaag
13500
atccaacagt ggtgtagagg cggataaag ttgagagcctcc ctctcgtggct cggccttccc
13560
aggtgctgtg ttatatggctg aataaatcgtg acggcggttag cgtctgacct cggctgtagc
13620
tcgcaacctg ggcggagttg gtaaagcctc ctctctgttgaa ggtctgtgta cgaacggagc
13680
tcgcaactc atctgatgcc gaaatagcag gatcgctgag atagctggtct cactgattaa
13740
gcatggtgaa ctcctcgacg aagtttttctc atatctctcg ttatggtgg tcacccttgc
13800
tttttaatct aaaaattctc agggtagaaat ctttcttgtag aatotcatgca ccaaaaaatccc
13860
ctaaagtctg ttttcgcttc actagacgcgtc agcccgctga gaaagatcag tgaagacttc
13920
ctgagatcct tttttcttgc ggtgtaactg tctgggtcag aacaaaaaa ccacaggtatc
13980
acgctgtgt tggtagggcgg acaaaagcct acacatatttt tcctcgagagg taactggtctc
14040
caacagagg cagtcctgca caatactttc ttcgagccaa acgcagttttc atctgtgagc
14100
caagaaactt gcagacggcg ctcataactc cgccttcgta cctcttgacg cctgtctggc
14160
tgcgacgtgg gcatagctgt gttcagctgg gttggaattc agacagatgc tacggattaa
14220
ggcacagcgg tcggggctga cggggtggttc tgtgaacagc cccagcttttg aggcgaacgc
14280
ttacgacgaa cgtggtgtaa tccactcgtg aatagccaga gcagcgctag gggggagagc
14340
ggagaaagcg gacagagctc cgtgagacgg cggctgaggg acggagagcc gcgcagagga
14400
getgccaggg ggaagacgtc gttcagttta taatgctgcgt ggttctgctg acctctgact
14460
tgagctctg ctttctttgtg gctctgtcag gggggcggag ctatggaacc aagccagcag
14520
cgcgacgtct ctagatattg acaagctcact ataa
14553

<210> SEQ ID NO 4
<211> LENGTH: 14553
<212> TYPE: DNA
<213> ORGANISM: Equine arteritis virus
<400> SEQUENCE: 4

gttctgagttg tggtaggtgc cttacgcgg ccacggctcag ttagcactgc agaattacta 60
ttcccgtttgg cccccctttgc tattttgata ccgtagctag ttctgggtcag cggagtacct
120
ttgtttgatt gggagttgatt ttgtttgggt tggtagcttcag cctttctttc ttcggctttc
180
gcgttccaac tgcggagcgg gttttggttg gtagcgagcc agcggagcgg gggagttggtc
240
ttcgggcttc ggtttgttgg ttcggtgct ttttttggg gttttttttc ggttttttggc 300
agtaggggctg cttcggagttgc ttttgggggt tttttttttt ttttattttt ttttattttt
360
gcgttgcgag ccttttttgg gttttttttt tttttttttt tttttttttt tttttttttt
420
cgcggagcgg gcttttggg gttttttttt tttttttttt tttttttttt tttttttttt
480
ggtaggcttt tctttttttt tttttttttt tttttttttt tttttttttt tttttttttt
540
atgctaggtt agccatgtaa gaggcaagtg tggatatttc cactgaccac ggcctctgca 600
agcttttcgc tgggctgaga tttggctgta cacccggtgta ctgtaaacgt tgtggtgtgta 660
gccgctgtgc taacagttgt atagtacccaa ctgacccggg acaagaggg tctgctgagt 720
taaatctttt acaacagaag cacgagctgag ctggttgcttg gtgtatattc aacoattacc 780
cggaacaaag gacgagcttt tctgcctaaa caagacctcc cttatgcctt gagagaccccgg 840
gtggggtcat caagttgagg tcctggaggg ctaaattcct cattatgag tcggtccagctt 900
agccagagct gccatacccaaca acacagacgt gacaatcgg gacgtcactac gttgctgacaa 960
tccctgaaag agacgtctcccg tgttggccog tctggaactca cagcgctgatc atcctccag 1020
gggacggcggc tgtcctgttc gcagttgctgg gcctcgtgaggc cttcactgaa tgggccactctt 1080
cctgggctag tgtatgatgt tgtatggctgc ataggttgagc tgtgcaatttg ttttaattttg 1140
cacccagacg caagttgcttc atcctcaggtg gcagacgatg gcgagacatt aagtaagcaca 1200
tgatttgca aacgagctcc tggagctgca aacgacaaag gcggctctgg cttggtgctcg 1260
atgtaaagtg tttcgagggg acgctgcatt gcaacagcat gatggacac caacagctgcac 1320
cggctgctacgc cggcgttgtta gattacatac tggagggcgc gcagcctggt gcacccctgcgc 1380
tgcttataacgc tgacggccgc ccaagcccccgt tacgagggcc gcgaggtccat ccctgctcga 1440
aaccttcttg agatgcacaa gaatccgaggg gcgtcctccgc ggatccaag aatcaagcaca 1500
agctggaacca aacacgacgca acctagtggc gacgcgggca gaagaagcgag gcgaacctgag 1560
gggctctcaac ccacagggcag ccctgcctgg ccgaggtgct ccctgcctgg cttggtgcccag 1620
gggctctgcg ccaacagcgg ccctgcctgg cttggtgcccag ccctgcctgg cttggtgcccag 1680
agctgctttg ccctgtgggg gcctcttttg ccttttccgg cagcttttgcgc aacgtagctgct 1740
agctgctttg ccctgtgggg gcctcttttg ccttttccgg cagcttttgcgc aacgtagctgct 1800
ggctcttttg gcctcttttg ccctgtgggg gcctcttttg ccttttccgg cagcttttgcgc aacgtagctgct 1860
tactgctgcc aacttgtgct attacacgct gtcggtgctgc ctcgccataa tgtgtggtgtatc 1920
tgctcttcag atgtaaatct gttgtgtgcag tggacatcct cttgggactct cttggtggtctg 1980
tactgtccttt ggggccttga cacatataa gacgcgtgct tggggtcctc ggtgctgggct 2040
cggctgctttg ccctgcctgg cttggtgcccag ccctgcctgg cttggtgcccag ccctgcctgg 2100
atgctgtggtg aacgagtgat ctcgtccttg cttcgggttg acgtgctgct cttcgggttg 2160
gctgcaatct ctggctggac tctggtggtgc ggtgctgggc cgggtggcot gccggtgagcc 2220
tttagctctgc cccctttggt atactactgtg gtcggtgctgc ctcgccataa tgtgtggtgtatc 2280
ttttagctctgc cccctttggt atactactgtg gtcggtgctgc ctcgccataa tgtgtggtgtatc 2340
gacgtgctttg ccctgcctgg cttggtgcccag ccctgcctgg cttggtgcccag ccctgcctgg 2400
agagggagcc agaggtgttt tatacttcac ccctgcctgc aaggggtggt ggtgctgcaatct 2460
gcctcaatct gttgtgtgag gcctccacag cttggggtgt gcctcctccgc caaagagcat 2520
cggctgctttg ccctgcctgg cttggtgcccag ccctgcctgg cttggtgcccag ccctgcctgg 2580
tttagctctgc cccctttggt atactactgtg gtcggtgctgc ctcgccataa tgtgtggtgtatc 2640
cgggttgttt ttccttcggtggt tgggttgta tggggtcctc ggtgctgggct 2700
gctgctgggct gttgtgtgag gcctccacag cttggggtgt gcctcctccgc caaagagcat 2760
cggctgctttg ccctgcctgg cttggtgcccag ccctgcctgg cttggtgcccag ccctgcctgg 2820
gctgctgctttg gcctcctccgc caaagagcat gcctcctccgc caaagagcat 2880
ggctgctgctttg tcacctgcct gcctcctccgc caaagagcat gcctcctccgc caaagagcat 2940
ctgactcatct gcggtgtacct ctgacagcgtc gaggttctgtc acggaatcgc gtcggtggtg 5400
ctagatgta ctggtgtgagt tcgtgagatc gtcggtggtg 5460
taagcacttt cttctctgtg gatgtgagag gtgtgagag 5520
ttttaataa taaaattc 5580
gcggttgtt gtcggtggtg 5640
ttaatattt gtcggtggtg 5700
ttcggttgtt gtcggtggtg 5760
ctcggttgtt gtcggtggtg 5820
ttcggttgtt gtcggtggtg 5880
ttcggttgtt gtcggtggtg 5940
ttcggttgtt gtcggtggtg 6000
ttcggttgtt gtcggtggtg 6060
ttcggttgtt gtcggtggtg 6120
ttcggttgtt gtcggtggtg 6180
ttcggttgtt gtcggtggtg 6240
ttcggttgtt gtcggtggtg 6300
ttcggttgtt gtcggtggtg 6360
ttcggttgtt gtcggtggtg 6420
ttcggttgtt gtcggtggtg 6480
ttcggttgtt gtcggtggtg 6540
ttcggttgtt gtcggtggtg 6600
ttcggttgtt gtcggtggtg 6660
ttcggttgtt gtcggtggtg 6720
ttcggttgtt gtcggtggtg 6780
ttcggttgtt gtcggtggtg 6840
ttcggttgtt gtcggtggtg 6900
ttcggttgtt gtcggtggtg 6960
ttcggttgtt gtcggtggtg 7020
ttcggttgtt gtcggtggtg 7080
ttcggttgtt gtcggtggtg 7140
ttcggttgtt gtcggtggtg 7200
ttcggttgtt gtcggtggtg 7260
ttcggttgtt gtcggtggtg 7320
ttcggttgtt gtcggtggtg 7380
ttcggttgtt gtcggtggtg 7440
ttcggttgtt gtcggtggtg 7500
ttcggttgtt gtcggtggtg 7560
ttcggttgtt gtcggtggtg 7620
ttcggttgtt gtcggtggtg 7680
ttcggttgtt gtcggtggtg 7740
tacgctcaac ggctgtgttg tgaattaagc ttctgaagaa gcgcgcgcct ctgactactg 7800
ggaaagaccc cccggggttg ggaaagacct tcaacctgtgt caaagatgtgc tagcctctgtt 7860
cgcagctgcc aacctcttgtt cggccccacc gcggctacgt gcggactga ttaaactagt 7920
caaaagggc ggccccgcatt cttacttctg ggtggcacaag ttaaagtttc acgtttttcc 7980
cggggctgcc agtggtaacca ttcagcttgg cactgcaccc gccggagact gccggagagt 8040
aatcttgggt cattggagtg ccctactttc ccagctggat ctgcggcgca ttttaaccoc 8100
gggtgagtc gagggtgtag ctggttttaa ttcagttcag ccggctggg ggcgcagctg 8160
gcagcataac ctttggttcc gccacattgt ccagctggag cccgtggtgg tagtggcactg 8220
attcggctct gtctgtgtcg aatggtttcc gggctctttt ttcttttact attgcatcgc 8280
acataccact aaaggttggt ttggtccaa ccagctcttt cagaggaatgt tagtcatcact 8340
cgccttaccac aacagacgcc gcgttggcact cgcagcacta aacgctagtct 8400
attctcctgt ttgactcttc ggcgtgcccc acccccataa ctaagcgcgg cgccgggagt 8460
tgtagccgct actcgcttgg ctgcagactt atataggctc gcaccctttg attggtttag 8520
cggttggttg aagttccaga ggcagcggag gccgggggtg ttgatccagg gccgcacact 8580
agatctgcc ccggtggcagta aacaagttcc ttggcttcct cggggcttgag aatattcaca 8640
ggaaagctac ccgctgtcaa tggacgtcct cccaggttcc ggtgtaataac aacggttacc 8700
taattgtgcc ccgtctgttg gcgggggaaa gcataccacc aaaaatgcgt gcttcgcagg 8760
agtcgcicac aatittggct accactatc cccgatatttt cccgagaatt tcccccatac 8820
ggaagaactc ctcgctctac ggtcagatgt gttctctctg taaacggtgc ttcgagggctt 8880
aatctattctt cagcaagttg tttgacatct ttaaacgcttc tcaaggggtct tattgttgg 8940
acacttctg ttcggctaca cgcgtctgtg gccatctttt actggctttg aatggtggctg 9000
cggcagaggg ctgcttctac accattcctt aatctgctcc ggattgttgt aagttgcttg 9060
cgccttccct ttcagtaacag cccgagggaa gttggtggcc gcctcccttc atgcgctttt 9120
gggagaaatt ataatctgcc cctgaggggg atccccccctt attttttcctt aaattttcctt 9180
acactgcttt cccgagggcc cttggctctt ggattgttgt ctaaggggtct ggagaagctg 9240
taaactgctg ttgcttgctt ggattgttct cgggctcctt ctgggtttcc ggaagaagctg 9300
taagtcgctg ttggctgctt tttggctttt ccccctctgt ttaagccttc tctgcttcctt 9360
gtcggagagg ccagtttttt cggaggattc ggtgggtatg gcagtttaat tcaagcttcg 9420
agcgcgcttt cccagctttc cctgggtcag gcaggggcct tcaagttttt tcccttttttt 9480
aggtcagcga cccaaacgct cttggctcct ttggctgttg atggctctga aacaggttttt 9540
cgcagctctt gcagttctgtt cggcagaggg gggctttggt tgggcttctt gtcggcttctt 9600
atatgttaag agcgcagcga gcctgccagc agtttttttt tggcagcggg gtttttcttt 9660
atctgccctt ttcgagaccc tttggttctt cagaggtttt tcccttcttt gcccttttcttt 9720
acaaatgggt tcacaggttg ggctgtctgt ggaggctttt ctggctctga aacaggttttt 9780
ctgctagccc tttggctttt cttgcttttt cttggcttctt ttcagctttt ttcagctttt 9840
caggtccgag ttggcttcct tttggctttt cttgcttttt ttcagctttt tcagcttttt 9900
ggcagcggtg tggctttttt cttgcttctt ttcagctttt ttcagctttt 10020
tgctgccagc tggcgtcttt atggcttttg cccttttttt ttcagctttt 10080
agcgcgcttt tccaagcttc ttcagctttt cgggcttttt tggcttttttt ttcagcttttt 10140
Continued:

ggactctcttc aggtagtgctc catttatcga tgtgctctgg cacgcaattt tgagtcataa 10200
ctcacaagagg cctcgtgctg agagccataaa ctgtaaatg gctgtcttg gttggacccgg 10260
atttgtacac aatacactac tagcacaattt gcgcgtgacgcc gcaccaattgc tggtgtctac 10320
agtgagggccag tggcaactatt atgtcctttt ccctatatcttt gtgtcaagttg tgtgaaggtgt 10380
ggcgcaacaata atacatcttg tgtgctgcat accaaatgtg aacagatggtg atacatcctt 10440
tacgcggtata agtcacattc cccgtgacac tgtccagggg aacttgccgc cgcgcaagat 10500
tttgtgagtc aacaggggta tgaatatgccc ggggtctaca tggtagttgca cttggtttgcc 10560
aacctggttc tgtcaatctcc gagcttagtt aatgtttccccc ggcgttcgaat tggcttctgt 10620
aatctgctttc gcgtgcaagtc gttgtgtaag cattacaoctc caatactctgcc ctggygtc 10680
cttgggttttt ctctggatatga tgaagattcgc ggcgttcata tgaaggcttac ttttttttt 10740
ttggtggcttt tgtggtgtttg ctaactcttc cccatggaccc gttacacagag cttgcaattt 10800
actactacag tgcacgcttttg tggggccagct gccgctttttc gaggggtttta cgaacttttat 10860
taatggtcact cattcgtct tttcttactct taatccacac acectactggt gcgcggctat 10920
aaactcatttt tlacttctcgg ttctggatgc caaastggga cccaaacact ttaactcttg 10980
getcagtgttg cgccgtgttct gttactactg ggcgctgttat gcatagtgca aacttgagaga 11040
gactaacaggg cactcttact ttaaactctc gagacggcgc gctttcactgc tggggttttt 11100
gggctatgggt tattgtctttc tgcactggtt aacggtgtgtc ccaacactgt atcgatagt 11160
gtatgtttctct tgtttgctttgc gggttgcccac ttcactagtt acctcttact ctcacccctt 11220
cagcccttccct cagctctactcttt tgcctctatgc tcaagctttt ccacgctattg 11280
tcgactactg atgacggccac tgttctttac aattgtctcc ogatagaaac cttggttggtat 11340
tgcacatctcc ggagaagaaa gattatccgg tgggacccgg attttgctga cccccacgcc 11400
gtcccagagtt ccagagtctctt ggaacaggcc ctagccgaggt tcggtgtggtct gttggtggtgac 11460
tgtccccccttt tttaactcta tgcgctctgg caaactctct ttggtttgtga tgggttttt 11520
tctctacct cttttctcttt ctgaaactacta ccattcttct ccgcttttcctt ccctattt 11580
gaaatcgttc tacatcactcttt ttctctattc accacgctatt accagccggtt ctaacgctttc 11640
atggcgcatata cttcgccaac gctttgttata cttcaaatgg ctcacgctgctc ccgccaccc 11700
tggttatgtcg tgtgtccgctg atacgcctgc acgcctttct ctgcctctctt gttgcttttt 12000
tacatcgagtt tgcagctgggt gtttctttcttt tcttctact gtgtctttct ttcgagcct 12060
attatttggt tgtgtcagttt ggaagaccccc ttcagcactgc ttaatttttt gctttttttgt 12120
tgctttttttgt atggagtctga tgggtttttt cgggtgtggct cttggtgctta 12180
ctttctccaccc cggctgctctt cttggagctg attggtttttt ggcggtgtttttt 12240
catcccccct cttcactactt caggttgatg cgggggcccc cgggtttttc gggttggctttgt 12300
acaacgctgt cagatgaggt gcagttccaccc ggcgtgtggttt gggtttttttt 12360
tggcggccgac agtatcaagct tatacctgca ctatggccga ttggtttttc ggtttttttc 12420
cgggaaacgcc cgccgccccac cctattctgt actacaggtc gatcctggccg cttccttggg 12480
gatattaaatt cagacggagcgc ggcgctttatt tttgtaagct tcataactggga 12540
ggccactggtt caactcactgc agatggcggga gagaactcagc acacgtcagc tggggtttcct 12600
cacaacaaaa cccagccggc aattgcgctc ccagagggga ctagagacgt ggatatttctc 12660
cgtgtgcggc tcctgttgc tgaatctata cggacccagg aaccaaaaaa aaaaaaaaaa 12720
aaaaatogag gggaatcaat tottgaagac gaaagggcga gggtgcaactt tcggggaat 12780
tgtggcgcgaa acacctatatt gttaatatttt tcaaatatct ctaaatatgt autgcgtcct 12840
gagacaatac cccgtatatg tgcctcaaat ataattgaaaa aaggaagagt tagatattca 12900
acatctctgt gtgcgctcctta ttctcttatt ttgggcaatt tgcctctcct ttcttgcaaa 12960
cccaagaaacg ctcggtaagaag taataagatgc tcgagatcag ttcggtgcagc agcgtgggttta 13020
catacaatcg cactcatac taaggtgagaac cttctggtgtt gttctgtgacgc 13080
tccaatgtgta gacacattttta aaggttctgtc atctggcccgc gcctatattttc 13140
cgggcgaagac caaagcttgc gcccgtatac taaatcatgt cgggtatcctgc 13200
acacgtcaca gaaaaaagtct ttcaggagtgc caagcaagtta agaagcagt tgggttcgtgc 13260
cataaacaatg atctgactaca ctcgggccccaa atctctctcgc gtaaatagctc gggagccagaa 13320
ggagctaaacc gtttttttgc acaaacagctgg ggctagcatag ttcgctcttg atctggtgga 13380
acagagaggct aatgacgaagct cccaggaactgc acacagtgcac ccgtgcaactatt 13440
ggcacaaacgg ttcggacaacttatctattg ggcaactcttt ccctcttggttcctcgca 13500
attatatgc tctgggtctgg cggatataagc tcggcgccca cttctggtgtt ccggcccttc 13560
gggcgtcggg tgttttttgcgg tttatcttgg aggctggctg cgggggtgcct gcgggtatcctgc 13620
tggcgcagttc cgggagtaact ttgaaggcctc cggtatcctc ggccgctgta gggagggaggg 13680
tcaggcgaacct ataggaggagtgg caagcagatac gatgctgtgct cctctggtgacat 13740
gcatggtgaat cgggtagcagc aactagcata ctataatctct tagagttgtatt cctatactca 13800
cttttaattttta aaaaagatctt gtttttttgtat tttttttgat caaacataaggctctc 13860
ctacgtgcgt ttctctctcct ctgctgagcctc acacgctgtgta gaaagatctcttc 13920
tggagatccttttttctcgc gggtattctgt cttttctgcaaaa acaaaaaacc cccctgttac 13980
agcgggtttt gttttgggagcc tcacaatcctct cttccggaaacc tattctggtt 14040
ccagcaggct cagatacccc aatactctctaat ggtattgagt cggccacactct 14100
cagataacat ggggagacatc tcatactcctcgctctctgcctatctct caccgtctgcgctc 14160
tgcagcagcgc gcattactgtct cctttctctgc ggccttgtact actggtgtgtg cggagtgtgc 14220
gggccagcgg cgggggggttc ggcggacccag cccaggttgtta agggccggagc 14280
ctacacgcgga ctgcggatcata cttcagcgtga gctactgagaa aagcccagcgc tttccgaagg 14340
gagaaaggc gcacagctgtc ctggggcaggc cggggtgcagc acacggagac ccggaggaggg 14400
gttccggg ggggagagacct gttatattttt tagtatgtgt gtttgcctgg actctgtgct 14460
tgaggtgtca gtttttttgtt gcgtctgagg gggggaggc tctggagaa aagcggcagaa 14520
cggagattctctgtagattact agaagcttgcctcagctattcata 14533

<210> SEQ ID NO 5
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> Feature:
<223> OTHER INFORMATION: Primers for RT-PCR amplification of EAV MLV
<400> SEQUENCE: 5

gtcatcatca gttgagggcag 20
<210> SEQ ID NO 6
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer for RT-PCR amplification of EAV MLV
<400> SEQUENCE: 6
cagcgagc ttctgagatt atacgactc actatacgctc gaagtgtgtata tgtgtg 55

<210> SEQ ID NO 7
<211> LENGTH: 29
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primer for RT-PCR amplification of EAV MLV
<400> SEQUENCE: 7
ggtgaagcgt gccagcgyca gtgtgtag 29

<210> SEQ ID NO 8
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primers for RT-PCR amplification of EAV MLV
<400> SEQUENCE: 8
cccccgcgtt tggtagtg 20

<210> SEQ ID NO 9
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primers for RT-PCR amplification of EAV MLV
<400> SEQUENCE: 9
tgcgttgctcc atctgtcctg 20

<210> SEQ ID NO 10
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primers for RT-PCR amplification of EAV MLV
<400> SEQUENCE: 10
tctccagtc tgtttcaagg 20

<210> SEQ ID NO 11
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primers for RT-PCR amplification of EAV MLV
<400> SEQUENCE: 11
tctctgtgag tgtgagagag 20

<210> SEQ ID NO 12
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: Primers for RT-PCR amplification of EAV MLV
<400> SEQUENCE: 12
ataggagac tctgggcac c
21

<210> SEQ ID NO 13
<211> LENGTH: 20
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: primers for RT-PCR amplification of EAV MLV

<400> SEQUENCE: 13
aegcgactca tgtcttcagg
20

<210> SEQ ID NO 14
<211> LENGTH: 67
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: primers for RT-PCR amplification of EAV MLV

<400> SEQUENCE: 14
gcaetcgct agtagacat ctcgagtttt tttttttggt cctggtgtgc
60
taataac
67

<210> SEQ ID NO 15
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: primers for RT-PCR amplification of EAV MLV

<400> SEQUENCE: 15	tattotactcg tagtagtttc g
21

<210> SEQ ID NO 16
<211> LENGTH: 24
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: primers for RT-PCR amplification of EAV MLV

<400> SEQUENCE: 16
gcaetcgct agtagacat ctcg
24

<210> SEQ ID NO 17
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: mutagenesis primer

<400> SEQUENCE: 17
gatgcccggct cggaaaocgc cgcgc
25

<210> SEQ ID NO 18
<211> LENGTH: 25
<212> TYPE: DNA
<213> ORGANISM: Artificial sequence
<220> FEATURE:
<223> OTHER INFORMATION: mutagenesis primer

<400> SEQUENCE: 18
cgcgcggggt ttcgsgaacc gcatac
25
What is claimed is:

1. An isolated polynucleotide molecule comprising a DNA sequence encoding an infectious RNA molecule encoding a modified live viral strain of an Equine arteritis virus, wherein said DNA sequence is SEQ ID NO:1.

2. An isolated transformed or transfected host cell comprising the DNA sequence of claim 1.

3. A plasmid vector comprising the isolated polynucleotide molecule of claim 1 operatively linked to a suitable promoter.

4. The vector of claim 3, consisting of SEQ ID NO: 3.

5. An isolated infectious RNA molecule encoded by the isolated polynucleotide molecule of claim 1, wherein the infectious RNA molecule encodes a modified live viral strain of an Equine arteritis virus.

6. An isolated polynucleotide molecule comprising a DNA sequence encoding an infectious RNA molecule encoding a modified live viral strain of an Equine arteritis virus, wherein the DNA sequence is SEQ ID NO:2.

7. An isolated transformed or transfected host cell comprising the DNA sequence of claim 6.

8. A plasmid vector comprising the isolated polynucleotide molecule of claim 6 operatively linked to a suitable promoter.

9. An isolated infectious RNA molecule encoded by the isolated polynucleotide molecule of claim 6, wherein the infectious RNA molecule encodes a modified live viral strain of an Equine arteritis virus.