
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Pharmacy College of Pharmacy 

2011 

STUDIES OF SOLUBILIZATION OF POORLY WATER-SOLUBLE STUDIES OF SOLUBILIZATION OF POORLY WATER-SOLUBLE 

DRUGS DURING DRUGS DURING IN VITROIN VITRO  LIPOLYSIS OF A MODEL LIPID-BASED LIPOLYSIS OF A MODEL LIPID-BASED 

DRUG DELIVERY SYSTEM AND IN MIXED MICELLES DRUG DELIVERY SYSTEM AND IN MIXED MICELLES 

Lin Song 
University of Kentucky, lsong4@email.uky.edu 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Song, Lin, "STUDIES OF SOLUBILIZATION OF POORLY WATER-SOLUBLE DRUGS DURING IN VITRO 
LIPOLYSIS OF A MODEL LIPID-BASED DRUG DELIVERY SYSTEM AND IN MIXED MICELLES" (2011). 
Theses and Dissertations--Pharmacy. 1. 
https://uknowledge.uky.edu/pharmacy_etds/1 

This Doctoral Dissertation is brought to you for free and open access by the College of Pharmacy at UKnowledge. It 
has been accepted for inclusion in Theses and Dissertations--Pharmacy by an authorized administrator of 
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

https://uknowledge.uky.edu/
https://uknowledge.uky.edu/pharmacy_etds
https://uknowledge.uky.edu/pharmacy
https://uky.az1.qualtrics.com/jfe/form/SV_0lgcRp2YIfAbzvw
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained and attached hereto needed written 

permission statements(s) from the owner(s) of each third-party copyrighted matter to be 

included in my work, allowing electronic distribution (if such use is not permitted by the fair use 

doctrine). 

I hereby grant to The University of Kentucky and its agents the non-exclusive license to archive 

and make accessible my work in whole or in part in all forms of media, now or hereafter known. 

I agree that the document mentioned above may be made available immediately for worldwide 

access unless a preapproved embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s dissertation 

including all changes required by the advisory committee. The undersigned agree to abide by 

the statements above. 

Lin Song, Student 

Dr. Paul M. Bummer, Major Professor 

Dr. Jim Pauly, Director of Graduate Studies 



ABSTRACT OF DISSERTATION 

 

 

 

 

 

Lin Song 

 

 

 

 

 

 

 

 

The Graduate School  

University of Kentucky 

                                                                     2011 



 
STUDIES OF SOLUBILIZATION OF POORLY WATER-SOLUBLE DRUGS 

DURING IN VITRO LIPOLYSIS OF A MODEL LIPID-BASED DRUG DELIVERY 
SYSTEM AND IN MIXED MICELLES 

 

 

 

 

      ABSTRACT OF DISSERTATION  

 

A dissertation submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in the 

College of Pharmacy 
 at the University of Kentucky 

 

 

 
 

By 

Lin Song 

Lexington, Kentucky 

Director: Dr. Paul M. Bummer, Associate Professor of Pharmaceutical Sciences 

Lexington, Kentucky 

2011 

Copyright © Lin Song 2011



Abstract of Dissertation 

 

Studies of Solubilization of Poorly Water-soluble Drugs During in vitro Lipolysis of a 
Model Lipid-based Drug Delivery System and in Mixed Micelles 

 

Lipid-based drug delivery systems (LBDDSs) are becoming an increasingly popular 

approach to improve the oral absorption of poorly-water soluble drugs. Several possible 

mechanisms have been proposed to explain the means by which LBDDSs act in vivo to 

enhance absorption. The goal of the current dissertation is to provide a better 

understanding of one proposed mechanism; the capability of lipoidal components in 

LBDDS formulations to create and maintain a drug in a supersaturated state under 

simulated GI conditions. Moreover, molecular details of equilibrium solubilization of a 

drug in a series of model lipid assemblies were examined. The results of these studies 

will aid formulators in choosing the optimal LBDDS to improve oral absorption of 

poorly water-soluble drugs.  

Time-dependent solubilization behavior of progesterone, 17β-estradiol and nifedipine in 

a simple model LBDDS composed of Polysorbate 80 was assessed employing the in 

vitro dynamic lipolysis model. The results illustrated the extent to which the 

supersaturated state was dependent on the extent of lipolysis of Polysorbate 80 and the 

initial drug concentration. Area-under-the curve-supersaturation was proposed as a 

means of quantifying the time-dependent extent of supersaturation in LBDDSs in 

simulated intestinal conditions.  

Concurrently, a series of model mixed micellar solutions, composed of Polysorbate 80 

and oleic acid, were prepared to represent the lipid assemblies produced during the 

lipolysis experiments. The ability of these aggregates to solubilize progesterone, 17β-

estradiol and nifedipine were evaluated and the aggregate/water partition coefficients 

were determined. The Treinor model was found to successfully fit the partition 

coefficients of the drugs in a range of mixed micelles. The equilibrium solubility of 

drugs in the mixed micelles was calculated and compared to that found under lipolytic 

conditions. The best agreement between calculated and experimental conditions was 

observed for nifedipine.  



These studies have established a foundation for the evaluation of time-dependent extent 

of supersaturation with more complex LBDDS formulations exposed to lipolytic 

conditions.   

Key Words: Lipolysis, Lipid-based Drug Delivery System (LBDDS), Solubilization, 

Supersaturation 
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Chapter 1 

Statement of Problems and Aims 

 

Lipid-based drug delivery systems (LBDDSs) are one of several popular approaches to 

improving the oral absorption of poorly-water soluble drugs with high lipophilicity.  

Some proposed mechanisms of enhancing bioavailability include increasing the 

dissolution rate or maintaining the drug in solution through the GI tract. However, little is 

known about the creation and maintenance of poorly-water soluble drugs in their 

supersaturated state when the LBDDSs are subject to digestion in the GI tract.  As a 

result, considerable challenges remain in selecting the formulation that will optimize oral 

absorption. 

The goal of the current dissertation is to provide a better understanding of the capability 

of lipoidal components in LBDDS formulations to create and maintain drugs in a 

supersaturated state in simulated GI conditions. Moreover, molecular details of 

solubilization in terms of drug-aggregate interactions and lipid-lipid interactions in 

aggregates are explored. From a solubilization standpoint, evaluating the ability of each 

component of LBDDSs to induce and maintain the supersaturation of poorly-water 

soluble drugs will provide useful information for fully understanding the mechanism by 

which digestible surfactants and lipids modulate the oral absorption of poorly-water 

soluble drugs in the GI tract.  

Two hypotheses are to be tested. The first hypothesis is that lipolysis of Polysorbate 80 in 

the model LBDDS results in a supersaturated state for model poorly-water soluble 

compounds and the extent of the supersaturation is dependent on the extent of hydrolysis 

of surfactant as well as on the initial concentration of the drug. The second hypothesis is 

that it is possible to relate the equilibrium solubilization of model drugs formulated in 

Polysorbate 80-oleic acid mixed micelles to the solubilization behavior of lipid 

aggregates generated during lipolysis of the surfactant formulation.  
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The specific aims are:  

1) Demonstrate that the dynamic in vitro lipolysis model is a reliable and sensitive 

method to monitor the extent of lipolysis of ester-containing lipoidal excipients.  

2) Demonstrate that lipolysis of Polysorbate 80 in formulations of the model drugs 

progesterone, estradiol and nifedipine will result in a supersaturated state for each and 

that the extent of supersaturation will be dependent upon the extent of hydrolysis of 

Polysorbate 80 as well as upon the initial drug concentration. 

3) Determine drug solubilization in model mixed micellar systems and then fit micelle-

water partition coefficients to the Treinor model.  The solubilization values will be 

compared to those obtained during the in vitro lipolysis of Polysorbate 80. 

4) Characterize the properties of model mixed micellar systems with respect to size, 

population and ionization state of the micellar oleic acid. 

5) Probe the interaction of drugs with mixed micelles formed during lipolysis. 
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Chapter 2 

Background and Literature Review 

 

2.1.   Summary 
In this chapter, the background and literature review will focus on the following aspects: 

1) methods used to enhance the solubility of poorly water-soluble drugs; 2) types of lipid-

based drug delivery systems (LBDDSs) and the classification system of LBDDSs; 3) 

proposed mechanisms of enhanced oral absorption by LBDDSs; 4) excipients employed 

in LBDDSs and the effect of digestion of LBDDSs on the absorption of poorly water-

soluble drugs; and 5) in vitro evaluation of the  effect of lipolysis on LBDDSs and drug 

solubilization. Finally, several unanswered questions concerning the mechanism of 

solubilization of drugs by LBDDSs in the GI tract will be identified.  

2.2. Oral lipid-based drug delivery systems (LBDDSs) 
2.2.1. Poorly water-soluble drugs  
Patient convenience, compliance, and low cost of production make the oral route the 

preferred means for the administration of most drugs. A prerequisite for oral absorption is 

the presentation of the drug in solution followed by subsequent passage across the 

gastrointestinal membrane. It is believed that the efficiency of drug absorption via the GI 

tract is strongly influenced by solubility and permeability (Amidon, Lennernäs et al., 

1995) and as a result, the Biopharmaceutics Classification System (BCS) has been 

suggested as guidance for predicting intestinal absorption (Figure 2.1). Drugs in Class I 

with high solubility and high permeability can be absorbed readily.  Drugs in Class II are 

highly permeable, but absorption is limited by poor solubility in the GI tract. In Class III, 

the absorption is limited by the permeation rate because the drug is highly soluble. Poor 

and highly variable absorption is expected for Class IV drugs that are both poorly soluble 

and poorly permeable. Combinatorial chemistry and high-throughput screening have 

increased the number of drug candidates in Class II with more than 40% of new active 

compounds exhibiting poor-water solubility (Lipinski, Lombardo et al., 2001). Moreover, 
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a high percentage of drug failures has resulted from the poor biopharmaceutical 

properties (Prentis, 1988).  

Solubility

Pe
rm

ea
bi

lit
y

Class I
High solubility
High permeability

Class IV
Low solubility
Low permeability

Class III
High solubility
Low permeability

Class II
Low solubility
High permeability

Formulation strategies

 

Figure 2.1 Biopharmaceutical Classification System 

As indicated above, the rate-limiting step in the absorption of Class II drugs is 

solubilization.  Increasing the dissolution rate or presenting and maintaining the drug in 

solution throughout the GI tract will potentially enhance absorption. Many methods can 

be used to enhance the solubility of Class II drugs in the GI tract and achieve a 

biopharmaceutical profile similar to Class I drugs.  These approaches would include 

amorphous formulations, pH adjustment, salt formation, cosolvent-based formulations 

and lipid-based formulations (Gomez-Orellana, 2005). As expected, each method has 

advantages and disadvantages.  Compared to the crystalline solid, an amorphous solid is 

in a higher free energy state, resulting in a higher solubility and dissolution rate. On the 

other hand, the physical stability is problematic, resulting in phase changes and possible 

precipitation. Adjustment of pH and salt formation are only suitable for molecules with 

ionizable groups. The chemical stability of drugs and biocompatibility at pH extremes are 

major concerns for these formulations. Large quantities of organic solvent used in 

cosolvent formulations may result in the loss of solvent capacity of the formulation upon 

dilution in aqueous media in vivo. Biocompatibility of surfactant excipients in lipid-based 

formulations is a major concern. Moreover, the effects of digestion of lipid excipients by 
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digestive enzymes in the GI tract on the solubilization of poorly water-soluble drugs are 

not clearly understood.   

2.2.2. Oral lipid-based dosage forms 
Despite the disadvantages listed, LBDDSs are gaining in popularity for oral applications. 

Typically, LBDDSs employ surfactants and oil to dissolve the drug in a concentrate 

suitable for administration. In some cases, cosolvents and some water may also be 

included. Upon dilution in aqueous media in vivo, the mixture of surfactant and oil may 

undergo morphological changes giving rise to assemblies such as micelles, bilayer 

vesicles, emulsions, microemulsions and solid particles. It is these assemblies that are 

responsible for dissolving poorly-water soluble molecules.  

 In the absence of an oil component, aggregates of surfactant molecules (micelles) are 

formed when the concentration of surfactant is above the critical micellar concentration. 

Depending on the type of phospholipids, different sizes and types of bilayer vesicles can 

be formed, such as small unilamellar vesicles (SUV, size~50 nm), large unilamellar 

vesicles (LUVs, size 100~1000 nm), multilamellar vesicles (MLVs) and multivesicular 

liposomes (MVLs) types. Emulsions include self-emulsifying drug delivery systems 

(SEDDSs) and self micro-emulsifying drug delivery systems (SMEDDSs). SEDDSs are 

systems composed of an easily dispersible mixture of oil, surfactants and drug, such that 

when diluted in the GI tract, they will form a fine oil-in-water emulsion with little or no 

energy input. SMEDDSs are somewhat similar in that they too form micro-emulsions 

spontaneously when diluted in the stomach. When diluted, SMEDDSs form small 

droplets such that the dispersion is clear, isotropic and thermodynamically stable. Solid 

particle LBDDSs are comprised of a solid or semi-solid lipid matrix in which the drug is 

in a crystalline, amorphous or solubilized state. A portion of the drug in the solid LBDDS 

dissolves rapidly upon dilution in vivo. Neoral (cyclosporin A) and Kaletra (lopinavir 

and ritonavir) are just two examples of highly successful LBDDS products.  

As demonstrated in numerous studies, the oral bioavailability of drugs in Class II can be 

improved by LBDDSs (Chakrabarti, 1978; Tokumura, Tsushima et al., 1987; Pouton, 

1997; Hauss, Fogal et al., 1998; Neslihan Gursoy and Benita, 2004; Pouton, 2006; Atef 

and Belmonte, 2008; Porter, Pouton et al., 2008; Balakrishnan, Lee et al., 2009; Kohli, 
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Chopra et al., 2010; Khamkar, 2011). The advantages of LBDDSs for enhancing drug 

absorption are demonstrated in Scheme 2.1.  LBDDSs are thought to influence the 

process of dissolution and solubilization of poorly water-soluble drug in the GI tract. The 

primary mechanism of action leading to improved absorption is presenting the drug in the 

solubilized state, avoiding the slow dissolution rate associated with most poorly-water 

soluble drugs from solid dosage forms. Additionally, lipid aggregates may prevent the 

precipitation of drug during transit through the GI tract. Excipients such as triglycerides 

and surfactants in LBDDSs, and the associated lipid digestion products may act as 

absorption enhancers by altering the barrier properties of the membrane by increasing 

lipid membrane fluidity and/or interacting with hydrophilic domains of the membrane 

(Aungst, 2000).  In addition to passive diffusion, drugs can also be absorbed by active 

and facilitated transport (Hunter, Hirst et al., 1993; Kim, Fromm et al., 1998; Suzuki and 

Sugiyama, 2000; Borst and Elferink, 2002). Enhancement of influx transporters or 

inhibition of efflux transporters will increase the intracellular drug concentrations (Chiu, 

Higaki et al., 2003). Several excipients commonly used in LBDDSs, such as Cremophor, 

d-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) and Polysorbate 80, are 

believed to inhibit P-gp mediated efflux resulting in enhanced oral drug absorption (Chiu, 

Higaki et al., 2003; Cornaire, Woodley et al., 2004; Constantinides and Wasan, 2007). 

Studies have suggested that high fat meals could inhibit P-gp mediated efflux due to 

stimulated secretion of endogenous bile salts and phospholipids (Frijters, Ottenhoff et al., 

1997). In the remainder of this chapter, the focus will be on drug solubilization by 

LBDDSs with emphasis on the effect of lipid digestion of these formulations.  
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Scheme 2.1 Advantage of LBDDSs for enhancing absorption of Class II drugs 

2.2.3. Classification of LBDDS formulations 
Pouton (Pouton, 2000) introduced the Lipid Formulation Classification System (LFCS) 

to categorize LBDDSs into four different types based on their exicipient composition 

and the morphology of lipid aggregates formed upon dilution in aqueous media (Table 

2.1).  The LFCS enables in vivo studies to be interpreted more readily and facilitates the 

identification of the most appropriate formulations for a particular drug. As shown in 

Table 2.1, the Type I formulations are composed of oils without surfactants. Depakene 

(valproic acid formulation in corn oil), Marinol (dronabinol in sesame oil) and 

Prometrium (progesterone in peanut oil) are a few examples of commercial Type I 

formulations. Type I formulations are not readily dispersed upon dilution. Digestion of 

the lipid excipients in the GI tract is generally required for the drug to be released from 

the formulation. Non-digestible lipids such as mineral oil tend to retain poorly water-

soluble drugs within the oil phase resulting in limited drug release and poor absorption 

(Charman, Porter et al., 1997; Dahan, 2006). Type I formulations may not always 

provide sufficient solubilization capacity to dissolve the required dose in a reasonable 

quantity of oil. The most frequently employed LBDDS formulations on the market are 

Type II and Type III. The introduction of surfactants and cosolvents to the oils 

improves the solubilization capacity and dispersibility of formulation upon dilution in 

aqueous media such as gastric fluid. Type II and Type III formulations rapidly and 

spontaneously form fine oil-in-water emulsions (particle size > 200 nm, opaque) or 

microemulsions (particle size < 200 nm, optical clear or slightly opalescent). The drug 

is present in fine droplets of oil/surfactant mixture with a large oil/water interfacial area  

(Charman, Charman et al.,1992; Mueller, Kovarik et al., 1994; Shah, Carvajal et al., 
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1994). As a result of the large interfacial area both the rate of drug release and 

formation of mixed micelles of lipolytic products to solubilize the poorly water-soluble 

drug are enhanced. How the large oil/water interfacial area facilitates the hydrolysis of 

lipids will be discussed in Section 2.4.1. 

Oil is not included in Type IV formulations. Upon dilution in aqueous media, a micellar 

solution is formed leading to rapid drug release and enhanced drug absorption. 

However, surfactants alone are rarely used as formulations and require cosolvents to aid 

in dispersion. The major question with this type formulation is whether it is capable of 

preventing the drug from precipitating as the formulation is diluted during transit 

through the GI tract. Moreover, the sensitivity of the GI tract to high concentrations of 

surfactants impedes the application of Type IV systems, and few Type IV formulations 

are on the market. Examples of Type IV formulations are Agenerse (amprenavir 

formulation in TPGS, PEG400 and PEG) and Targretin (bexarotene formulation in 

Polysorbate 20, PEG400, povidone and BHA).  

Table 2.1 The Lipid Formulation Classification System (Pouton, 2000; Pouton, 2006) 

Formulation type Excipients in formulation Characteristics 

Type I Oils (tri-, di- and 
monoglycerides) without 
surfactants 

Non-dispersing, 
requires digestion 

Type II Oils and water-insoluble 
surfactants (HLB<12) 

SEDDS formed without 
water-soluble 
components 

Type III Oils, surfactants and 
cosolvents 

SEDDS/SMEDDS 
formed with water –
soluble components 

Type IV Water-soluble surfactants 
(HLB>12) and cosolvent, 
but no oils. 

Formation of micellar 
solution  

 

Table 2.2 is a list of lipid excipients used in marketed LBDDSs. The list reveals that 

most commonly used pharmaceutically-relevant lipid excipients include fatty acids, 
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natural oils and fats, semi-synthetic mono-, di- and triglycerides, semi-synthetic 

polyethylene glycol (PEG) derivatives of glycerides and fatty acids, polyglycerol esters 

of fatty acid, cholesterol and phospholipids. In general, these lipid excipients are fatty 

acids and fatty acid esters. Natural oils and fats are mixtures of fatty acid tri-esters of 

glycerol (triglycerides) (Figure 2.2). Based on the fatty acids, triglycerides can be 

categorized as having short (<5), medium (6-12) or long (>12) hydrocarbon chains. 

Compared to the oils and fats from natural sources, semi-synthetic lipid excipients 

provide more uniform compositions (Bhat, Dar et al., 2008).  Even in the semi-

synthetic excipients variability exists in the relative positions on the glycerol backbone 

to which the individual fatty acids are esterified.  

Fatty acids and their ester derivatives are prone to oxidation and hydrolysis. The 

oxidation can be catalyzed by impurities such as peroxides, metal ions and 

photochemical sensitizers (Hauss, 2007). Hydrolysis could be either chemical or 

enzymatic. For example, the rate of hydrolysis of phosphatidylglycerol has been shown 

to be pseudo-first order and to depend strongly on the pH and temperature (Crommelin, 

Talsma et al., 1993; Crommelin and Schreier, 1994). Also, it has been shown in the 

dissertation and by others that phospholipids are susceptible to hydrolysis upon 

exposure to pancreatic lipase preparations (Kossena, Boyd et al., 2003). 
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Table 2.2 Solubilizing excipients used in commercially available LBDDSs (Hauss, 2007) 

Water insoluble 

excipients 

Triglycerides  Surfactants  

Beeswax Corn oil Glycerol monooleate 

Oleic acid Olive oil  Polyoxyl 35 castor oil 

(Cremophor EL) 

Soy fatty acids Peanut oil Polyoxyl 40 hydrogenated 

castor oil (Cremophor RH40) 

d-α-tocopherol 

(Vitamin E) 

Rapeseed oil Polyoxyl 60 hydrogenated 

castor oil (Cremophor RH60) 

Corn oil mono, 

diglycerides 

Sesame oil Polysorbate 20 (Tween 20) 

Medium-chain 

mono, diglycerides 

Soybean oil Polysorbate 80 (Tween 80) 

Propylene glycol 

esters of fatty acids 

Hydrogenated 

soybean oil 

d-α-tocopherol polyethylene 

glycol 1000 succinate (TPGS) 

 Hydrogenated 

vegetable oil 

Sorbitan monolaurate (Span 

20) 

  PEG 300 oleic glycerides 

(LabrafilM-1944CS) 

  PEG 300 linoleic glycerides 

(LabrafilM-2125CS) 

  PEG 400 caprylic/capric 

glycerides (Labrasol) 

  PEG 1500 lauric glycerides 

(Gelucire 44/14) 
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Figure 2.2 Structure of a triglyceride and its components 

2.3. Proposed mechanisms of absorption enhancement by LBDDSs 
Drug absorption across the intestinal membrane is a complex multi-pathway process. 

Scheme 2.2 summarizes the possible routes of absorption in the GI tract of a poorly 

water-soluble drug formulated in an LBDDS. With the aid of various lipid aggregates, 

the poorly water-soluble drug is present in a solubilized state and may experience 

facilitated diffusion through the unstirred water layer. Upon reaching the gut wall, 

molecules can be absorbed passively through transcellular and paracellular routes. 

Passage of drug across a biological membrane can also be facilitated by an active or 

facilitated transporter. For highly lipophilic molecules (logP>5, solubility in long chain 

triglycerides > 50 mg/mL), lymphatic transport is a significant route of absorption 

(Hauss, Fogal et al., 1998; Gershkovich and Hoffman, 2007; Gershkovich, Qadri et al., 

2007).  Multiple routes of transport make it difficult to apply a single model to 

accurately predict drug absorption in the GI tract. Based on these routes, the 

mechanisms by which LBDDSs enahance oral absorption can be divided into two 

categories – physicochemical mechanisms and biological/biochemical mechanisms. 

Biological and biochemical mechanisms will be covered in Section 2.3.1. The 

physicochemical mechanisms will be covered in Section 2.3.2.  
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Scheme 2.2 The summary of the possible mechanisms for enhanced drug absorption from 

a  lipid-based drug delivery system in  the GI tract (O'Driscoll, 2002) 

2.3.1. Biological and biochemical mechanisms 
There are several possible biological and biochemical mechanisms to enhance the 

absorption of drugs formulated in LBDDSs. Ingested lipids, especially triglycerides and 

long chain fatty acids, effectively inhibit gastric motility resulting in prolonged residence 

times of co-administered drugs in the small intestine (Raybould, Meyer et al., 1998; 

Fleisher, Li et al., 1999; Van Citters and Lin 1999; Mu and Porsgaard, 2005). 

Consequently, the drugs have more time to dissolve and spend a longer time at the 

absorptive site, thereby improving absorption.  

A variety of lipids have been shown to alter the barrier properties of GI membranes by 

increasing membrane fluidity, opening tight junctions, or interacting with hydrophilic 

membrane domains (Constantinides and Wasan, 2007). As mentioned previously, 

inhibition of efflux transporters in the GI tract has been shown to be an effective 

mechanism to increase the fraction of drug absorbed (Nerurkar, Burton et al., 1996; 

Dintaman and Silverman, 1999). Moreover, this mechanism may reduce intra-enterocyte 

metabolism due to the interplay between P-gp and CYP3A4.  Many surfactants used in 

LBDDSs, such as TPGS, Labrasol and Polysorbates, can inhibit efflux transporters 
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resulting in enhanced oral absorption (Cornaire, Woodley et al., 2004; Varma and 

Panchagnula 2005; Yamagata, Kusuhara et al., 2007). 

The majority of digested products and poorly-water soluble drugs gain access to the 

systemic circulation via the portal vein. However, highly lipophilic molecules (logP>5, 

solubility in long chain triglycerides >50 mg/mL) or large macromolecules can enter the 

systemic circulation via the lymphatic system (Li, Fleisher et al., 2001; Martinez, 

Amidon et al., 2002). This alternative absorption pathway has been shown to contribute 

significantly to the overall bioavailability of poorly-water soluble drugs formulated in 

LBDDSs (Kuksis 1987; Hauss, Fogal et al., 1998; Khoo, Edwards et al., 2001; Holm, 

Porter, et al., 2003; Karpf, Holm et al., 2004; Grove, Nielsen et al., 2006; Dahan, 

Mendelman et al., 2007). The intracellular association of the drug with the lipidic core of 

chylomicrons is considered to be the primary mechanism of intestinal lymphatic drug 

absorption.  

2. 3.2. Physicochemical mechanisms 
The primary mechanism of enhanced absorption by LBDDSs is the solubilization of 

poorly water-soluble drugs in the GI tract. A number of studies have correlated the 

solubilization behavior of poorly-water soluble drugs with oral bioavailability 

(Christensen, Schultz et al., 2004; Porter, Kaukonen et al., 2004; Grove, Pedersen et al., 

2005; Goddeeris, Coacci et al., 2007). All these studies were conducted in an attempt to 

determine the factors influencing the solubilization of drugs and improving the design of 

LBDDSs to increase the oral absorption of poorly water-soluble drugs. Namely, these 

factors are the physicochemical properties of the drug, the rate and extent of digestion of 

LBDDSs, the digestion products formed, the properties of lipid aggregates generated 

during the digestion of LBDDSs and the rate of drug transfer between the the various 

lipid assemblies and the aqueous phase. Saquinavir is an example of a drug that exhibited 

improved bioavailability from an LBDDS formulation. The bioavailability of its mesylate 

salt was highly variable and as low as 4%. In an attempt to improve absorption, the free 

base was formulated in an LBDDS composed of medium chain mono- and diglycerides. 

The bioavailability of Saquinavir in humans given the LBDDS formulation improved 3-

times over that of the salt (Perry and Noble, 1998). Subsequent studies in rats showed 

that the enhanced solubilization and permeability of the free base in the lipid-rich 
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intestinal environment led to the increased bioavailability (Griffin and O'Driscoll, 2006). 

The solubilization mechanisms for the enhanced oral absorption were further 

demonstrated by in vivo evaluation of dexamethasone and griseofulvin in LBDDSs 

composed of long, medium or short chain triglycerides (Dahan and Hoffman, 2007). 

Equivalence of bioavailability was observed in dexamethasone from the different 

LBDDSs. Conversely, the oral bioavailability of griseofulvin was dependent upon the 

nature of lipid excipients with the highest oral bioavailablity in medium chain triglyceride 

LBDDSs.  The solubilization and distribution pattern across the different phases formed 

from the in vitro lipolysis of all three LBDDSs revealed that a high fraction of 

dexamethasone was solubilized in the aqueous phase. On the other hand, griseofulvin had 

the highest solubility in medium chain triglycerides whereas a lower amount of drug was 

soluabilized in long chain triglycerides. The poorest solubility was observed during 

lipolysis of the formulations containing short chain triglycerides.  

For a BCS Class II molecule in solution, ignoring biological factors, diffusion across the 

unstirred water layer is the rate-limiting step for absorption. Incorporation into lipid 

aggregates facilitates lipid and drug absorption by overcoming the resistance of the 

unstirred water layer. In 1982, Amidon et al. provided a physical model which described 

the simultaneous diffusion of free drug and micelle-solubilized drug across the aqueous 

boundary layer associated with a silastic membrane (Amidon, Higuchi et al., 1982). 

According to Fick’s First Law, the rate of drug transport is proportional to its diffusivity 

and concentration gradient. Enhanced mass transport of drug resulting from solubilization 

and facilitated diffusion by a variety of lipid aggregates has been demonstrated (Land, Li 

et al., 2006).   

Transit of oral LBDDSs through the GI tract is a dynamic process in which some 

excipients are susceptible to digestion. Consequently, the solubilization and distribution 

pattern of the drug may change as a function of time in vivo. A study of danazol LBDDS 

formulations in fasted beagle dogs demonstrated that the solubilization of drug in the 

intestinal fluid is critical for drug bioavailability (Kossena, Boyd et al., 2003). Danazol 

was formulated in a simple long chain triglyceride solution, in a SEDDS composed of 

long chain lipids and in a SEDDS containing medium chain lipids. Relative to the 

SEDDS with medium chain lipids, a significant increase in oral bioavailability was 
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observed in the long chain triglycerides solution and SEDDS containing long chain lipids. 

An in vitro assay revealed that over 70% of the drug precipitated during the lipolysis of 

SEDDS containing medium chain lipid excipients. On the other hand, the SEDDS 

containing long chain lipids resulted in over 90% danazol solubilized despite the lipolysis 

of lipid. For the same drug, Cuiné et al. showed that, in beagle dogs, the loss of 

solubilization capacity of the aggregates formed in the digestion process could result in a 

decrease in oral bioavailability (Cuiné, McEvoy et al., 2008). However, in all these 

studies, apparent solubilization of poorly water-soluble drugs was investigated only in the 

lipid aggregates present at the end of the experimental period. The time-dependent effect 

of alteration of the solution composition during lipolysis on the solubilization was not 

addressed.  

As has been stated previously, absorption requires the partitioning of drug from the 

aqueous phase to the enterocyte. Thus poor solubility of a drug in the aqueous phase 

limits absorption. For Class II molecules where the total amount of drug solubilized in 

lipid aggregates is great, the fraction of drug free in solutions remains quite small 

(Poelma, R. et al., 1991; Chiu, Higaki et al., 2003). Higuchi was among the first to 

recognized the potential impact of supersaturation in the aqeous phase on the transport 

of drugs through biological membranes (Higuchi, 1960). Supersaturation creates an 

intraluminal free drug concentration in excess of the drug’s equilibrium solubility.  The 

increased thermodynamic activity of drug results in a pronounced enhancement of the 

uptake flux. It has been suggested that the enhanced absorption observed in studies of 

LBDDSs may result from supersaturation upon dilution in aqueous media in the GI 

tract. A successful example of utilizing the supersaturation strategy is the development 

of SEDDSs of paclitaxel. The marketed paclitaxel formulation for I.V. administration 

(Taxol) contains drug solubilized in ethanol and a high concentration of the surfactant 

Cremophor EL. However, the same dosage form did not provide therapeutic drug 

plasma concentrations in rats when administrated orally. Gao et al., developed a new 

dosage form containing a reduced amount of surfactant and included the polymer 

HPMC as a precipitation inhibitor (Gao, Rush et al., 2003). The drug was maintained in 

a supersaturated state when the HPMC-containing formulation was diluted in 

biorelevant media. Furthermore, it was found that the rate of drug precipitation from the 
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supersaturated state was significantly slowed. Oral administration of HPMC-containing 

formulations in rats resulted in five-fold higher AUCs compared to orally-administered 

Taxol. Enhanced bioavailability was also observed in the supersaturable SEDDSs of 

AMG517 and PNU-91325 (Gao, Guyton et al., 2004; Gao, Akrami et al., 2009). These 

results suggested that the increased free drug concentration exceeding the saturation 

solubility was a major mechanism of enhancement of the oral bioavailability of poorly 

water-soluble drugs. However, the mechanism of creating and maintaining drugs in a 

supersaturated state induced by LBDDSs in vitro and in vivo is not clear, especially 

when the critical excipients of LBDDSs are subject to digestion.  The capability of lipid 

aggregates to create and maintain drugs in a supersaturated state has not been 

adequately addressed in the literature.  

2.4. Enzymatic hydrolysis of lipids 
Many excipients employed in LBDDSs contain one or more ester bonds (see Section 

2.2.2) that may be sensitive to hydrolysis by gastric or pancreatic lipase enzymes. Of 

critical importance to this dissertation is the extent to which lipolysis influences the 

structure of lipid assemblies and the accompanying solubilization enhancement in vivo. 

Covered in Section 2.4.1 will be details of the enzymatic hydrolysis of various lipids 

and the morphology of the digests. In Section 2.4.2, the digestion of LBDDS 

formulation excipients will be reviewed. The goal will be to examine the means by 

which lipolysis of LBDDSs is studied in vitro, and the linkage of lipolysis to the 

solubilization of pooly water-soluble drugs.  

2.4.1 Digestion of lipids 
Since Crounse first reported the food-dependent bioavailability enhancement of 

griseofulvin, food effects on bioavailability of drugs has drawn much attention (Crounse 

1961; Winstanley and Orme 1989; Amidon, Lennernäs et al., 1995; Charman, Porter et 

al., 1997; Dressman, Amidon et al., 1998; Hörter and Dressman, 2001). Studies of the 

mechanisms of food effects revealed that the ability of dietary lipids to be digested in the 

GI tract plays an important role in determining the rate and extent of drug absorption 

(Hunt and Knox 1968; Ladas, Isaacs et al., 1984; Cunningham, Baker et al., 1991; Feinle, 

Rades et al., 2001). The enzymatic hydrolysis of lipids will result in changes in the 
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composition and morphology of aggregates. Potentially, the solubilization capability of 

these assemblies will be altered.  

Fats and oils are the most significant dietary lipids. Typically, there are four distinct steps 

in lipid digestion in the GI tract: emulsification, hydrolysis at the emulsified oil droplets 

surface, micellization, and uptake through enterocytes (Figure 2.3). It is believed that 

emulsification facilitates the access of substrates to the oil/water (o/w) interface where 

the digestive enzymes gastric lipase and pancreatic lipase/colipase are bound preferably 

(Aloulou, Rodriguez et al., 2006). The most common emulsifying agents in the acidic 

environment of the stomach include dietary phospholipids, peptic digests of dietary 

proteins and complex polysaccharides, all of which adsorb strongly at the oil/water 

interface. In addition to these emulsifying agents, digestion products such as 

monoglycerides and fatty acids may also help to stabilize the crude emulsion. About 15% 

of triglycerides are hydrolyzed by gastric lipase to release fatty acids. Released fatty acids 

play two roles in the stomach (Mazer and Carey, 1983). Firstly, they inhibit further 

hydrolysis in the stomach by blocking the accessibility of enzyme to the o/w surface 

resulting in partial hydrolysis. Secondly, they promote the emulsification of oil upon 

dilution in intestinal fluid. Compared to short or medium chain fatty acids which are 

soluble in the aqueous phase in either ionized or unionized forms, protonated long chain 

fatty acids are unable to dissociate from the oil droplets and stay at the o/w interface 

under the acidic conditions of the stomach.  
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Figure 2.3  General process of lipid digestion in the GI tract (Yamagata, Kusuhara et al., 

2007) 

The majority of lipid digestion is carried out in the small intestine by pancreatic 

lipase/colipase. Other enzymes, such as carboxylic-ester hydrolase, may also be involved 

in the hydrolysis of lipids (Fernandez, Jannin et al., 2007; Fernandez, Rodier et al., 2008). 

The presence of lipids in the duodenum stimulates secretion of bile salts, biliary lipids 

and pancreatic lipase/colipase. Enzymatic hydrolysis of lipids occurs at the surface of the 

emulsified oil droplets followed by formation of mixed micelles with bile salt and biliary 

lipids (Khossravi, Kao et al., 2002; Seeballuck, Ashford et al., 2003). Normally, the 1, 3-

ester bonds on the glycerol backbone are hydrolyzed in two steps to release free fatty 

acids and monoglycerides (Scheme 2.3) (Mattson and Beck, 1955). The catalytic 

mechanism of pancreatic lipase is similar to that of serine proteases in which the active 

site is comprised of a serine, histidine and an acidic amino acid as a catalytic triad (Figure 

2.4) (Garrigues, Segura-Bono et al., 1994). In the presence of an o/w interface, the 

enzyme is activated by interfacial binding, resulting in its full catalytic activity. Crystal 

structure studies suggest that interfacial binding triggers a conformation change and 
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movement of a lid domain and some surface loops allowing the substrate access to the 

active site (Winkler, D'Arcy et al., 1990). The conformation change of the lid domain and 

the β-5 loop changes the environment of the catalytic triad dramatically. In the open, 

conformation serine is more accessible to solvent and orients to the bottom of a 

hydrophobic pocket where it binds the lipid substrate. In addition to the active site, a 

second binding site is required for the lipase to bind on the o/w interface. However, the 

pancreatic lipase is easily replaced by bile salts either by solubilization by bile salt 

micelles, or by competition for the interface (Patton, Albertsson et al., 1978). A cofactor, 

colipase, is needed to facilitate the binding of lipase on the surface. For colipase, an 

interfacial recognition site and a pancreatic lipase binding site are required for activity. It 

has been shown that the binding of colipase to lipase is independent on ionic strength and 

inhibited by bile salt at concentrations in excess of the CMC (Patton, Albertsson et al., 

1978). The neutron crystal structure suggests that micelles help to stabilize the open 

conformation of the lipase-colipase complex prior to binding to the o/w interface 

(Hermoso, Pignol et al., 1997). Micelles with radii of gyration between 13 and 36 Å are 

able to bind to the lipase-colipase whereas smaller micelles or monomer cannot stabilize 

the complex for activation of the enzyme. Recently, Freie et al. suggested that bile salt 

micelles impact the binding of lipase-colipase by interaction with the β-5 loop (Freie, 

Ferrato et al., 2006).  
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Figure 2.4 The mechanism of hydrolysis of triglyceride by a catalytic triad including 

serine, histine and an acidic amino acid 

In the 1960s, Hofmann and Borgstrom concluded that there are two phases present during 

lipid digestion. One phase, rich in triglyceride and diglyceride, is called the oily phase. 

The other phase, called the aqueous micellar phase, contains bile salt and lipolytic 

products such as monoglycerides and fatty acids (Hofmann and Borgström, 1962; 

Hofmann and Borgström, 1964). However, their model could not explain the turbid 

appearance of the aqueous phase since the micelle solution should be optically clear and 

free of light-scattering particles. Using light microscopy, Patton and Carey identified a 

 

CH2

O
O H N N H

O
CH2

CO H

O

O

O

O

O

 

His-263  

Remaining chain 

Lipid surface 

 



22 
 

viscous, gel-like, birefringent phase layered between the oily and aqueous micellar 

phases (Patton, Vetter et al., 1985).  This liquid crystalline phase can be solubilized in the 

presence of unsaturated bile salt micelles. Lipolytic products, such as monoglycerides 

and fatty acid, localize at the oil surface forming a local liquid crystalline phase. 

Spontaneously, the liquid crystalline phase erodes into the aqueous phase to form 

multilamellar vesicles, unilamellar vesicles and mixed micelles containing  bile salts and 

phospholipids (Scheme 2.4). Formation of bile salt mixed micelles facilitates the uptake 

of lipoytic products, such as fatty acid, in the GI tract (Westergaard and Dietschy, 1976). 

The rate of uptake of fatty acid is dependent upon the physicochemical properties of the 

fatty acid and the concentration of bile salts. At a constant concentration of bile salts, the 

rate of fatty acid uptake is a linear function of the concentration of fatty acid in the bulk 

phase (Westergaard and Dietschy, 1976). Increasing the concentration of bile salts 

increases the rate of uptake of fatty acids (Clark, Lanz et al., 1969). 

 

Scheme 2.4 Lipid aggregates formed during digestion of lipids in the GI tract 

Cryogenic transmission electron microscopy and small angle x-ray scattering 

measurements have revealed the entire sequence of the phase transitions during in vitro 

lipolysis of LBDDSs (Fatouros, Deen et al., 2007; Fatouros, Bergenstahl et al., 2007). 

The results were consistent with a previously proposed model in which micelles co-exist 

with multilamellar and unilamellar vesicles (Rigler, Honkanen et al., 1986). Typically, 

the ex vivo mean hydrodynamic radii of micelles are less than 40 Å whereas the 

unilamellar vesicles are in the range of 20-60 nm, as determined by quasielastic light 
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scattering (Staggers, Hernell et al., 1990).  About 10 nm micelles were also observed 

during lipolysis. Transformation of oil droplets to spherical or elongated unilamellar 

vesicles was visualized by the combined use of cyro-TEM, small angle x-ray and in vitro 

dynamic lipolysis (Fatouros, Bergenstahl et al., 2007).  

2.4.2. Evaluation of effect of lipolysis on LBDDSs and drug solubilization 
The availability of a drug in the solubilized state during transit in the GI tract depends 

upon the rate and extent of the drug released from the formulation and upon the solubility 

of the drug in the GI fluids. Evaluation of the performance of LBDDSs must take into 

account formulation dispersibility and digestibility, as well as the kinetics of drug transfer 

between the digested formulation and the aqueous solution. The LBDDSs often must be 

emulsified by endogenous emulsifiers in the stomach and small intestine to form fine oil 

droplets to expedite the drug release. In addition to the triglycerides, ester-bond 

containing surfactants, such as Polysorbate 80, Cremophor RH40, Cremophor EL, 

Labrasol and Gelucire 44/14, can be hydrolyzed by gastric lipase in the stomach and 

pancreatic lipase in the small intestine (Fernandez, Jannin et al., 2007; Cuiné, McEvoy et 

al., 2008; Fernandez, Rodier et al., 2008; Fernandez, Chevrier et al., 2009). In principle, 

hydrolysis of these excipients can result in altered - either increased or decreased - 

solubilization power. Studies on solubilizing power of mixed micelles formed from 

hydrolysis products of LBDDS excipients have not been reported.  

When formulated in the liquid LBDDS, the drug will be released to the aqueous media by 

a partitioning process (Scheme 2.5). The availability of free drug in aqueous solution for 

oral absorption may be limited by the rate of drug release from micelles and emulsions of 

undigested LBDDSs as well as lipid aggregates of lipolytic products. When the drug is 

formulated as a solid LBDDS, dissolution of drug from solid particles may also serve as a 

rate-limiting step for releasing the drug into the aqueous solution.  
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Drug in solution Drug in aggregates of
lipolytic products

Drug in micelles
or emulsion
undigested LBDDS

Solid particles of drug precipitated
in gastric or intestinal media

 

Scheme 2.5 Schematic presentation of drug released from LBDDS 

In order to help formulators assess and predict the in vivo performance of oral LBDDSs, 

several in vitro tests have been developed. The dispersion/precipitation test is designed to 

assess the dispersibility of formulation, size distribution of formed lipid aggregates upon 

dilution of an LBDDS, and the solubilization of drug. The method has been accepted as 

important test for oral formulation screening and development (Vinod, 2005). For oral 

LBDDS formulation, the dispersion/precipitation of LBDDSs can be carried out in the 

USP dissolution methods with a basket (USP I) or a paddle (USP II).  The dispersibility 

can be evaluated visually. The size and distribution of lipid aggregates can be evaluated 

by laser light diffraction or photon correlation microscopy. The effect of dilution upon 

size distribution and solubilization capacity of formed lipid aggregates has been 

investigated employing this test (Ilardia-Arana, Kristensen et al., 2006; Cuiné, McEvoy et 

al., 2008). The rate and extent of drug precipitation can be determined by measuring total 

amount of the drug remaining in solution as a function of time. By measuring the drug 

concentration in the solution during dispersion for different LBDDS formulations, 

Mohsin et al. suggested that the use of hydrophilic formulations for delivery of lipophilic 

drugs may result in a greater extent of drug precipitation in the stomach (Mohsin, Long et 

al., 2009). A correlation between drug in vivo precipitation and oral bioavailability has 

been observed (Dai, Dong et al., 2007; Dai, 2010).  

Drug release test is designed to determine the rate of drug release from formulation in the 

simulated physiological environment of the GI tract. In drug release test, only the free 

drug concentration in the aqueous solution is determined. When poorly water-soluble 

drug is formulated in the LBDDS, the test is complicated by the fact that the free drug 

must be separated from that associated with lipid aggregates prior to the determination of 

free drug concentration. A variety of methods are used to measure the in vitro drug 
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release from lipid aggregates, such as membrane diffusion techniques, in situ methods, 

and continual flow methods  (Washington, 1990; Abdel-Mottaleb and Lamprecht, 2011).  

The in vitro lipolysis test is designed to probe the extent of drug precipitation under 

intestinal conditions. The test simulates the intestinal conditions by adding pancreatic 

lipase into biorelevant media. The in vitro digestion test takes into consideration the 

hydrolysis of lipid exicipients and formation of lipolytic products in the GI tract. Either 

total drug concentration or free drug concentration in solution is determined as a function 

of time. As stated previously, lipolysis results in the loss of some lipoidal excipients in 

LBDDSs and, simultaneously, the generation of new lipid aggregates. The effect of 

lipolysis on the nature of lipid aggregates in solution is time-dependent.  Consequently, 

the ability to solubilze poorly water-soluble drug can be expected to be time-dependent as 

well. The close similarity to physiologic conditions in the GI tract makes the in vitro 

lipolysis test more suitable for the in vitro-in vivo correlation (Reymond and Sucker, 

1988; MacGregor, Embleton et al., 1997; Christensen, Schultz et al., 2004; Porter, 

Kaukonen et al., 2004; Dahan and Hoffman, 2006; Dahan and Hoffman, 2008). 

2.5. Unanswered questions  
Among proposed physicochemical means by which LBDDSs enhance absorption, the 

primary mechanism is the solubilization of a poorly water-soluble drug in the GI tract. 

When the free drug concentration is limited due to the low aqueous solubility, a 

supersaturated solution created and maintained by the LBDDS is proposed to increase 

absorption. However, little is known about capability of lipoidal compositions in 

LBDDS formulations to create and maintain drug in a supersaturated state in simulated 

GI conditions. From a solubilization standpoint, evaluating the ability of a LBDDS, 

along with each component, to maintain a poorly water-soluble drug in a supersaturated 

state will provide useful information for understanding the mechanism by which 

digestible surfactants and lipids modulate the oral absorption of poorly water-soluble 

drugs in the GI tract.  

Lastly, studies in the literature were limited to apparent solubilization in the formed 

lipid aggregates, but little information is available on the molecular details of 

solubilization in terms of drug-aggregate interactions and lipid-lipid interactions in 
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aggregates. From a dynamic perspective, the effect of alteration of composition in 

solution on drug solubilization during lipolysis is not fully understood.   

2.6. Summary 
LBDDSs are an effective approach to enhance oral bioavailability of poorly-water 

soluble drugs. There is a clear need for a mechanistic understanding of the absorption 

potential of poorly-water soluble drugs by LBDDSs. A systematic approach to 

understanding the time-dependency of drug solublization on lipolysis would be a first 

step in developing a mechanistic approach to formulation of poorly water-soluble drugs. 

By probing the physicochemical mechanism of LBDDS-associated solubilization of 

poorly-water soluble drugs in the GI tract a better understanding of interactions between 

poorly-water soluble drugs and digestible excipients under conditions in the GI tract will 

emerge. The results of these studies will aid formulators in choosing the optimal 

LBDDSs to improve oral absorption of poorly water-soluble drugs.  
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Chapter 3 

Characterization and Validation of a Dynamic In Vitro Lipolysis Model 

 

3.1. Summary 
The dynamic in vitro lipolysis model mimics in vivo physiology by adding digestive 

enzyme (pancreatic lipase) to a simulated digestion buffer. The model is widely applied 

to evaluate lipid-based drug delivery system (LBDDS) performance in vitro. However, a 

standard protocol for the use of this model system has not yet been established. Different 

specifications have been defined by different research groups. The objectives of this 

chapter are to characterize this model with respect to enzyme preparation, sensitivity of 

potential substrates to lipolysis and the effect of solution conditions. The results from 

different batches of enzyme stored under a variety of conditions before addition to 

simulated digestion buffer showed that enzyme stored on ice until use preserved the 

highest activity while enzyme incubated at 37°C for 15 min showed the least activity. By 

using the enzyme preparation stored on ice, the extent of lipolysis was assessed for 

different substrates including Cremophor RH40 (CrRH40), Cremophor EL (CrEL), 

vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS), Polysorbate 80 

(PS80) and  a complex LBDDS (F1) composed of 37.5% soybean oil, 55% CrRH40 and 

7.5% ethanol. All substrates contain ester bonds which can be potentially hydrolyzed by 

pancreatic lipase. Except for TPGS, surfactants CrRH40, CrEL and PS80 could be 

hydrolyzed by the crude porcine pancreatic lipase in the presence and absence of bile 

salt/PC. In the absence of PC in buffer, the extent of F1 lipolysis was similar to that in the 

buffer containing only sodium cholate (NaC).  Lipolysis of F1 was inhibited in the 

presence of PC at low concentration. Different extents of lipolysis were observed in 

buffers in the presence and the absence of bile salt, phospholipids and calcium. Generally, 

in the presence of calcium, the initial rate of lipolysis of either PC or surfactant excipients 

was faster compared to that observed in the absence of calcium. The rate of lipolysis 

tended to decrease with time as did the calcium concentration in solution.  Differential 
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scanning calorimetry (DSC) and elemental analysis showed that calcium precipitated as a 

fatty acid salt.  

3.2. Introduction 
Combinatorial chemistry and high-throughput screening have increased the number of 

poorly-water soluble drug candidates such that more than 40% of new active compounds 

are lipophilic and poorly-water soluble resulting in poor bioavailability (Prentis, 1988; 

Lipinski, Lombardo et al., 2001). As a result, a great challenge to formulations is to 

enhance the oral bioavailability of poorly-water soluble drugs. There are a number of 

formulation strategies that could be used to improve the bioavailability of poorly-water 

soluble drugs with high lipophilicity, such as increasing the dissolution rate, presenting 

the drug in solution or by maintaining the drug in solution through the GI tract. The use 

of a LBDDS is one popular approach to enhance oral bioavailability (Hauss, Fogal et al., 

1998; Porter, Trevaskis et al., 2007; Porter, Pouton et al., 2008).  

The lipid excipients in LBDDSs are suceptible to hydrolyzsis by digestive enzymes in the 

stomach and small intestine (Porter, Trevaskis et al., 2007). Enzymatic hydrolysis of lipid 

occurs at the surface of the emulsified oil droplets in the small intestine. The emulsified 

oil droplets are coated by phospholipid, bile salts, and lipolytic products including di- and 

monoglycerides and fatty acids. The state and composition of the surface would affect the 

characteristics of the oil droplet, thereby modulating the lipase activity (Hwang, Tamm et 

al., 1995; Peters, Toxvaerd et al., 1995; Lipp, Lee et al., 1996). The effects of formulation 

surfactants in LBDDSs on the activity of an enzyme may be either inhibitory or 

accelerative depending on the binding location. Activation of enzyme could be triggered 

by the binding of surfactant analogues of endogenous substrates (Egloff, Marguet et al., 

1995; Hermoso, Pignol et al., 1996). If exogenous surfactant binds to the active site, 

lipolysis will be inhibited. On the contrary, lipolysis will be enhanced if the active site is 

still available. The mechanism of fatty acid effects on lipolysis is not clear. However, the 

common findings are that fatty acids, especially dodecanoic (C12:0), oleic (C18:1) and 

linoleic (C18:2) acids, can stimulate the activity of lipase-colipase (Borgstrom, Erlanson-

Albertsson et al., 1979). Some evidence suggests that the enhancement of activity by fatty 

acids may originate from promotion of lipase adsorption onto colipase, which is 

influenced by the molar ratio of colipase to fatty acid. The hypothesis is that the fatty acid 
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is concentrated laterally around colipase facilitating the adsorption of lipase in the lid 

opened conformation (Dahim and Brockman, 1998). The effects are also related to fatty 

acid chain unsaturation. Moreover, the inhibition induced by phosphatidylcholine can be 

reversed by fatty acids.  

Due to all of the above factors, the state of oral LBDDSs in the GI tract is a dynamic 

process in which digestible excipients are susceptible to digestion and the phases are 

changing as a function of time. Consequently, drug solubilization and distribution may 

also change as a function of time in vivo. As a result of these factors, there is a need in the 

formulation design for a method to predict and correlate the in vitro data to the 

performance of LBDDSs in vivo. Toward this goal various in vitro approaches, such as 

dissolution, particle sizing and lipolysis of formulations in relevant media, have been 

proposed (Dressman and Reppas, 2000; Porter, Kaukonen et al., 2004; Kalantzi, Goumas 

et al., 2006). A dynamic in vitro lipolysis model has been developed over the past few 

years. Biorelevant dissolution tests were proven to be  suitable models for poorly-water 

soluble drug release from LBDDSs by using digestion buffers to simulate the fasted and 

fed states in the GI tract (Pedersen, Brøndsted et al., 2000). In principal, the dynamic in 

vitro lipolysis model mimics the in vivo physiology by including digestive enzymes in the 

buffer and titrating the released fatty acid from ester-containing lipoidal components.  

Zangenberg et al. characterized and evaluated the dynamic in vitro lipolysis model by 

analyzing the composition of the aqueous phase, including the concentration of model 

drug (Zangenberg, Müllertz et al., 2001). The analysis showed that the concentration of 

lipolytic products was dependent upon the concentration of bile salt. Drug concentrations 

in the aqueous phase were dependent upon lipophilicity. The authors also evaluated a 

model in which Ca2+ was added continuously at a controlled rate while two other 

parameters - bile salt concentration and lipase activity – were varied. Their studies 

indicated that all three parameters influenced the initial rate of lipolysis. However, only 

the Ca2+ concentration and lipase activity had effects on the subsequent stages. Moreover, 

it was shown that the rate of lipolysis can be controlled by the rate of addition of Ca2+. By 

using the dynamic in vitro lipolysis model, Sek et al. showed that the rate and extent of 

lipolysis of medium chain triglycerides were greater than long chain triglycerides (Sek, 

Porter et al., 2002). The kinetics of lipolysis was independent of the bile salt 
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concentration. Furthermore, it was found that the presence of the drug reduced the initial 

rate of lipolysis (Christensen, Schultz et al., 2004; Ljusberg-Wahren, Seier Nielsen et al., 

2005). Dahan et al. highlighted the usefulness of the dynamic in vitro lipolysis model in 

the optimizing of oral LBDDSs in the case of presystemic metabolism in the GI tract 

(Dahan and Hoffman, 2006). This model has also been applied successfully in a number 

of studies correlating oral bioavailability with solubilization behavior of drug in the lipid 

assemblies formed during lipolysis in the GI tract (Christensen, Schultz et al., 2004; 

Grove, Pedersen et al., 2005; Goddeeris, Coacci et al., 2007).  

Despite the wide acceptance of the lipolysis model, a standard experimental protocol is 

not yet established. To accommodate the study purposes, different specifications are 

defined by different research groups.  The first aim of this chapter was to characterize and 

evaluate the dynamic in vitro model in terms of enzyme activity, sensitivity of 

formulation components to hydrolysis and solution factors influencing the extent of 

lipolysis by measuring the production released fatty acids.  The second aim of this 

chapter was to establish a reproducible model for the hydrolysis of surfactant to support 

later studies on dynamic solubilization of poor-water soluble drugs during the lipolysis of 

a model LBDDS. A relatively simple ester-containing surfactant-only LBDDS and a 

complex LBDDS containing oil and surfactant were chosen as substrates. Selected ester-

containing surfactant excipients included Cremophor RH40 (CrRH40), Cremophor EL 

(CrEL), Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) and PS80 

(PS80). In addition, a complex LBDDS (F1) composed of 37.5% soybean oil, 55% 

CrRH40 and 7.5% ethanol was employed. The chemical structures of selected substrates 

are shown in Figure 3.1. The extent of lipolysis for each substrate under various 

conditions was monitored by the production of fatty acids.  
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Figure 3.1 Structures of selected substrates 

3.3. Material and methods 
3.3.1. Materials 

Polysorbate 80 (Tween80, PS80) was a generous gift from Croda Inc. (Edison, NJ, 

USA). Cremophor RH40 (CrRH40) and Cremophor ELP (CrEL) were purchased from 

BASF (Germany). Vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) 

was purchased from Eastman Chemical Company (Kingsport, TN, USA). Soybean oil, 

1,2-diacyl-sn-glycero-3-phosphocholine (type XVI-E) from egg yolk (PC),  
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4-bromophenylboric acid, Trisma® maleate, calcium chloride hydrate (purity ≥99%), 

sodium cholate hydrate (NaC) (purity ≥99%), sodium taurocholate hydrate (NaTC) 

(purity ≥ 95%) and lipase (Type II, crude from porcine pancrease) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). NaOH (0.1 M) was purchased from Fisher 

Scientific (Pittsburgh, PA, USA). All chemicals were used as received.  Water for buffer 

solution was from a Milli-Q water purification system. Hydrophilic PTFE filters (13 mm, 

0.2 µm pore size) were purchased from Advantec MFS, Inc. (Japan).  

3.3.2. Preparation of tris maleate buffer solution 
To make 1 L of 50 mM buffer solution with an ionic strength of 0.15 M, 11.86 g of tris 

maleate and 8.766 g of NaCl were dissolved in 900 mL Milli-Q water. The pH was 

adjusted to 7.8 by 1 M NaOH at room temperature (∼25°C) and then the volume was 

increased to 1 L by the addition of Milli-Q water. The pH of this buffer will be 7.5 at 

37°C (pH is checked at 37°C). In selected conditions, CaCl2 (5 mM) was included when 

the effect of Ca2+ was evaluated.  

3.3.3. Preparation of simulated digestion buffer 
Simulated digestion buffer contained bile salt (BS) and PC at a fixed molar ratio of 4:1 in 

tris maleate buffer (pH 7.5 at 37°C). The BS/PC (5 mM/1.25 mM) represented the fasted-

state condition and 20 mM BS/5 mM PC mimicked the fed-state condition in the GI tract 

(Schersten, 1973). PC was dissolved in chloroform/methanol (2:1) followed by solvent 

evaporation by nitrogen with rotation to form a thin film of PC on the wall of the flask. 

The thin film was dried for two days under vacuum at room temperature. To prepare the 

simulated fasted-state digestion buffer (SIFs buffer), a known volume of 5  mM BS 

solution in tris maleate buffer was added to the above flask and the suspension was 

stirred overnight at room temperature until clear. To prepare simulated fed-state digestion 

buffer, a known volume of 20 mM BS solution in tris maleate buffer was added and the 

suspension was stirred overnight at room temperature until clear.  The pH was checked 

and adjusted as necessary.  

3.3.4. Preparation of enzyme solution 
The enzyme solution was prepared on the day of use. Unless stated otherwise, the 

enzyme solution was prepared by adding 1 g of crude porcine pancreatic lipase to 5 mL 
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of tris maleate buffer (pH 7.5). The suspension was stirred for 15 min and subsequently 

centrifuged by Jouan CR412 centrifuge (Jouan, Inc., Winchester, Virginia, USA) for 20 

min at 5000 rpm at room temperature. Supernatant was stored on ice until used. The 

process was followed strictly in order to reduce the variation of enzyme activity. 

3.3.5. Preparation of formulations 
Two types of LBDDS were employed. Simple LBDDS were composed of only ester-

containing surfactant excipient. A more complex LBDDS composed of 55% w/w of 

Cremphore RH40, 37.5% w/w of soybean oil and 7.5% w/w of ethanol was also 

examined. The exact amount of each of component was weighed to a 20 mL glass 

scintillation vial and the mixture was rotated for three days at room temperature. 

Formulations were stored at room temperature.  

3.3.6. Determination of calcium content 
3.3.6.1. Concentration of Ca2+ in the solution during the in vitro lipolysis 
Quantitative analysis of calcium concentration in samples obtained during in vitro 

lipolysis of PS80 was conducted by inductively coupled plasma emission spectroscopy 

(ICP) (Varian, Vista-pro CCD simultaneous ICP-OES). In vitro lipolysis experiment was 

performed as described in Section 3.3.8. Aliquots taken during in vitro lipolysis were 

filtered through 0.2 µm PTFE membranes, and 0.8 mL of filtrate was added to the same 

volume of nitric acid. All samples were heated at 80°C to make sure components were 

digested completely. Fully digested samples were diluted with Milli-Q water to make a 

total volume of 5 mL. A standard curve was constructed by using eight standard calcium 

solutions in the concentration range 0.05 ppm to 250 ppm. Calcium emission 

wavelengths of 318.127 nm and 422.673 nm were employed. 

3.3.6.2. Composition of calcium precipitation  
Precipitate formed during the in vitro lipolysis of PS80 was collected by filtration and 

dried under vacuum. Solid material was characterized by differential scanning 

calorimetry (DSC) (TA instruments 2920 modulated DSC, USA) and elemental analysis. 

A vacuum-dried sample weighing 1.876 mg was sealed in aluminum DSC pans. Initially, 

the sample was cooled to -15°C at 20°C/min then heated to 350°C at 5°C/min. The 

sample was then cooled to room temperature. The same batch of the sample for DSC was 
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also analyzed by elemental analysis by Atlantic Microlab, Inc., giving average C 

(68.74%), H (10.90%), and O (11.49%) from two replicates. Theoretical values of C, H, 

and O in Ca2+ salt are 68.88%, 10.73%, and 11.21%, respectively.  

3.3.7. Qualitative determination of phospatidylcholine during the lipolysis of SIFs 
The phospatidylcholine in the SIFs during the lipolysis was determined qualitatively by 

thin layer chromatography (TLC). In vitro lipolysis experiment was performed as 

described in the Section 3.3.8. Aliquots (2 mL) were taken at 5, 15, 30 and 60 min during 

in vitro lipolysis of SIFs. Extraction of lipids was carried out by addition of equal volume 

of chloroform/methanol (v/v 2/1) to 2 mL aliquots taken at each time. Extraction was 

repeated three times for each lipolysis sample and organic phases were combined. After 

evaporation of the organic phase, the residue was dissolved in a minimum volume of 

chloroform/methanol (v/v 2/1). The solution of extract was applied on a silicia gel 60 thin 

layer chromatography plates and developed in chloroform/methanol/acetic acid/water 

(50/60/6/0.6 v/v). The spots were identified by staining with iodine vapor (Andersson, 

Sternby et al., 1994). The appearance of phospatidylcholine was monitored as a function 

of time.  

3.3.8. Setup of pH-stat titration system  
The components of pH-stat titration system are shown in Figure 3.2. The system includes 

an autoburette, a pH electrode and a temperature control electrode. Autoburette was 

connected to a pH electrode and continuously titrated the released fatty acid and 

maintained pH at 7.5 with sodium hydroxide. Since the stoichiometric reaction ratio 

between the released fatty acid and sodium hydroxide is 1:1, the extent of lipolysis can be 

followed by the profile of concentration of sodium hydroxide versus time.   

The pH-stat was controlled by a Model 842 Titrando system (Merohem Ltd, Switzerland) 

with control program version 4.1 which included a model 807 dosing unit with a burette 

volume of 10 mL and a pH electrode. The temperature for all experiments was 37 ± 

0.5°C. The reaction glass bottle was immersed in a water bath, the temperature of which 

was controlled by Fisher scientific isotemp refrigerated circulator model 910 (Fisher 

Scientific, USA). Agitation was provided by 5 mm magetic stir bar at 500 rpm on a direct 

drive motor/magnetic system.  
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Figure 3.2 pH-stat titration system 

3.3.9. In vitro lipolysis 
The in vitro lipolysis was carried out in the simulated digestion buffers as prepared in 

Section 3.3.3. The pH of the reaction medium was fixed at 7.5. Experiments were 

performed by adding excess amount of substrate in relation to the enzyme activity so as 

to produce a maximum rate of lipolysis. Interfacial area of substrates and the amount and 

specific activity of lipase enzyme determines the lipolysis rate. As lipolysis proceeds, the 

rate of reaction is also influenced by the lipolytic products. To validate the instrument 

accuracy and precision, measurements were carried out on different days and/or with 

different enzyme batches. Due to possible differences in enzyme activities, the extent of 

lipolysis may vary even though all other parameters remain constant.  

The pH-stat was set to maintain pH constant at 7.5 and was started ∼1 min before the 

lipase solution was added (0.5-2 mL) to the buffer solution containing the well dispersed 

LBDDS. The lipolysis was monitored for 30-120 min period depending on the substrate 

and extent of lipolysis.  The extent of lipolysis was expressed as µmol of titrated fatty 

acid in 25 mL of buffer solution unless stated otherwise. The amount of fatty acid was 

pH electrode 

autoburette 

37°C 
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calculated based on 1:1 stoichiometric reaction ratio between the released fatty acid and 

0.1 M sodium hydroxide. 

3.4. Results and discussion 
3.4.1. Enzyme preparation: effect of volume and storage conditions 
Assuming there is no inhibition by products or intermediates and no cooperativity, the 

enzymatic reaction follows Michaelis-Menten kinetics which relates the initial reaction 

rate and substrate concentration by Eq. 3.1  

v0 =
vmax [S]
Km + [S]                             (3.1) 

where v0 and vmax are the initial and maximum reaction rates; [S] is the concentration of 

substrate; Km is Michaelis constant. When the substrate concentration is much higher 

than Km, the reaction rate is independent of the substrate concentration.  All experiments 

were designed such that the amount of lipase enzyme and its specific activity determined 

the lipolysis rate.  

To verify that the substrates were in excess, known volumes of enzyme preparation were 

added to tris maleate buffer solution composed of 5 mM of NaC and the 0.48 grams of 

CrRH40.  Figure 3.3 shows the amount of titratable fatty acid formed as a function of 

time over 30 min. One half milliliter of enzyme preparation resulted in the least release of 

fatty acid while 2 mL of enzyme preparation showed the highest extent of lipolysis. The 

initial rate was calculated from the initial slope of curve (within 5 min) in Figure 3.3. The 

initial rate of lipolysis increased with increasing amount of lipase enzyme, indicating that 

the amount of lipase enzyme and its specific activity were rate limiting under all 

conditions. However, the reaction rate after 5 min may not reflect solely the amount and 

activity of lipase enzyme because the accumulation of lipolytic products on the enzyme 

may retard the reaction. The theoretical amount of fatty acid is 355 µmol from 0.48 g 

CrRH40.  According to the amount of titratible fatty acid in Figure 3.3, 0.48 g of CrRH40 

was not hydrolyzed completely in 30 min. Moreover, the rate of lipolysis slowed down 

and approached a plateau in 30 min of the addition of enzyme preparation. We also tested 

lower amount of enzyme (0.25 ml0 but were unable to be obtain a stable signal.  
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Figure 3.3 Amount of fatty acid released in the lipolysis of CrRH40 by adding   0.5 mL 

(diamond), 1 mL (triangle) and 2 mL (star) of enzyme preparation. Enzyme solution was 

stored on ice until use. Condition: NaC solution (5 mM, 25 mL), CrRH40 (0.48 g, 0.18 

mmol) at 37 °C. 

Standard preparation and storage conditions for lipase enzyme have not been addressed in 

the literature. The supplier of the crude lipase from porcine pancreas (Type II) indicated 

that the product exhibits both the amylase and the protease activity. It is possible that the 

protease would have an impact on the lipase enzyme activity. Experiments were carried 

out to evaluate the effect of temperature on the activity of the enzyme preparation. Once 

prepared, the enzyme preparation was stored on ice (0°C), at room temperature (∼25°C) 

or at 37°C for 15 min.  Following storage, the extent of lipolysis of 0.48 g CrRH40 was 

determined as described in Section 3.3.8. The results showed that enzyme activity was 

unchanged when the enzyme preparations were stored at 0°C and room temperature 

(Figure 3.4). However, incubation at 37°C reduced the enzyme activity resulting in 

significantly less titratable fatty acid generated during the in vitro lipolysis. Probably, 

incubation at 37°C provided an optimal condition for protease activity as well. Thus, the 

storage condition chosen was 0°C.  
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Figure 3.4. Amount of fatty acid released in the lipolysis of CrRH40 hydrolyzed by 

enzyme solution stored at room temperature (square), on the ice (triangle), and incubated 

at 37°C before addition to the solution (cross). Condition: NaC solution (5 mM, 25 mL), 

CrRH40 (∼0.48 g, 0.18 mmol) and enzyme preparation (1 mL) at 37°C.  

3.4.2. Sensitivity of the model 
3.4.2.1. Lipolysis of components in simulated fasted state intestinal fluid 
The dynamic in vitro model mimics the in vivo physiology by adding the enzyme to 

simulated digestion buffer (SIF). Simulated digestion buffer consists of bile salt (BS) and 

phospholipid (PC) at fixed molar ratio of 4 to 1; 5 mM of BS/1.25 mM of PC 

representing the fasted state and 20 mM of BS/5 mM of PC representing the fed state. 

Type XVI-E 1,2-diacyl-sn-glycero-3-phosphocholine from egg yolk was chosen to 

represent the phospholipids in the GI tract. As seen in Figure 3.5, phosphatidylcholine 

contains a glycerol backbone and two ester fatty acid chain linkages suggesting that it 

may be subject to hydrolysis by lipase enzyme. Boucrot et al. had shown that 

phosphatidylcholines in bile are not hydrolyzed in the intestinal lumen while dairy 

phospholipids can be hydrolyzed by phospholipase (Boucrot, 1972). The lipolysis of 

phosphatidylcholine by crude pancreatic lipase has been observed by others (Kossena, 

Boyd et al., 2003).  
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The lipolysis of SIF was carried out fwith a freshly prepared batch of enzyme on three 

different days. Lipolysis profiles are shown in Figure 3.6a. A control solution, containing 

only 5 mM BS (no PC), was also subject to the lipolysis assay. The results, shown in 

Figure 3.6a, indicated that only a small amount of NaOH titrant was added to the 5 mM 

BS solution (5.7 µmol/25 mL total at 30 min) and only in the first 5 min. There is no 

functional group susceptible to pancreatic lipase on NaC and so the small change of pH 

resulted from the addition of enzyme preparation, probably due to temperature 

dependence of ionization of maleate and protein.   

Theoretically, 1.25 mM of PC in 25 mL solution would be able to generate 31.25 µmol of 

fatty acid upon hydrolysis of one ester bond. Considering the amount of NaOH consumed 

by the addition of enzyme preparation stored at 0°C and the amount of PC present in SIF, 

the total amount of NaOH consumed would be expected to be about 37 µmol.   The data 

presented in Figure 3.6a indicate that about 35-38 mmols of NaOH was consumed, 

suggesting that only one of the fatty acid chains was cleaved from PC under the 

conditions employed.  Samples of the reaction mixture were taken at 5, 15, and 30 min 

and subjected to TLC analysis. The TLC results show that no PC was found in the 

reaction mixture by 30 minutes, supporting the conclusions of the lipolysis experiment.  

The TLC analysis was not capable of detecting fatty acid or lysoPC, the two putative 

degradation products of PC.  The variation on the amount of titratable fatty acid in three 

replicates was less than 10% which was judged to be acceptable. The enlarged figure 

showing the initial 10 min (Figure 3.6b) of reaction indicated a good reproducibility of 

lipolysis measured by the dynamic in vitro lipolysis model. 
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Figure 3.5 The structure of 1,2-diacyl-sn-glycero-3-phosphocholine 
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Figure 3.6a. Total amount of NaOH consumed during the lipolysis of 25 mL of SIF, with 

and without PC at 37°C.  Profiles were recorded from three batches of enzyme prepared 

on separate three days (square, cross and circle). Triangle represents the amount of NaOH 

titrated in the tris maleate buffer containing 5 mM of NaC (no PC) after addition of the 

enzyme preparation (pH 7.8 at 0°C) at 37°C. 

 

Figure 3.6b Amount of fatty acid released in the lipolysis of 25 mL of simulated fasted 

digestion buffer composed of 5 mM of NaC /1.25 mM of PC at 37°C. Profiles were 

recorded from three batches of enzyme preparation prepared on day 1 (square), day 2 

(cross) and day 3 (circle) (enlarged for the first 10 min from Figure 3.6a). 
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3.4.2.2. Lipolysis of selected ester-containing surfactants  
In this section, the ability of lipase enzyme to hydrolyze selected ester-containing 

surfactants was examined in SIF buffer. In all experiments, the extent of lipolysis was 

expressed relative to the total amount of fatty acid available from all sources - surfactant, 

oil and PC.  

The extents of lipolysis of CrRH40, CrEL, and PS80 were recorded up to 120 min. The 

lipolysis of TPGS was monitored for 30 min, after which time the reaction reached a 

plateau indicating the lipolysis was stopped. The theoretical yield of fatty acid was 

calculated from the average molecular weight of surfactant and indicated weight of 

surfactant. By subtraction of amount of titrated NaOH from control (no surfactant), the 

maximum released fatty acid from surfactant can be obtained at 2 h. As shown in Table 

3.1, in all the cases, the lipolysis did not result in 100% of the theoretical value. TPGS 

showed the least extent of lipolysis; the reaction reached maximum at about 30 min. 

PS80 hydrolysis reached a plateau at 120 min. Hydrolysis of CrEL was more extensive 

than that of RH40 (Figure 3.7). Given the same amount of enzyme preparation, observed 

different extent lipolysis of surfactants may reflect either the accessibility of enzyme to 

the ester bond of surfactants or the inhibition of surfactant or lipolytic products on the 

activity of lipase enzyme. The rank order of extent of lipolysis of surfactants agreed with 

that reported in the literature (Cuiné, McEvoy et al., 2008). These results indicated that 

the dynamic in vitro lipolysis model, under the conditions employed, is sensitive to the 

selected surfactants.    
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Table 3.1 Amount of weighed selected surfactants, molecular weight and theoretical fatty 

acid released from selected surfactants 

 

     Cr EL CrRH40     TPGS   PS 80 

Weight(g) 0.172 0.166 0.252 0.249 

M.W(D) 2473 2699 1513 1310 

Theoretical FA(µmoL)  139 123 167 190 

Maximum release from 

surfactant 

observed(µmol) at 2 h 126 27 12.5 100 

 

 

 
Figure 3.7 Amount of fatty acid released in the lipolysis of CrRH40, CrEL, TPGS and 

PS80 solution in SIF buffer. Condition: SIF buffer (25 mL, 5 mM of NaC/1.25 mM of PC) 

and enzyme preparation (1 mL) at 37°C. 

3.4.2.3. Lipolysis of a complex LBDDS containing oil and surfactant  
To further test the sensitivity of the dynamic model to a complex system, an LBDDS 

containing soybean oil and CrRH40 (F1) was examined. The extents of lipolysis of SIF 
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buffer as well as CrRH40 and F1 in SIF buffer were followed for less than 60 min 

(Figure 3.8). In the first 5 min, the initial rates of lipolysis of PC in SIF buffer and 

CrRH40 in the absence of oil were identical. However, lipolysis of F1 showed a 

significant slower initial rate than CrRH40. Furthermore, the extent of lipolysis of F1 was 

less than CrRH40 even though the theoretical amount of fatty acid from F1 is greater than 

CrRH40 alone. The results suggested that the presence of soybean oil inhibited or slowed 

down the lipolysis. With respect of morphology, dispersion of CrRH40 resulted in a 

micellar solution while dispersion of F1 formed an emulsion. One possible explanation 

for the slower rate and lesser extent of hydrolysis of F1 compared to CrRH40 may be 

related to binding and accessibility of the enzyme to the emulsion versus micelle surfaces.  

As an alternative, the total accessible surface of CrRH40 micelles might be much greater 

than F1 emulsion droplets. 

 

Figure 3.8 Amount of fatty acid released during the lipolysis of  0.48 g (0.18 mmol) 

CrRH40, 0.8 g F1 composed of 55% of CrRH40, 37.5% of soybean oil and 7.5% of 

ethanol in SIFs buffer and 25 mL SIFs buffer as control at 37°C. 

Lipolysis of CrRH40 and F1 were also examined in simulated fed-state digestion media, 

containing 20 mM NaC/5 mM PC in trisma maleate buffer. The extents of lipolysis of 

surfactant and formulation were significantly greater than those in simulated fasted-state 

buffer (Figure 3.9).  Although the titration assay is not able to identify the source of  fatty 
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acid, the results in Figure 3.9 do indicate that the total amount fatty acid produced during 

the lipolysis of CrRH40 was not simply the sum of amounts fatty acid from PC and 

CrRH40. On the contrary, within the first 15 min, the amount of fatty acid released from 

PC was more than that released from CrRH40 in simulated fed-state digestion buffer. 

Nonetheless, the initial rate and extent of lipolysis of F1 were less than those of lipolysis 

of CrRH40. This is possibly due to the same reasons proposed in simulated fasted-state 

digestion buffer. The results do indicate that the dynamic in vitro lipolysis model is 

sensitive in both simulated fasted-state and fed-state conditions.  

 

Figure 3.9 Amount of fatty acid released in the lipolysis of 0.48 g CrRH40 only in 

simulated fed-state digestion buffer, 0.8 g F1 composed of 55% of CrRH40, 37.5% of 

soybean oil and 7.5% of ethanol in simulated fed-state digestion buffer and 25 mL 

simulated fed-state digestion buffer as control at 37°C. 

3.4.3. The effect of digestion media components on the extent of lipolysis 
The presence of lipids in the duodenum stimulates secretion of bile salts, biliary lipids 

and pancreatic lipase/colipase. Pancreatic lipase is an interfacial enzyme which 

preferentially acts at the surface of oil droplets or interface. The hydrolysis takes place at 

the surface of emulsified droplets or small aggregates in small intestine. It has been 

recognized that bile salts, phospholipids, fatty acid and Ca2+ can influence the lipolysis of 

triglycerides either by affecting the activity of enzyme or by affecting the adsorption of 
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enzyme on surface (Larsson and Erlanson-Albertsson, 1986; Alvarez and Stella, 1989; 

Wickham, Garrood et al., 1998; Wickham, Wilde et al., 2002). In this section, the effects 

of selected factors on the pH-titration method outlined in Section 3.3.7 will be examined.  

3.4.3.1. Bile salts 
Bile salts play a very important role in the GI tract to facilitate the digestion and 

absorption of lipids. The formation of mixed micelles of bile salts and phospholipids 

facilitates the solubilzation of lipolytic products and removes the lipolytic products from 

the surface of aggregates and assures the accessibility of enzyme to the surface of 

aggregates. It is believed that incorporation into the mixed micelle facilitates lipid and 

poorly-water soluble drug absorption by overcoming the resistance of unstirred water 

layer. There are a variety of bile salts secreted in the GI tract. For this study, sodium 

taurocholate and sodium cholate were chosen as representatives. The structures of two 

bile salts are shown in Figure 3.10. 

 Taurocholic acid has a pKa of 2; it is totally ionized at pH 7.5 (O'Máille and Richards, 

1977). The pKa of monomer cholic acid is ∼4-5. Ionized bile acid can form micelles. 

Upon the formation of micelles, the apparent pKa of cholic acid appears to rise to 6 

(Small, Cabral et al., 1984).The initial rate and extent of lipolysis of SIFs buffer 

containing either NaC or NaTC are comparable (Figure 3.6a and Figure 3.11). In 15 min, 

the lipolysis reached a plateau value and, by calculation, the PC was hydrolyzed 

completely.  However, the type of bile salts had a significant influence on the lipolysis of 

PS80. In the presence of NaC, the lipolysis reached a plateau in 120 min. In comparison, 

the presence of NaTC in SIF buffer the extent of lipolysis continued to rise past 120 

minutes (see Figure 3.12).  Possibly more, or larger, mixed micelles of lipolytic products 

were formed in the presence of NaTC. Consequently, the lipolytic products would 

remove more efficiently from the surface of PS80 aggregates. Despite the differences in 

rate and extent of lipolysis of PS80, cholic acid was chosen as the bile salt components of 

both simulated fasted-state and simulated fed-state digestion media.   
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Figure 3.10 The structure of bile acids. 

 

Figure 3.11 Amount of fatty acid released in the lipolysis of 25 mL of SIF composed of 

NaTC/PC (molar ratio 4:1) at 37°C. Each profile was recorded from a freshly-prepared 

enzyme solution. 

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30

Ti
tr

at
ab

 le
 fa

tt
y 

Ac
id

 (µ
m

ol
/2

5m
L)

 

Time (min.) 



47 
 

 
Figure 3.12 Representative total amount of fatty acid released in the lipolysis of PS80 in 

the SIF buffer composed of NaC/PC (cross) and composed of NaTC/PC (triangle) at 

37°C 

3.4.3.2. Simulated fasted-state and fed-state media digestion media 
Typically, the simulated fasted-state digestion media contains 5 mM of bile salt and 1.25 

mM of PC while 20 mM of bile salt and 4 mM of PC are included in the simulated fed-

sate digestion media. Thus, the effect of BS/PC concentration on the lipolysis of CrRH40 

and F1 was examined by the dynamic in vitro lipolysis model. As shown in Figure 3.13 

and Figure 3.14, generally, the high concentration of bile salt promoted lipolysis. The 

extent of the lipolysis of CrRH40 was greater in the presence of PC in both 5 mM NaC 

and 20 mM NaC solutions (CrRH40 w/PC and CrRH40 w/ PC in Figure 3.13 and Figure 

3.14). The relative high production of fatty acid in the simulated fed-state digestion 

media may simply reflect the lipolysis of CrRH40 and PC simultaneously. The amount of 

CrRH40 in F1 is comparable to the amount of CrRH40 used. The calculated content of 

fatty acid in F1 is greater than that of CrRH40 due to the possible hydrolysis of soybean 

oil. However, inclusion of soybean oil in the F1 appeared to inhibit the lipolysis in both 

the simulated fasted-state (F1 w/PC in Figure 3.13) and fed-state digestion media (F1 

w/PC in Figure 3.14). The slower rate and lesser extent of hydrolysis of F1 may result 

from the slower binding and accessibility of lipase enzyme to the surface of oil droplets 

than those to micellar interface.  
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In addition, at a low concentration of bile salt, the production of fatty acid from F1 was 

further inhibited by the presence of PC (F1 w/PC in Figure 3.13). On the other hand, such 

inhibition was not observed at high concentration of bile salt (Figure 3.14).  It is believed 

that phospholipids may decrease the binding of enzyme to the substrate resulting in the 

displacement of protein into bulk aqueous solution.  Some studies had indicated that the 

effect on lipolysis may also be mediated by colipase (Patton and Carey, 1981). It has 

been suggested that the colipase binds to the phospholipid-bile salts mixed micelle which 

is formed either on the surface of emulsified oil droplets or in the bulk aqueous solution. 

The activity would be increased if the complex is located at the o/w interface. One the 

other hand, the lipid digestion would be inhibited if the complex is in the bulk aqueous 

solution. As suggested by fluorescence microscopy, the phosphatidylcholine and colipase 

are miscible on the interface. The colipase may mediate the species distribution of 

substrate which may be exposed to the bound lipase (Momsen, Dahim et al., 1997).  In 

the crude of pancreatic lipase we used here, there is no indication by the manufacturer of 

the presence of colipase. Therefore, the inhibition of lipolysis of F1 in simulated fasted-

state digestion media could be due to altered accessibility/binding of enzyme to 

emulsified oil droplets. Any change the quality of the interface or enzyme inhibition may 

be reduced by the efficient removal of lipolytic products from emulsified oil droplets by 

mixed micelles of BS/PC.  
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Figure 3.13 Amount of fatty acid released in the lipolysis of 0.48 g CrRH40 and 0.8 g F1 

composed of 55% of CrRH40, 37.5% of soybean oil and 7.5% of ethanol in 5 mM of 

NaC solution in the presence and absence of 1.25  mM of PC at 37°C 

 

Figure 3.14 Amount of fatty acid released in the lipolysis of 0.48 g CrRH40 and 0.8 g F1 

composed of 55% of CrRH40, 37.5% of soybean oil and 7.5% of ethanol in 20 mM of 

NaC solution in the presence and absence of 5 mM of PC at 37°C 
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3.4.3.3. Calcium 
Calcium is present in the bile. Its role in the lipolysis has been proposed in some studies. 

Alvarez et al.  studied dependence of the zero-order rate of lipolysis on the concentration 

of Ca2+ (Alvarez and Stella, 1989). They showed rate increases as the concentration of 

Ca2+. Further, they proposed that an active complex of colipase-lipase-Ca2+ was formed. 

Later, Zangenberg et al. clearly demonstrated that the lipolysis was completed in the high 

concentration of Ca2+ and it was attributed to the formation of fatty acid or bile acid-

calcium salt (Zangenberg, Müllertz et al., 2001). 

 3.4.3.3.1. The effect of calcium on the extent of lipolysis 
As shown in Figures 3.15 and 3.16, the initial rates of production of fatty acid during the 

lipolysis of PC in simulated digestion buffer were different in the presence and absence 

of 5 mM Ca2+. The presence of Ca2+ increased the initial lipolysis rate of fasted-state 

buffer containing either cholic acid or taurocholic acid. However, by 30 min, the PC was 

hydrolyzed completely no matter if Ca2+ was included or not. The different effect on 

initial rates was more obvious in the simulated digestion buffer composed of NaTC and 

PC (Figure 3.16). Without BS/PC, the Ca2+ also had a significant effect on the lipolysis of 

PS80. The extent of lipolysis of PS80 in tris maleate buffer is shown in Figure 3.17. A 

rapid production of fatty acid was observed in the presence of Ca2+ followed by a 

relatively slow production of fatty acid. The lipolysis of PS80 reached a plateau in 100 

min indicating lipolysis had stopped. By calculation of theoretical production of fatty 

acid from the amount of added PS80, only half of PS80 had been hydrolyzed. In 

comparison, the lipolysis of PS80 was maintained at what appeared to be a steady state in 

the absence of Ca2+ after 10 min of addition of enzyme preparation. Interestingly, a 

reversed pattern of lipolysis was observed in the presence of BS/PC (Figure 3.18). Ca2+ 

promoted the production of fatty acid and maintained the rate of lipolysis at steady state.  
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Figure 3.15 Amount of fatty acid released in the lipolysis of SIF composed of 5 mM 

NaC/1.25 m MPC in the presence (square) and absence (cross) of 5 mM of CaCl2 at 37°C. 

Theoretical amount of fatty acid from 1.25 mM PC is 31c/25 mL. 

 

Figure 3.16 Amount of fatty acid released in the lipolysis of SIF buffer composed of 

NaTC in the presence (square) and absence (cross) of 5 mM of CaCl2 at 37°C. 

Theoretical amount of fatty acid from 1.25 mM PC is 31 µmol/25 mL. 
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Figure 3.17 Amount of fatty acid released in the lipolysis of PS80 in tris maleate buffer 

(pH 7.5 at 37°C) in the presence and absence of 5 mM of CaCl2. 

 

Figure 3.18 Amount of fatty acid released in the lipolysis of PS80 in SIF buffer (pH 7.5 

at 37°C) in the presence and absence of 5 mM of CaCl2 

3.4.3.3.2. Change of calcium concentration in solution during the lipolysis and 
composition of calcium salt  
To further elucidate the influence of calcium on the lipolysis, the calcium concentration 

in solution as a function of time was measured by inductively coupled plasma 

spectroscopy. When the sample is introduced into the instrument, a characteristic 
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emission wavelength of calcium will be detected. Even very low concentrations of 

calcium can be quantitatively determined by this technique. Figure 3.19 shows the 

percentage of calcium in the solution during in vitro lipolysis of PS80 in SIF buffer. The 

calcium concentration dropped to 56% by the end of the experiment. A precipitate was 

observed during the lipolysis and was collected. The solid material was characterized by 

DSC and elemental analysis. In DSC analysis of desiccated samples, there was no 

obvious water peak detected. An endothermal peak was observed at 77°C which is close 

to the literature report value of calcium oleic acid salt (Figure 3.20). Elemental analysis 

gave the formula of Ca(oleic acid)2∙0.4H2O for two independent batches of solid material 

with less than 0.3% of the difference between the theoretical value and observed value of 

each elements. From these results, it can be concluded that the fatty acid released from 

the lipolysis precipitated as a calcium salt. Precipitation as Ca2+ salt could potentially 

reduce the availability of fatty acid to form the mixed micelles with BS/PC. 

 

Figure 3.19 Calcium concentration change during in vitro lipolysis of PS80 in the SIF 

buffer at 37°C 
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Figure 3.20 Thermogram of precipitate collected from the lipolysis of PS80 in the 

presence of calcium 

3.5. Conclusion 
The dynamic in vitro lipolysis model was sensitive to different ester-containing substrates 

under the optimal conditions. A ± 10% variation of fatty acid released at 120 min was 

considered acceptable. Bile salts, phospholipid and calcium all showed significant effects 

on the lipolysis of PS80. The precipitate from the lipolysis of PS80 in the presence of 

Ca2+ was identified as fatty acid salt. A reproducible dynamic in vitro lipolysis model 

was established.   
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Chapter 4 

Solubilization of Poorly-water Soluble Drugs in Polysorbate 80 Under Simulated 

Intestinal Conditions 

 

4.1. Summary 

In this chapter, the solubilization of progesterone, 17β-estradiol, and nifedipine during 

the in vitro dispersion and lipolysis of a simple model LBDDS composed of PS80 were 

assessed under simulated intestinal conditions. Initial supersaturation ratios, 2, 1, and less 

than 1, were created by the dispersion of known amounts of formulations containing drug 

in simulated intestinal fasted-state buffer (SIF buffer) at 37°C.  To be clear, these 

experiments did not include the use of lipase enzyme.  The concentrations of drug in 

solution were monitored as function of time. The supersaturation ratio area under the 

curve (AUC-SS) was used to quantify the time-dependent supersaturation during the in 

vitro dispersion and lipolysis of PS80. Maintenance of the supersaturated state was found 

to be drug-dependent. At supersaturation ratio of 2, AUC0-120-SS of progesterone was 

26±4 min while AUC0-120-SS 17β-estradiol and nifedipine were 92±7 min and 113±7 min, 

respectively, indicating that 17β-estradiol and nifedipine remained in supersaturated state 

to a greater extent. When supersaturation ratio was close to 1, precipitation of all drugs 

was prevented by PS80. Results in digested blank PS80 showed that equilibrium 

solubilities of 17β-estradiol and nifedipine were decreased indicating that the driving 

force for precipitation - the degree of supersaturation - increased.  Equilibrium solubility 

of progesterone increased slightly and then remained constant.  

Upon exposure of formulations to the lipase enzyme, supersaturated solutions were 

created and maintained to various extents. The values of concentration area under the 

curve (AUC-C) in the presence of inactivate enzyme and active enzyme indicated that the 

lipolysis of PS80 had no effect on the solubilzation of progesterone.  On the other hand, 

17β-estradiol remained in supersaturated state up to 120 min, with a maximum 

supersaturation ratio of 4.1. Nifedipine was in the supersaturated state at 120 min for 
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formulations starting at the initial supersaturation ratio of 1 and 0.6.  The duration for the 

supersaturated state was only 30 min from the formulation (N-35) with an initial 

supersaturation ratio of 2.  AUC-SS demonstrated that 17β-estradiol exhibited the 

greatest extent of supersaturation and progesterone the least.  

4.2. Introduction 
Aqueous solubility and gastrointestinal permeability are believed to be among the 

important factors that govern the absorption of drug in the GI tract (Amidon, Lennernäs 

et al., 1995). There are a number of formulation strategies that have been used to improve 

the oral absorption of poorly-water soluble drugs, either by increasing the dissolution rate 

or by presenting the drug in solution and maintaining the drug in solution through the GI 

tract. Some examples include solid dispersions, eutectic mixtures, cosolvent formulations, 

and lipid-based formulations. Lipid-based drug delivery systems (LBDDSs) such as oil 

solution, emulsion and self-emulsifying systems are popular approaches to improve the 

oral bioavailability (Hauss, Fogal et al., 1998; Porter, Trevaskis et al., 2007; Porter, 

Pouton et al., 2008). Products such as Neoral®, Lopinavir and Ritonavir are just a few 

examples of successful LBDDSs. Typical excipients for LBDDSs include triglyceride 

oils, mixed glycerides, lipophilic surfactants, hydrophilic surfactants and water-soluble 

cosolvents. Of particular interest to LBDDSs is the observation that some lipidic 

excipients may be hydrolyzed enzymatically, the products of which may form mixed 

micelles with endogenous surfactants such as bile salt and biliary lipids.  

As stated by Fick’s First Law, the rate of drug diffusing through the intestinal biological 

membrane at steady state is proportional to the drug concentration in the GI tract, 

assuming a sink condition. In general, absorption of a poorly-water soluble drug will be 

limited due to poor solublization upon dilution and dispersion of a dosage form in vivo. 

Upon oral administration, an LBDDS undergoes dilution and dispersion in the GI tract, 

forming a variety of lipid aggregates such as emulsion droplets and micelles. Presumably, 

the drug remains in the solubilized state primarily within these lipid aggregates. It has 

been suggested that the solubilzation capacity of the lipid aggregates is insufficient to 

account for the amount of drug remaining in the solubilized state in vivo (Gao, Rush et al., 

2003; Gao and Morozowich, 2006). This has lead to the hypothesis that once dispersed in 
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the GI tract, LBDDSs may also enhance absorption by inducing and maintaining the drug 

in a supersaturated state.   

The possible role of supersaturation in enhancing the oral absorption has drawn much 

attention (Gao and Morozowich, 2006; Vaughn, McConville et al., 2006; Guzmán, Tawa 

et al., 2007; Brewster, Vandecruys et al., 2008; Mellaerts, Mols et al., 2008; Overhoff, 

McConville et al., 2008). In the laboratory, supersaturation can be created by various 

methods which modulate either the solute concentration or the equilibrium solubility.  

The solute concentration can be regulated by methods like solvent evaporation and 

dissolution of metastable solid. The change of temperature, pH, and addition of anti-

solvent can alter the equilibrium solubility.  

By definition, the supersaturated state is thermodynamically unstable and thus such a 

state will spontaneously precipitate. To be useful as a technique for enhancing drug 

delivery, some methods must be employed to kinetically stabilize the supersaturated state. 

It has been observed that the rate of precipitation may be slowed by additives such as 

polymers (e.g., hydroxymethylcellulose, polyvinylpyrrolidone). Gao et al. employed 

supersaturable self-emulsifying drug delivery systems (S-SEDDSs) to create 

supersaturated solutions of paclitaxel, PNU-91325 and AMG 517 (Gao, Rush et al., 2003; 

Gao, Guyton et al., 2004; Gao, Akrami et al., 2009). Nonionic surfactants like Cremophor 

RH40, Polysorbates and TPGS were observed to enhance the extent of supersaturation 

during the dilution of formulation (Vandecruys, Peeters et al., 2007).   

Of importance to this work, the lipolysis of LBDDSs could possibly modulate both the 

apparent solubility and the equilibrium solubility. The driving force for precipitation - the 

degree of supersaturation - could be altered by changes in equilibrium solubility. The 

change of lipid composition due to lipolysis may alter both the structure of lipid 

assemblies and their capability of solubilizing drug (Borné, Nylander et al., 2002; 

Kossena, Charman et al., 2004). With respect to kinetics of precipitation of drug, 

components in LBDDSs and any lipolytic products could potentially influence the critical 

nucleation and crystal growth steps. In most situations, it would be expected that these 

two factors are active simultaneously during the lipolysis of LBDDSs. Because of the 
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complex action of lipolysis of LBDDSs and the effects on thermodynamic and kinetic 

aspects of precipitation, it is very difficult to establish reliable in vivo-in vitro correlation.  

A number of studies have correlated the solubilization behavior of poorly-water soluble 

drugs evaluated by in vitro lipolysis models with oral bioavailability (Christensen, 

Schultz et al., 2004; Porter, Kaukonen et al., 2004; Grove, Pedersen et al., 2005; 

Goddeeris, Coacci et al., 2007). More recently, studies also have demonstrated that the 

lipoidal surfactants can be hydrolyzed by digestive enzymes and that the overall 

composition of the solution may impact the solubilization of a poorly-water soluble drug. 

Sek et al. examined the in vitro solubilization and oral bioavailability of atovaquone 

formulated in LBDDSs composed of long chain glycerides, Cremphor EL, and a range of 

pluronic surfactants (Sek, Boyd et al., 2006). Subsequently, the same group observed that 

the oral bioavailability of self-emulsifying lipid-based formulation of danazol in beagle 

dogs was reduced by increasing the content of Cremophor EL relative to lipid (Cuiné, 

Charman et al., 2007). After a systemic evaluation of the bioavailability of danazol 

following oral administration of lipidic self-emulsifying formulation to dogs, Cuine′ et al. 

suggested that surfactant lipolysis resulted in a reduction in the solubilization capacity. 

The decrease in oral bioavailability of surfactant-only formulations was attributed to the 

generally poor dispersibility of surfactants. Fernandez et al. tried to correlate the 

solubilitization of poorly-water soluble drugs, piroxicam and cinnarine, as a function of 

the in vitro lipolysis of Labrasol and Gelucire 44/14. The lipolysis of these two exipients 

resulted in variety of products including C8-C10  and C8-C10 diglycerides and 

triglycerides as well as PEG diesters (Fernandez, Chevrier et al., 2009). The lipolytic 

products responsible for the solubilization drugs during the lipolysis of two surfactants 

were suggested and the importance of the lipolysis of surfactants on drug solubilization 

was demonstrated.   

Little is known about the mechanism by which LBDDS formulations create and maintain 

drugs in a supersaturated state in simulated GI conditions. Evaluating the ability of each 

component to induce and maintain a supersaturated state of poorly-water soluble drug 

will provide useful information.  Surfactants are included widely in LBDDSs and not 

only aid the dispersibility of formulations but also provide a means of solubilization of a 



59 
 

poorly-water soluble drug by forming the micelles. However, it has been proposed that 

precipitation of a poorly-water soluble drug solubilized in LBDDS may be attributed 

either to the lower solubilization capacity upon dispersion or to hydrolysis of lipoidal 

components by pancreatic enzyme (Cuiné, Charman et al., 2007; Mohsin, Long et al., 

2009). To our knowledge, few studies have been conducted to probe the capability of 

surfactant to creation and maintain drug in a supersaturated state under the simulated GI 

conditions.  

So as to be able to quantitatively examine the effect of lipolysis, we propose a model 

LBDDS composed of only one component that is sensitive to pancreatic lipase enzyme. 

In this chapter, time-dependent solubilization behaviors of progesterone, 17β-estradiol 

and nifedipine during the in vitro dispersion and lipolysis of polysorbate 80 (PS80) under 

simulated intestinal conditions are assessed. PS80 is widely used in LBDDSs and has 

been shown to be sensitive to the lipase enzyme in Chapter 3 and in the literature. We 

hypothesize that lipolysis of surfactant excipient in the model LBDDS results in a 

supersaturated state for model poorly-water soluble compounds progesterone, 17β-

estradiol and nifedipine. Further, we hypothesize that the extent of the supersaturation is 

dependent on the extent of hydrolysis of surfactant and on the initial concentration of the 

drug. The extent of time-dependent supersaturation will be quantified by the 

supersaturation ratio area under the curve (AUC-SS).  

4.3. Materials and methods 
4.3.1. Materials 
Polysorbate 80 was a generous gift from Croda Inc. (Edison, NJ, USA). Progesterone 

(Prog, purity ≥99%), Nifedipine (NIF, purity ≥98%), 17β-estradiol (EST, purity ≥ 98%), 

1,2-diacyl-sn-glycero-3-phosphocholine (type XVI-E) from egg yolk (PC), 4-

bromophenylboric acid, trisma® maleate, calcium chloride hydrate (purity ≥99%), 

sodium cholate hydrate (NaC, purity ≥99%) and  lipase (type II, crude from porcine 

pancrease) were purchased from Sigma-Aldrich (St. Louis, MO, USA). NaOH (0.1 M) 

were purchased from Fisher Scientific (Pittsburgh, PA, USA). All chemicals were used as 

received. Water for buffer solution was from a Milli-Q water purification system. 

Hydrophilic PTFE filters (13 mm diameter and 0.2 µm pore size) were purchased from 



60 
 

Advantec MFS Inc. (Japan). Drug structures are shown in Figure 4.1 and properties and 

dose number are shown in Table 4.1. 
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Figure 4.1 The structures of model poorly-water soluble drug 

Table 4.1 Drug properties and dose number 

Drug Aqueous solubility 

(M) at 37°C 

Tm(°C) LogP(exp.) Dose number 

(mL) 

Progesterone (3.3±0.1)×10-5 126 4.14±0.003 1953 

17β-estradiol (6.7±0.3)×10-6 178 4.20±0.02 273 

Nifedipine (2.5±0.1)×10-5 173 3.63±0.01 1134 

 

4.3.2. Equilibrium solubility of model drugs in neat PS80 
To prepare the formulations containing a known amount of the model drug, the solubility 

of each model drug in neat PS80 was determined at 25±0.5°C. An excess amount of 

model drug was added to PS80 and the vial rotated for a week. The viscous PS80 sample 

was filtered though hydrophilic PTFE filter with 0.2µm pore size. An accurate amount of 

filtrate was weighed and dissolved in 10 mL of isopropanol/water (1/1). All experiments 

related to nifedipine were conducted under protection from light due to the photo-

sensitivity of the drug (see Appendix 1). The solutions obtained above were analyzed 

with a corresponding HPLC method. The drug concentration in neat PS80 was expressed 

as mg of drug/g of PS80 calculated by Eq. (4.1) 
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drug concentration (mg/g) =

Drug concentration determined in solution (mg/L)x0.01L
Weight of drug-loaded polysorbate 80 (g)       (4.1) 

4.3.3. Preparation of the model drug loaded PS80 formulations 
According to the solubility of model drugs in neat PS80 determined in 4.3.2, three 

formulations of each drug were prepared. The concentrations of each drug in each 

formulation are listed in Table 4.2.   

Table 4.2 Drug concentrations in formulations 

Drug concentration (mg/g) 

Progesterone 17β-Estradiol Nifedipine 

11.91±0.25 (P-12) 5.07±0.17 (E-5) 11.29±0.37 (N-11) 

19.90±0.73 (P-20) 7.14±0.30 (E-7) 20.02±0.80 (N-20) 

31.60±0.46 (P-31) 14.26±0.66 (E-14) 35.06±0.88 (N-35) 

 

4.3.3.1. Formulations containing progesterone 
A seen in Table 4.2, three progesterone-loaded PS80 formulations were prepared, P-12 

(12mg/g), P-20 (20mg/g) and P-31(31mg/g). P-20 contained progesterone at near 

saturated solubility in neat PS80. P-31 formulation contained progesterone at 50% greater 

than saturated solubility.  P-11 was prepared at 50% less than saturated solubility of 

progesterone. Exact amounts of progesterone and PS80 were weighed into a 4 mL glass 

vial with a PTFE-lined cap. P-12 and P20 formulations were rotated at 25±0.5°C until 

progesterone was dissolved totally. The complete absence of a drug crystal was verified 

by polarized microscopy. P-31 was rotated at 37°C for two days and then 45°C overnight 

before use. Except for formulation P-31, all formulations were kept at room temperature 

until use.  
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4.3.3.2. Formulations containing 17β-estradiol 

17β-estradiol-loaded PS80 formulations were prepared at 5 mg/g (E-5), 7 mg/g (E-7) and 

14 mg/g (E-14). E-5 was prepared at 15% of saturated solubility of 17β-estradiol in neat 

PS80. E-7 contained 17β-estradiol at 21% of saturated solubility. E-14 formulation 

contained drug at 42% of saturated solubility. Known amounts of 17β-estradiol and PS80 

were weighed into a 4 mL glass vials with PTFE-lined cap. All formulations were rotated 

at 25±0.5°C for a week which resulted in complete dissolution of 17β-estradiol in PS80. 

All formulations were kept at room temperature until use. 

4.3.3.3. Formulations containing nifedipine 
Three nifedipine-loaded PS80 formulations were prepared, N-11 (11 mg/g), N-20 (20 

mg/g) and N-35 (35 mg/g). N-11 contained nifedipine at 25% of saturated solubility in 

neat PS80. N-20 contained nifedipine at about 50% of  saturated solubility.  N-35 was 

prepared at near saturated solubility of nifedipine in PS80. Nifedipine was weighed into a 

4 mL glass vial and PS80 was added giving formulations at designated concentrations. 

All formulations were rotated at 25±0.5°C in an incubator for a week and kept at room 

temperature until use. All vials were wrapped with aluminum foil to protect the drug 

from light. 

4.3.4. Dispersion of drug-containing PS80 formulations  
Dispersion experiments were carried out in a simulated intestinal fasted-state digestion 

buffer (SIF buffer) containing 5 mM sodium cholate (NaC)/1.25 mM phosphocholine 

(PC) in tris maleate buffer (pH 7.5) composed of 50 mM tris-maleate, 150 mM NaCl at 

37°C. CaCl2 (5 mM) was included in selective studies. The final PS80 concentration 

upon dispersion was 1% and was achieved by adding a known amount of the drug-loaded 

formulation to SIF buffer in a stirred and thermostatted glass flask at 37±0.5 °C. 

Agitation was provided by a 5 mm magetic stir bar at 500 rpm on a direct drive 

motor/magnetic system. Prior to collection of sample, formulation was dispersed for 15 

min to ensure the formation of a homogenous solution. Aliquots were taken at 

predetermined times and filtered through a 0.2 µm PTFE syringe filter. The filtrates were 

diluted accordingly by isopropanol/water(1:1) for HPLC analysis.  
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The effects of particles in the enzyme preparation on the concentration were assessed by 

addition of inactivated enzyme to the dispersion of formulations in SIF buffer. The 

enzyme preparation, prepared as the standard procedure described in Chapter 3 (Section 

3.3.4), was incubated at 110°C for 3 h.  The pH was adjust to 7.5 at room temperature 

before addition. There was only 70 μL of 0.1M NaOH titrated into reaction solution 

during the experiment, indicating enzyme was totally inactivated by heating. 

4.3.5. In vitro lipolysis of drug-containing PS80 formulations 
 In vitro lipolysis experiments were monitored with the characterized dynamic in vitro 

lipolysis model.  Experiments were conducted in triplicate. In order to achieve PS80 

concentration at 1%, a known amount of drug-loaded formulation was introduced into the 

SIF buffer in a stirred and thermostated glass flask at 37 °C (see Figure 3.2 in Chapter 3). 

The formulation was dispersed 15 min prior to the addition of enzyme preparation. 

Lipolysis was initiated by adding enzyme preparation (1 mL enzyme solution/25 mL of 

SIF buffer) to a well dispersed formulation. One milliliter of well-dispersed solution was 

withdrawn and to the solution was added 1 mL of enzyme preparation to maintain the 

total final volume of 25 mL. Enzyme solution was prepared by standard protocol 

described in Section 3.3.4. In brief, 1 g of crude porcine pancreatic lipase was added to 5 

mL of trismaleate buffer. The suspension was stirred for 15 mins and subsequently 

centrifuged for 20 min at 5000 rpm at room temperature. The supernatant was stored on 

ice until use. The enzyme solution was prepared fresh daily. Released fatty acid was 

titrated with 0.1 M NaOH to maintain pH at 7.5 by the pH-stat titration unit.  Each aliquot 

was taken at predetermined time and filtered through 0.2 µm PTFE membranes 

immediately. The filtrate was added to an equal volume of isopropanol immediately to 

inhibit the enzyme activity. Concentration of drug was determined by the corresponding 

HPLC method.  

 4.3.6. Determination of equilibrium solubility in digested blank formulation 
The equilibrium solubility of each model drug in blank digests of PS80 was determined. 

Blank formulations of PS80, that is surfactant but no drug, were subjected to in vitro 

lipolysis as described in Section 4.3.5. Aliquots were taken at predetermined times and 

enzyme inhibitor, 4-bromophenylboric acid (1 M in methanol), was added immediately to 

prevent further lipolysis. The pH was adjusted to 7.5 and checked before and after 
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incubation. To each sample of digest, an excess amount of drug was added. Samples were 

rotated at 37±0.5°C for the days. Aqueous phases were filtered through 0.2 µm PTFE 

membranes and diluted by isopropanol/water (1/1) to appropriate concentration. All 

samples were analyzed by HPLC. Successive concentrations within ±5% indicated 

equilibrium solubility was achieved. 

4.3.7. Determination of octanol/water partitioning coefficient of model drugs 
A known amount of drug was added into 1:1 (v/v) mixture of octanol and water. The 

mixture was rotated for three days at room temperature. After filtration, the concentration 

of drug in the organic phase and the aqueous phase were determined by HPLC. The 

concentration of drug in aqueous phase was assayed by injection of filtrate directly. It 

was necessary to dilute the organic phase by mobile phase prior to HPLC analysis. 

The partition coefficient (direct) is calculated as the ratio of the concentration in octanol 

to the concentration in water.   

4.3.8. HPLC methods  

The HPLC conditions and protocols for progesterone, 17β-estradiol and nifedipine are 

listed in Table 4.3. All mobile phases were pre-mixed and degassed online. With respect 

to the precision and linearity, HPLC methods were validated by standard protocols and 

all samples were diluted to the concentrations within the linear range of calibration 

including four to six working standards prepared from three independent stock solutions. 

The lack of interference with other components such as sodium cholate/phosphalipid was 

validated by spiking 100 µL or 500 µL of 5 mM NaC/PC to 900 µL or 500 µL of one 

working standard. The HPLC chromatograms for three model drugs are shown in Figures 

4.2-4.4. A peak asymmetry factor less than 1.2 indicated an acceptable peak shape. 
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Table 4.3 HPLC conditions and protocols for analysis of progesterone, 17β-estradiol and 

nifedipine 

       

 

 

 

 

 

 

 

 Progesterone 17β-Estradiol Nifedipine 

Pump SpectraSYSTEM P4000 

Detector SpectraSYSTEM UV1000 

Integrator Peaksimple 321 chromatography data system 

Injector SpectraSYSTEM AS3000 

Column SUPELCOSILTM ABZ+PLUS, 25 cm x 4.6 mm,  
5 µm 

Precolumn Same type as column 

Mobile Phase 

(Acetonitrile%/
water% ) 

60/40 60/40 50/50 

Flow Rate 1.5 
mL/min 

1.5 mL/min 1.0 mL/min 

Wavelength 254 nm 282 nm 236 nm 

Injection Size 20 uL 50 uL 20 uL 

Retention time  6.6 min 5.6 min 7.8 min 
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Figure 4.2 HPLC chromatogram of progesterone 

 

Figure 4.3 HPLC chromatogram of 17β-estradiol 
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Figure 4.4 HPLC chromatogram of nifedipine 

4.3.9. Characterization of solid formed during the in vitro dispersion of drug-
containing PS80 formulations  
The dispersion experiments were conducted as described in Section 4.3.4. The 

precipitates formed during the in vitro dispersion of P-31, E-14 and N-35 formulations 

were characterized as a function of time by polarized microscopy (Olympus BX51 with 

Spot Advanced software). At predetermined time, a drop of the dispersed system was 

placed on the pre-warmed glass slide (∼37 °C) and covered by glass cover to prevent 

water evaporation. The dispersion was observed immediately for evidence of 

birefringence. PS80 solution at concentration of 1% w/v in SIF buffer was used as control.  

4.4. Results and discussion 
4.4.1. Extent of lipolysis as measured by production of fatty acid 
The lipolytic products of PS80 during the in vitro lipolysis are PEG (80) sorbitan and 

oleic acid (Scheme 4.1). The production of fatty acid was monitored by titrating with 0.1 

M NaOH. Amount of fatty acid was calculated based on 1:1 stoichiometric reaction ratio 

between the released fatty acid and 0.1 M NaOH. The extents of lipolysis of PS80 in the 

presence of progesterone (Figure 4.5a), 17β-estradiol (Figure 4.5b) and nifedipine 

(Figure 4.5c) were compared over a 2 h period. Within 10% acceptable variation, total 

titratable fatty acid generated in the lipolysis of blank PS80 (that is, containing no drug) 

and drug-loaded PS80 were identical.  
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Scheme 4.1 The hydrolysis of PS80 by pancreatic lipase 

 

Figure 4.5a Representative of amount of fatty acid released in the lipolysis of blank PS80 

and PS80 in the presence of progesterone from formulations P-12, P-20 and P-31. Shown 

are raw data before subtraction of the blank. 
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Figure 4.5b Representative Amount of fatty acid released in the lipolysis of blank PS80 

and PS80 in the presence of 17β-estradiol from formulations E-5, E-7 and E-14. Shown 

are raw data before subtraction of the blank. 

 

Figure 4.5c Representative amount of fatty acid released in the lipolysis of blank PS80 

and PS80 in the presence of nifedipine from formulations N-11, N-20 and N-35. Shown 

are raw data before subtraction of the blank. 
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Assuming the extent of lipolysis of phosphatidylcholine (PC) in SIF buffer is not affected 

in the presence of PS80, the fatty acid from PS80 was calculated by subtraction of fatty 

acid produced from PC from the total amount of fatty acid generated (see Section 5.3.2). 

Figures 4.6a – 4.6c are the percentage of titratable fatty acid from PS80 during the in 

vitro lipolysis of drug-loaded formulations. About 6-7% PS80 was hydrolyzed within the 

first 5 min and 30% in 30 min. As lipolysis proceeded, the rate of production of fatty acid 

decreased. At 60 min, hydrolysis of PS80 approached a plateau giving 50% of substrate 

hydrolyzed. In 120 min, only 60% of PS80 was hydrolyzed, a value in agreement with 

literature reports (Cuiné, McEvoy et al., 2008).  

The slow rate of production of fatty acid in the late stage may be attributed to the 

reduction of the enzyme activity. The enzyme is activated by interfacial binding to a lipid 

assembly. The crystal structure studies suggests that interfacial binding triggers a 

conformation change and movement of the lid domain and some surface loops, allowing 

the substrate access to the active site (Winkler, D'Arcy et al., 1990). The conformation 

change of the lid domain and β-5 loop changes the environment of catalytic triad 

dramatically. In the open conformation, serine is more accessible to solvent and orients to 

the bottom of the hydrophobic pocket where it binds to lipid substrate. Apparently, the 

hydrolysis at the interface could be affected by either the enzyme or the substrates. The 

state and composition of the lipid assembly influences lipase activity and extent of 

lipolysis.  Further, pancreatic lipase is easily replaced by bile salts either by solubilization 

by bile salt micelles, or by competition for the interface (Svasti and Bowman, 1978) also 

resulting in reduced activity. In addition, some surfactants are able to bind to the active 

site of enzyme resulting in a reduction of lipase activity by competitive inhibition 

(Hermoso, Pignol et al., 1996). It has been reported that higher hydrophilic-lipophilic 

balance (12-17) surfactants could inhibit fatty acid liberation (MacGregor, Embleton et 

al., 1997).  An acyl-enzyme intermediate is formed during the catalysis reaction. The 

build-up of products of lipolysis may inhibit or even prevent formation of such an 

intermediate resulting in a slow rate of production of fatty acid.  
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Figure 4.6a The Percentage of titratable fatty acid from PS80 in the presence of 

progesterone during the in vitro lipolysis of formulations P-12, P-20 and P-31 (n = 3). 

Shown are transformed data after subtraction of the blank. 

 

Figure 4.6b The percentage of titratable fatty acid from PS80 in the presence of 17β-

estradiol during the in vitro lipolysis of formulations E-5, E-7 and E-14 (n = 3). Shown 

are transformed data after subtraction of the blank.  
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Figure 4.6c The Percentage of titratable fatty acid from PS80 in the presence of 

nifedipine during the in vitro lipolysis of formulations N-11, N-20 and N-35 (n = 3). 

Shown are transformed data after subtraction of the blank. 

4.4.2. Solubilization of model drugs in PS80 solutions 
4.4.2.1. Dispersibility of PS80 
The dispersibility of PS80 in aqueous media was evaluated. The dispersibility was 

assessed by adding ∼0.25 g of blank PS80 directly to 25 mL of SIF buffer containing 5 

mM NaC/1.25 mM PC (pH7.5) at 37±0.5°C loaded in the pH-stat device. Initially, 

addition of PS80 to the digestion buffer resulted in a viscous gel. Complete dispersion 

was observed within 15 min, as judged visually.  

 4.4.2.2. Ability of PS80 solutions to inhibit precipitation of model drug when 

formulated in DMSO and added to SIFs buffer 

A set of experiments were carried out to determine the relationship between surfactant 

concentration and the ability to inhibit drug precipitation. Stock solutions of progesterone, 

17β-estradiol and nifedipine in DMSO were prepared at concentration of 53 mg/mL, 53 

mg/mL and 24 mg/mL, respectively. Upon dispersion in the SIF buffer, the initial drug 

concentrations were 190.8 µg/mL for progesterone and nifedipine and 85.6 µg/mL for 

17β-estradiol. The final concentration of DMSO in 25 mL of the SIF buffer was 0.36% 

(v/v) and remained the same in all tested solutions. As a result of the low concentration, 
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the effect of DMSO on the solubilization of the drug in the SIF buffer was considered 

negligible. The rate of stirring and the rate of addition of DMSO to the solution were also 

strictly controlled in all the experiments. In brief, the DMSO stock solution was added 

using an automatic pipette and the addition to the tested solution was made over 

approximately 3 seconds. The results are given in Figures 4.7a – 4.7c. In the absence of 

PS80, obvious turbidity was observed as soon as the DMSO stock solution was added, 

indicating drug precipitated rapidly. These results indicate that all three model drugs are 

not resistant to precipitation in SIF buffer. 

To further investigate whether surfactant  monomer alone delays drug precipitation, a 

stock solution in DMSO was dispersed into a solution of PS80 at a concentration below 

reported CMC (0.01% w/v) (Yamagata, Kusuhara et al., 2007), below the measured 

CMC (0.02% w/v), ten times above the measured CMC (0.2% w/v), and well above the 

measured CMC (1% w/v). Progesterone (Figure 4.7a) and nifedipine (Figure 4.7c) were 

observed to precipitate rapidly in the solutions of PS80 at concentrations up to ten times 

the measured CMC.  It is worth noting that concentration of 17β-estradiol initially 

dropped rapidly and then remained constant up to 30 min in the solution of PS80 at a 

concentration of ten times the measured CMC (Figure 4.7b). These results suggest that 

neither the monomer nor micelles at low concentration can delay the precipitation 

efficiently. High concentration of PS80 (1% w/v), where a vast majority of surfactant is 

present in micelles, was highly effective in inhibiting precipitation of the model drugs. 

Note that the steady-state concentrations for dispersion in 1% PS80 are greater than the 

equilibrium solublities. This indicates that the dispersions in 1% PS80 are in a 

supersaturated state. As shown in Figures 4.7a – 4.7c, drug concentrations decrease 

within the first 5 min and then remain constant up to 24 h.  This initial decrease in drug 

concentration possibly resulted from the rapid injection of DMSO stock solution into the 

aqueous solution.   
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Figure 4.7a The progesterone concentration upon addition of stock solution in DMSO to 

the SIF buffer containing PS80 at 0% (triangle), 0.01% (diamond), 0.02% (cross), 0.2% 

(star) and 1% (square) at 37±0.5°C. The dashed line is the equilibrium solubility in 1% 

PS80 solution at the same condition. 

 

Figure 4.7b The 17β-estradiol concentration concentration upon addition of stock 

solution in DMSO to the SIF buffer containing PS80 at 0% (triangle), 0.01% (diamond), 

0.02% (cross), 0.2% (star) and 1% (square) at 37±0.5°C. The dashed line is the 

equilibrium solubility in 1% PS80 solution at the same condition. 
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Figure 4.7c The nifedipine concentration concentration upon addition of stock solution in 

DMSO to the SIF buffer containing PS80 at 0% (triangle), 0.01% (diamond), 0.02% 

(cross), 0.2% (star) and 1% (square) at 37±0.5°C. The dashed line is the equilibrium 

solubility of nifedipine in 1% of PS80 at the same condition. 

Supersaturation is defined as drug concentration higher than the equilibrium solubility in 

the same concentration of PS80 solution. The supersaturation ratio (SS) is commonly 

used to express the degree of supersaturation (Eq. 4.2). 

Supersaturation Ratio (SS) =

Concentration determined at the time of sampling

Equilibrium solubility in the same solution              (4.2) 

The supersaturation ratios were calculated according to the corresponding equilibrium 

solubility of drugs in each tested solution. The results are shown in Figures 4.8a – 4.8c. 

The supersaturation ratios in progesterone and nifedipine decreased to values between 1.1 

and 1.5 in 15 min and then remained at this level up to 24 h. When the supersaturation 

ratios were over 5, such as in the solutions of PS80 at concentration below 0.02% (w/v), 

progesterone and nifedipine precipitated rapidly and the observed concentrations 

approached the equilibrium solubility. The rapid precipitation suggested that the 

concentration of drug initially was above that of the metastable zone (Fig 4.9). Compared 
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to the case at high supersaturation ratio, the rates of precipitation (slope of the line, Fig 

4.7a-c) were slower in the case of 0.2% (w/v) PS80 solution when initial supersaturation 

ratios were 3.5 (progesterone) and 4.1 (nifedipine). On the other hand, supersatruation 

ratios in 17β-estradiol appeared to exhibit three distinct zones.  In the first 5 minutes 

supersaturation ratios decreased rapidly to around 4 from 14.8, 10.7 and 9.5 respectively 

for solutions at 0%, 0.01% and 0.02% PS80 concentration suggesting the drug 

concentration initially was above the metastable zone.  In the time period of 5 to 60 

minutes supersaturation ratios remained relatively constant between 3 and 4.8.  At times 

longer than 60 minutes supersaturation ratios for 17β-estradiol decreased to around 1. 

Birefringence was observed at 2, 20, 50 and 100 minute time points, indicating the 

formation of a crystalline phase in each of these three zones.  

Typically, precipitation is an unremitting process once started. The drug concentration 

will approach the equilibrium solubility continuously. A supersaturation profile as in the 

dispersion of 17β-estradiol stock solution in DMSO in the SIFs buffer containing PS80 at 

0%, 0.01%, 0.02% suggested a typical solvent-mediated phase transformation (Davey, 

Cardew et al., 1986).  The kinetic mechanisms of precipitation in these systems are not 

clear. In addition to the degree of supersaturation, a variety of factors could affect the 

drug precipitation kinetics such as mechanical agitation and the properties of the surface 

during nucleation and crystal growth (Mullin, 1961). The rate of stirring and the rate of 

addition of the DMSO solution to the SIF buffer were strictly controlled in all the 

experiments. However, it is difficult to control other factors in the current study. 
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Figure 4.8a The supersaturation ratio of progesterone upon addition of stock solution in 

DMSO to the SIF buffer containing PS80 at 0% (diamond), 0.01% (triangle), 0.02% 

(cross), 0.2% (star) and 1% (square) at 37±0.5°C 

 

Figure 4.8b The supersaturation ratio of 17β-estradiol upon addition of stock solution in 

DMSO to the SIF buffer containing PS80 at 0% (triangle), 0.01% (star), 0.02% (cross), 

0.2% (diamond) and 1% (square) at 37±0.5°C 
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Figure 4.8c The supersaturation ratio of nifedipine upon addition of stock solution in 

DMSO to the SIF buffer containing PS80 at 0% (diamond), 0.01% (cross), 0.02% 

(triangle), 0.2% (star) and 1% (square) at 37±0.5°C 

Studies of the relationship between the supersaturation and crystallization by Miers, et al. 

(Mullin, 1961). A typical solubility-temperature relationship is presented in Figure 4.9.  

The lower line is the equilibrium solubility of solute and the upper line is limit of solute 

remained in solution which is defined as metastable zone limit. In Zone 1, where the 

supersaturation ratio is below or equal to 1, drug will remain in solution and the system is 

at equilibrium. Zone 2, the metastable region, is located between the equilibrium 

solubility line and metastable zone limit.  In this zone the supersaturation ratio is greater 

than 1, but the rate of crystallization is slow. Precipitation will eventually occur, but may 

not be observed within a given period of time. As the drug concentration enters Zone 3, 

precipitation occurs rapidly. A similar concept of three zones can be employed in the 

current study. As shown in Figure 4.10, the lower line is the equilibrium solubility of 

drug as function of PS80. Accordingly, the upper line represents a limit of rapid 

precipitation provided that all other kinetic factors are kept constant.  At constant drug 

concentration, the driving force for precipitation would increase as the concentration of 

PS80 would decrease from Zone 1 to Zone 3.  In the dispersion studies, the concentration 

of PS80 would not decrease as a function of time. Thus, any precipitation observed was 
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due to the initial concentration of drug starting out in Zone 2 or 3. In later studies, in the 

presence of lipase enzyme, the concentration of PS80 will decrease as a function of time.   
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Figure 4.9 Solubility–temperature diagram.(Adapted from Mullin, J. W.) (Mullin, 1961) 

C
on

ce
nt

ra
tio

n
of

dr
ug

Concentration of polysorbate 80

Metas
tabl

e zone

Equilibrium solubility

Metastable zone limit

1
2

3

change of surfactant concentration

change of initial drug concentration

 

Figure 4.10.  Solubility-PS80 concentration diagram.  All PS80 concentrations are above 

the CMC. 
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4.4.2.3. Solubilization of model drugs formulated with PS80 and dispersed in SIF 

buffer 

In this section, a series of experiments were carried out to determine the extent to which 

model drugs remain in solution after dispersion of drug-loaded PS80 formulation into SIF 

buffer. These experiments are labeled as “dispersion” simply because SIF does not 

contain pancreatic enzyme.  

The effect of drug concentration on the ability of PS80 formulation to maintain the drug 

in the solubilized state was examined. To carry out this study, it was first necessary to 

determine the solubility of the drug in neat PS80. The results are shown in Table 4.4. The 

rank order solubility is nifedipine > 17β-estradiol > progesterone. In addition, the 

equilibrium solubilities of the model drug in 1% PS80 in SIF buffer at 37°C are also 

listed in Table 4.4. 

Table 4.4 Equilibrium solubilities of progesterone, 17β-estradiol and nifedipine in neat 

PS80 at 25±0.5°C and in 1% of PS80 solution in SIF buffer at 37 ±0.5°C (n=3)  

Solubility 
 

Progesterone 17β-estradiol 
 

Nifedipne 

neat PS80(mg/g) 21.0±0.9 32.9±0.6 39.8±0.3 

       1% PS80 
solution(mM)* 0.47 

 
0.27 

 
0.45 

                        *Calculated from the solubilization capacity 

Dispersion experiments were carried out by adding drug-containing PS80 formulations to 

SIF buffers. The formulations were prepared such that the PS80 concentration upon 

dilution would be 1% w/v. Further, the formulations were designated such that, upon 

initial dilution, the supersaturation ratios (as defined by Eq. 4.2) would be ∼2, ∼1 and <1. 

Higher degree of supersaturation will result in a very unstable system in which drug 

precipitates rapidly (Santos, Watkinson et al., 2011). 
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4.4.2.3.1. Progesterone  
The equilibrium solubility of progesterone in 1% PS80 in SIF buffer was found to be 154 

µg/mL. Upon dilution with SIF buffer, the initial concentrations of P-20 and P-31 were 

designed to be 193 ± 5 µg/mL and 327 ± 13 µg/mL, respectively. As shown in Figure 

4.11, P-31, in which the initial supersaturation ratio is 2, showed rapid precipitation over 

30 min.  Over the same time period, there was no significant precipitation from P-12 and 

P-20. With SS close to 1, progesterone precipitation appeared able to be delayed in the 

dispersion of P-20 for up to 120 min. As expected, when examining P-12 no precipitation 

was observed (SS <1). In terms of percentage drug in solution within three replicates,  the 

variability from dispersion of P-31 was also larger than those from dispersion of P-12 and 

P-20 probably due to the complex precipitation kinetics.  

 

Figure 4.11 The progesterone concentration during the in vitro dispersion of P-12 

(triangle), P-20 (diamond) and P-31 (square) at 37°C. The dashed line is the equilibrium 

solubility in 1% PS80 solution. The inserted figure is the concentration-time profile 

during 24 h. 

The chemical potential of supersaturated solution is greater than that of the saturated 

solution and is thus thermodynamically unstable. As the degree of supersaturation 

increases, the stability of the system decreases. We can only speculate as to the possible 

factors influencing the kinetics of precipitation. In general, the rate of homogeneous 
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primary nucleation is determined by the temperature, degree of supersaturation and 

surface energy according to the Eq. 4.3 (Mullin, 1961).  

J = Aexp
16πσ3ν2

3k3T3(lnS)2-
                         (4.3) 

Where J is the nucleation rate; T, σ, and S are temperature, surface energy and degree of 

supersaturation, respectively; k is Boltzmann constant; A is pre-exponential factor and ν 

is molecular volume.  Nucleation could occur at any value of supersaturation ratio greater 

than 1 if given sufficient time. The nucleation step is considered an activated process; 

once the degree of supersaturation exceeds a critical level, the rate of nucleation increases 

extremely rapidly. The initial concentration in the dispersion P-31 likely is located in 

Zone 3 of Figure 4.10.  As a result, rapid precipitation in P-31 was as expected. The 

influence of foreign particles on the rate of precipitation of P-31 cannot be eliminated.  

Homogenous primary precipitation seldom occurs because foreign particles which act as 

nuclei usually are contained in solutions. The precipitation induced by foreign particles is 

known as heterogeneous primary nucleation. Due to the availability of solid surface of 

the foreign particle, the effective activation energy is lower for heterogeneous nucleation 

than that for homogeneous nucleation (Nielsen and Söhnel, 1971). Therefore, the 

precipitation is faster in the presence of foreign particles.  

Rapid precipitation from the supersaturated state is not always observed. As an 

alternative to the nucleation step, the crystal growth may be the rate-limiting step. Two 

steps are included in the crystal growth in which molecules diffuse to the surface of 

nuclei from the bulk solution and then integrate into surface of nuclei. The rate of growth 

can be expressed by Eq. 4.4  (Lindfors, Forssén et al., 2008). 

      
dr
dt =

DvNA
r +D/k (C-Ceq)

                  (4.4) 

Where r is the crystal radius; D is the diffusion coefficient of the drug molecule; NA is 

Avogadro constant; k is the surface integration factor; and C and Ceq are the equilibrium 

concentration in the bulk solution and on the surface of the cluster, respectively. When r 

is much greater than D/k, the growth is controlled by diffusion of the drug molecule to 
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the nuclei surface. On the other hand, the growth is controlled by the molecular 

integration on nuclei surface when D/k is much greater than r. Regardless of which 

process is the rate-controlling step, the rate of growth is proportional to the difference of 

concentration between that in the bulk solution and on the nuclei surface. Of course, the 

apparent degree of supersaturation determined in solution may not be the same as that 

defined in Eq. 4.4. The technique to determine the extent of supersaturation directly at the 

surface of the growing nuclei is still limited. However, the apparent degree of 

supersaturation in solution should correlate with the degree of supersaturation at the 

nuclei surface.  

4.4.2.3.2. 17 β-Estradiol  

In spite of similar steroidal structure, the physicochemical properties of 17β-estradiol are 

quite different from those of progesterone. The equilibrium solubility of 17β-estradiol in 

neat PS80 is 32.92 ± 0.62 mg/g at 25±0.5°C which is 1.6 times as much as that of 

progesterone (20.98±0.99mg/g) at 25°C.  The equilibrium solubility of 17β-estradiol in 1% 

of PS80 micellar solution was determined to be 72.3 µg/mL at 37°C.  

Dispersion of E-7 and E-14 resulted in initial concentrations of 78±2 µg/mL (SS=1) and 

153±7 µg/mL (SS=2), respectively. Upon dilution of E-14 formulation in SIF buffer, the 

drug concentration showed an apparent bi-phasic relationship.  The rate of drug loss from 

solution was relatively rapid and approximately linear over the first 240 minutes, after 

which a slower rate was observed.  Over the whole 24 hour study a supersaturated state 

was maintained.  As expected, at low initial supersaturation ratio (SS=1.1), the 

concentration of 17β-estradiol did not change for up to 24 h following the dispersion of 

the E-7 formulation.   
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Figure 4.12 The 17β-estradiol concentration during the in vitro dispersion of E-7 (square) 

and E-14 (diamond) in the absence of enzyme preparation at 37°C. The dashed line is the 

equilibrium solubility in 1% PS80 solution. 

4.4.2.3.3. Nifedipine 
To examine the structures other than steroids, the solubilization behavior of nifedipine 

was investigated. N-11 gave an initial concentration of110 µg/mL upon dispersion.  The 

equilibrium solubility of nifedipine in 1% PS80 is 156 µg/mL. The creation and 

maintenance of the supersaturated state during the in vitro dispersion of N-20 and N-35 

were also assessed (Figure 4.13). Calculated from the amount of added formulation and 

amount of drug in formulation, N-35 and N-20 gave the initial concentrations of 377±6 

µg/mL and 195±0.6 µg/mL. Supersaturation ratios were 2.2 and 1.3 for N-35 and N-20, 

respectively. Significant nifedipine precipitation was not observed in the in vitro 

dispersion of N-20.  Upon dispersion of N-35, nifedipine concentration dropped rapidly 

over a period of 200 minutes, followed by a gradual approach to the equilibrium value.  
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Figure 4.13 The nifedipine concentration in the dispersion of N-20 (diamond) and N-35 

(square) in the absence of the enzyme preparation at 37°C.  The dashed line is the 

equilibrium solubility in 1% PS80 solution. 

According to the Fick’s First Law, supersaturation would be expected to influence the 

rate of drug transport through the intestinal biological membrane. A good correlation 

between the degree of supersaturation and the drug transport through an artificial 

membrane has been reported (Davis and Hadgraft, 1991; Pellett, Davis et al., 1994; 

Pellett, Castellano et al., 1997; Schwarb, Imanidis et al., 1999; Iervolino, Raghavan et al., 

2000; Raghavan, Trividic et al., 2000). In order to quantify the time-dependent 

supersaturation during the in vitro dispersion, the area under the supersaturation ratio-

time curve (AUC-SS) was calculated.  It is proposed that the AUC-SS may be a 

descriptor of the time-dependent extent to which a drug remains in the supersaturated 

state. The values of AUC0-120 min-SS of progesterone, 17β-estradiol and nifedipine are 

26±4, 92±7 and 113±7 min, respectively. Within the first 120 minutes, progesterone 

showed the least stability in supersaturated state while 17β-estradiol and nifedipine 

exhibited higher stability.  

The maintenance of supersaturation during the in vitro dispersion may reflect the 

interaction of drug with PS80.  Considering the structures of 17β-estradiol and nifedipine, 

both have a hydrogen-bonding capability with other molecules. It has reported that 
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formation of hydrogen-bonding between nifedipine and PVP was one of the factors that 

delayed drug crystallization (Marsac, Konno et al., 2006). Formation of a hydrogen-bond 

between the drug and the surfactant could potentially increase the activation energy for 

nucleation. Moreover, possible adsorption of surfactant/polymer on the crystal surface 

through hydrogen-bonds could slow down the precipitation (Raghavan, Trividic et al., 

2000; Raghavan, Kiepfer et al., 2001; Vandecruys, Peeters et al., 2007; Overhoff, 

McConville et al., 2008). Of course, one would expect extremely slow precipitation at 

supersaturation degree close to 1 due to the low thermodynamic driving force.  Possible 

interactions between drugs and PS80 will be examined in Chapter 6.  

 

 

Figure 4.14 The supersaturation ratios during the in vitro dispersion of progesterone 

formulation (P-31, diamond), 17β-estradiol formulation (E-14, square) and nifedipine 

formulation (N-35, triangle). The dashed line is the baseline where the supersaturation 

ratio equals 1. 

It should be noted that the formation of the original stable crystalline form during in vitro 

dispersion was assumed.  In general, amorphous form has higher equilibrium solubility 

compared to the crystalline form due to high thermodynamic activity. Thus, it is critical 

to identify the polymorph of the solid generated during precipitation. Due to the material 

availability and time-dependent change of solid form during the precipitation, it was not 
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possible to identify the exact crystalline form generated at each time point in Figures 

4.11-4.13. However, polarized microscopy may be applied to identify amorphous vs. 

crystalline forms at predetermined times during the in vitro dispersion of P-31, E-14 and 

N-35.  As shown in Figure 4.15, birefringence was observed as function of time 

indicating the formation of a crystalline form of each drug. Birefringence was observed in 

15 min in the dispersion of P-31 while it took at least 30 min to get a clear image in the 

dispersion of E-14 and N-35.  

 

 

Figure 4.15 The birefringence of the precipitation of progesterone (top), 17β-estradiol 

(middle) and nifedipine (bottom) during in vitro dispersion of drug-containing 

formulations at 37°C 
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4.4.3. Equilibrium solubility in the digested blank formulation 

The thermodynamic driving force for drug precipitation is the difference between 

apparent solubility of a drug during the in vitro lipolysis and the equilibrium solubility of 

the drug in media containing the lipid aggregates of lipolytic products. One would expect 

that the lipolysis may result in an alteration of the ability of the formulation to solubilize 

the drug or to maintain the drug in solubilized state. This expectation is rooted in the 

observation that, on the one hand, lipolysis causes the loss of excipient surfactants, but on 

the other hand, it also results in the formation of fatty acids and new lipid assemblies. To 

examine the putative relationship between the thermodynamic driving force for drug 

precipitation and the extent of lipolysis, the equilibrium solubility of model drugs in 

digested blank formulations was assessed. The solubility values were determined by 

adding excess amount of a model drug to the blank PS80 samples taken at predetermined 

times of digestion. 

Shown in Figure 4.16 is the equilibrium solubility of the three model drugs in products of 

lipolysis of PS80 formulation. To be clear, the x-axis represents the time of lipolysis of 

the blank formulation; the y-axis representes equilibrium solubility.  As shown in Figure 

4.16, the equilibrium solubility of progesterone in lipolytic products remained relatively 

constant. At the 95% confidence level, the equilibrium solubility of progesterone in PS80 

was lower than in lipolytic products at each time point. In contrast, a decrease of 

equilibrium solubility in lipolytic products was evident in the cases of 17β-estradiol and 

nifedipine. Equilibrium solubility decreased by about a factor of 2 for 17β-estradiol and 3 

for nifedipine in lipolytic products produced by 120 min. The results clearly show that 

the capability of lipolytic products to solubilize model compounds is drug-dependent.  
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Figure 4.16 The equilibrium solubility of progesterone (star), 17β-estradiol (diamond) 

and nifedipine (triangle) in the blank PS80 after digestion by lipase enzyme at 37°C. The 

enzyme was inhibited by 4-BPB during the equilibrium solubility experiment.  

In order to more clearly illustrate the relationship of equilibrium solubilities of model 

drugs and the content of PS80, the equilibrium solubility of a model drug in lipolytic 

products at predetermined times was normalized by dividing by the equilibrium solubility 

at time zero when PS80 is the only lipid in solution (Eq. 4.5). The results are shown in 

Figure 4.17. The equilibrium solubilities of 17β-estradiol and nifedipine in lipolytic 

products decreased over the first 10 min, resulting in 65% remaining for 17β-estradiol 

and 54% for nifedipine, respectively. The normalized equilibrium solubility of 17β-

estradiol decreased to 54 % in 120 min where 58% of PS80 was hydrolyzed (dashed line 

in Figure 4.17). In contrast, the normalized equilibrium solubility of nifedipine decreased 

to 52% in lipolytic products present after 30 min and reached 35% in lipolytic products 

present at 120 min. The dependence of equilibrium solubility of drug upon the lipolysis 

time likely reflects the partitioning of the drug between the aqueous solution and the 

formed mixed micelles of lipolytic products. The detailed mechanisms of solubilization 

of the model drug in the lipolytic products will be studied in a series model of mixed 

micelles composed of PS80 and oleic acid (Chapter 5). The interactions of the drug with 

model mixed micelles will be examined in Chapter 6.  
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% drug remaining =

Concentration determined at the time of sampling

Concentration determined at time zero
x 100%

  (4.5) 

 

Figure 4.17 The percentage of progesterone (star), 17β-estradiol (diamond) and 

nifedipine (triangle) in the solutions of digested blank PS80 at 37°C relative to the 

equilibrium solubility at time zero. The dashed line is the percentage of PS80 remaining. 

4.4.4. Solubilization of model drugs formulated in PS80 during in vitro lipolysis  
The purpose of these experiments was to determine the extent to which PS80 is able to 

create and maintain a supersaturated state during the exposure of the drug-loaded 

formulation to lipolysis under fasted-state conditions. It is evident that the lipolysis 

resulted in a dramatic reduction of PS80 concentration and a rise in production of fatty 

acid (Figures 4.5a – 4.5c in Section 4.4.1).  The surfactant composition of the solution 

was altered by lipolysis and thus the structure of lipid aggregates, and their capability to 

solubilize a poorly-water soluble drug, may also be modified. In the following section the 

extent to which supersaturation of progesterone, 17β-estradiol and nifedipine is altered as 

a result of the lipolysis of surfactant PS80 will be determined  
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4.4.4.1. Control experiments 
There are several possible reasons for a decrease in drug concentration upon the addition 

of an enzyme to a drug-containing dispersion. So as to more clearly illustrate the effect of 

lipolysis on drug solubilization of drug-PS80 formulation, two control experiments were 

carried out. The first control experiment was designed to determine if particles in the 

enzyme preparation were able to act simply as nuclei and promote precipitation of the 

drug. As mentioned in Chapter 3, the enzyme preparation is not a clear solution, but is a 

suspension, probably including some undissolved protein from the isolation process. So 

as to elminate the effect of lipolysis and focus solely on the putative nucleation properties 

of particles, disperion studies were carried out in the presence of a denatured enzyme.  

Shown in Figure 4.18 are results of dispersion studies of P-20 in the presence and 

absence of an inactivated enzyme. Clearly, there was little difference in the concentration 

of progesterone remaining in solution between the two treatments. This result is not 

surprising since dispersion of the P-20 formulation results in an initial supersaturation 

ratio close to one. Shown in Figure 4.19 are the results of dispersion studies of P-31 in 

the presence and in the absence of an inactivated enzyme.  Within the first 30 min of 

dispersion, significantly more progesterone precipitated out of solution in the presence 

inactivated enzyme as compared to the absence of the enzyme. When initially dispersed, 

P-31 has a supersaturation ratio of about 2. The results in Figure 4.19 suggest that 

precipitation of progesterone from this thermodynamically unstable system may be 

accelerated by nucleation of solid particles in the enzyme preparation. Similar results 

were observed when N-35 formulation was dispersed in the presence and absence of 

inactivated enzyme (Figure 4.20). Here too, it may be concluded that N-35 formulation, 

with an initial supersaturation ratio of approximately 2 may be induced to precipitate in 

the presence of particles in the enzyme preparation.  
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Figure 4.18  Progesterone concentration during the in vitro dispersion of P-20 in the 

absence of enzyme (diamond) and the presence of inactivated enzyme (square). The 

dashed line represents the equilibrium solubility in 1% PS80 solution at 37°C. 

 

Figure 4.19  Progesterone concentration during in vitro dispersion of P-31 in the absence 

of enzyme (diamond) and the presence of inactivated enzyme (triangle). The dashed line 

represents the equilibrium solubility in 1% PS80 solution at 37°C. 
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Figure 4.20  Nifedipine concentration during the in vitro dispersion of N-35 in the 

absence of enzyme (square) and in the presence of inactivated enzyme (triangle). The 

dashed line represents the equilibrium solubility in 1% PS80 solution at 37°C.  

The effect of particles in the enzyme preparation on drug precipitation was further 

evaluated by the area under the curves in Figures 4.18-4.20. The results are listed in 

Table 4.5. Both values of AUC0-60 min and AUC0-24h of P-20 were identical in the absence 

of the enzyme preparation and in the presence of an inactivated enzyme preparation. 

However, the value of AUC0-60 min of P-31 was about 20% higher in the absence of the 

enzyme preparation as compared to that with the inactivated enzyme. A significant 

difference on AUC was observed in the first 60 min. Similarly, the value of AUC0-180 min 

of N-35 was 17% higher in the absence of enzyme than in the inactivated enzyme 

preparation. In a 24-hour period, the values of AUC0-24h of P-31 and N-35 were 10% and 

7% higher in the absence of the enzyme than in the inactivated enzyme preparation, 

respectively. Thus, we concluded that particles in the enzyme preparation, probably 

acting as nuclei, accelerated the precipitation of the drug at a supersaturation ratio of 2. 

Therefore, any precipitation observed in the presence of active enzyme must be 

considered in the evaluation of the effect of lipolysis of highly supersaturated 

formulations. 
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Table 4.5 The concentration area under the concentration-time curve (µg·min·mL-1±SD) 

in the in vitro dispersion of formulations in the absence of enzyme preparation and in the 

presence of an inactivated enzyme preparation 

Formulation No enzyme 

preparation 

Inactivated enzyme 

preparation 

P* 

P-20 (1.09±0.07)×104 

 (0-60 min) 

(1.08±0.02)×104  

(0-60 min) 

>0.05 

P-20 (2.53±0.09)×105  

(0-24 h) 

(2.50±0.02)×105  

(0-24 h) 

>0.05 

P-31 (1.23±0.07)×104 

 (0-60 min) 

(1.01±0.06)×104 

 (0-60 min) 

<0.05 

P-31 (2.48±0.07)×105  

(0-24 h) 

(2.24±0.17)×105  

(0-24 h) 

>0.05 

N-35 (5.44±0.19)×104  

(0-180 min) 

(4.78±0.09)×104  

(0-180 min) 

<0.05 

N-35 (3.07±0.09)×105 

 (0-24 h) 

(2.88±0.08)×105 

 (0-24 h) 

<0.05 

             *p-value of student T-test 

In any supersaturated solution nucleation can occur spontaneously or it may be induced 

by any particles present. Nucleation initiated by any insoluble matter, such as insoluble 

protein, is termed primary heterogeneous nucleation.  Nucleation initiated by solute 

crystals is termed secondary nucleation. The primary heterogeneous nucleation is very 

difficult to avoid in reality. The presence of particles in the enzyme preparation could 

affect the rate of crystallization considerably since the particle surface can rapidly induce 

the crytallization. As evident in the dispersion of P-31 and N-35, the enzyme preparation 
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resulted in an earlier onset of precipitation compared to those same solutions in the 

absence of denatured enzyme. Acceleration of the rate of precipitation was only observed 

in the highly supersaturated solutions, but not in solutions of low supersaturation such as 

P-20. However, the mechanisms by which denatured enzyme may act as initiators of 

precipitation are not clear. The apparent rate of precipitation is a function of primary 

nucleation, including homogenous and heterogenous nucleations, secondary nucleation, 

and crystal growth. The influence of each step is highly dependent on the degreee of 

supersaturation.  In the case of active enyzme, lipolysis of exicipients likely makes the 

situation even more complicated.  

To this point, the loss of drug from solution has been ascribed soley to precipitation.  A 

second, but much less likely, reason for a decrease in drug concentration in the presence 

of enzyme is protein-binding of the drug. To determine if model drugs were bound to the 

enzyme or other protein in the preparation, a known concentration of drug below the 

solubility limit was spiked into the solution containing inactivated enzyme.  Drug 

recovered after the removal of the protein was determined by HPLC. The percentage of 

recovery for all drugs was over 98%. These results suggest that protein-binding of the 

drug has little influence on drug concentration.  

4.4.4.2. Progesterone in PS80 formulations exposed to lipolytic conditions 
With the control experiments completed and the behavior of the formulation upon 

dispersion in the absence of enzyme characterized, the effect of lipolysis on the drug-

containing formulations was studied. The first set of experiments focused on 

progesterone.  Progesterone concentration was determined as a function of time during 

the lipolysis of P-12, P-20 and P-31.  As seen in Figure 4.21, in the absence of calcium, 

only a small change in drug concentration was observed from P-12 and P-20 in the first 5 

min. After 5 min, progesterone concentration remained constant up to 24 hours. 

Compared to the equilibrium solubility in the lipolytic products of a blank formulation, 

the lipolysis of P-31 formulations resulted in a markedly reduced progesterone 

concentration.  Lipolysis of P-12 and P-20 had no effect on progesterone concentration. 

The small percentage change of progesterone was seen in the experiments with the 

inactive enzyme in P-20 and P-31.  For all three formulations, the concentrations at each 

time point collected under lipolysis conditions were compared to those collected with 
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inactive enzyme.  Results of applying the Student t-test indicated that there was no 

significant difference between results from  inactiveated enzyme (Figure 4.18) and active 

enzyme (Figure 4.21) up to 24 hours. Areas under the curve in Figure 4.18 and Figure 

4.21 were calculated for P-20 (Table 4.6) . Both values of AUC0-60 min and AUC0-24h  are 

identical in the presence of inactivated enzyme and in the presence of active enzyme. The 

results strongly suggest that the lipolysis of the formulation had no effect on the 

solubilization of progesterone at a supersaturation ratio of 1.  When the initial 

supersaturation ratio was 2 in P-31, approximately 50% of the progesterone precipitated 

within the first 10 min  (Figure 4.21). If one compares the results from the inactivated 

enzyme, the decrease of progesterone concentration during in vitro lipolysis of P-31 is the 

result of the introduction of particles into the medium. This is supported by AUC0-60 min 

of P-31 in Figure 4.19 and Figure 4.21 (Table 4.6) where the values under the two 

treatments are not significantly different.  

Quantitatively, the difference between the AUCinactivated enzyme and AUCactive enzyme will 

give an estimation of magnitude of effect of the loss of PS80  alone on the precipitation 

during the in vitro lipolysis (Table 4.6). The results clearly demonstrated that the lipolysis 

of PS80 had no effect on progesterone solubilization where the difference between 

AUCinactivated enzyme and AUCactive enzyme is not statistically significant.   It can be concluded 

that the loss of progesterone upon exposing P-20 and P-31 to lipolysis is not due to 

hydrolysis of the surfactant, but rather is due to particles in the enzyme preparation acting 

as nuclei. 
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Table 4.6 The area under the concentration-time curves (µg·min·mL-1±SD) for the in 

vitro dispersion of formulations in the presence of active enzyme preparation and the 

presence of inactivated enzyme preparation.  Significance tested at p = 0.05. 

Formulation Active enzyme 

preparation 

Inactivated enzyme 

preparation 

∆( AUCinactivated enzyme - 

AUCactive enzyme) 

P-20 (1.05±0.09)×104  

(0-60 min) 

(1.08±0.02)×104  

(0-60 min) 

Not significant  

P-20 (2.45±0.16)×105 

 (0-24 h) 

(2.50±0.02)×105  

(0-24 h) 

Not significant  

P-31 (9.69±0.15)×103  

(0-60 min) 

(1.01±0.06)×104 

 (0-60 min) 

Not significant 

P-31 (2.17±0.05)×105  

(0-24 h) 

(2.24±0.17)×105 

 (0-24 h) 

Not significant 

N-35 (2.50±0.10)×104 

 (0-180 min) 

(4.78±0.09)×104 

 (0-180 min) 

(2.28±0.13)×104 

 

N-35 (1.09±0.02)×105  

(0-24 h) 

(2.88±0.08)×105  

(0-24 h) 

(1.79±0.08)×105  
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Figure 4.21 The progesterone concentration during the in vitro lipolysis of P-12 (triangle), 

P-20 (diamond), and P-31(square). Five millimolar Ca2+ was not included in the SIF 

buffer. The cross represents the equilibrium solubility in the digested blank formulation. 

A series of lipolysis experiments were carried out in the presence of 5 mM Ca+2.  In all 

cases, the medium  was observed to be cloudy within 15 min of the addition of the 

enzyme preparation.  As characterized in Section 3.4.3.3.2 of Chapter 3, a significant 

fraction of fatty acid released from PS80 was precipitated as Ca2+ salt. It is likely that the 

precipitate observed within 15 min was the calcium–fatty acid salt, although progesterone 

precipitate can not be excluded.  During lipolysis, the progesterone concentration 

decreased for P-20 and P-31 formulations.  Lipolysis conditions did not influence the 

progesterone concentration from P-12 formulaiton.   

The reason for the loss of progesterone from solution during lipolysis in the presence of 

calcium ion may be related to a loss of micellar solubilization capacity.  The results 

shown in Section 4.4.1 clearly demonstrate that in the presence of calciium ion about 50 

to 60% of PS80 was hydrolyzed within the first 120 min.  Further, due to the precipitation 

of caclium salt of fatty acid, the concentration of fatty acid in solution available for 

micellization was reduced. Thus, during lipolysis in the presence of calcium ion, both 

PS80 and fatty acid are lost from solution.  The characterization of micelles of PS80 in 

Chapter 6 indicated that the size was independent of the total surfactant concentration 

within the empolyed range. It is reasonable to assume the aggregation number of micelles 
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of PS80  remains constant though the lipolysis. Therefore, we concluded that the decrease 

of the total concentration of surface-active species resulted in the decrease in the number 

of micelles to solubilize progesterone.  The observation that equilibrium solubility of 

progesterone in the lipolytic products formed during the lipolysis of the blank 

formulation decreased (Figure 4.22) supports the conclusion that the loss of progesterone 

from solution is related to the loss of micellar solubilization capacity.   

 

Figure 4.22 The progesterone concentration during the in vitro lipolysis of P-12 (triangle), 

P-20 (diamond), and P-31(square).  Ca2+ was included in the SIF buffer. The cross 

represents the equilibrium solubility of progesterone in the digested blank formulation. 

4.4.4.3. 17 β-Estradiol in PS80 formulations exposed to lipolytic conditions 

The effect of lipolysis on 17β-estradiol-containing formulations of PS80 was studied. All 

studies were carried out in the absence of calcium. The initial concentration of PS80 upon 

dispersion of the formulation was 1% w/v. The E-5 formulation created an initial drug 

concentration in the SIF buffer of 57±2 µg/mL, a value lower than equilibrium solubility 

(73 µg/mL in 1% PS80 solution at 37°C).  Dispersion of E-7 resulted in an initial 

concentration of 78 ±2 µg/mL, a value close to the equilibrium solubility. Dispersion E-

14 resulted in an initial concentration of 161±1 µg/mL, giving a value of the 

supersaturation ratio close to 2.0.  Compared to the equilibrium solubility of 17β-
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estradiol in lipolytic products during the lipolysis of the blank formulation, an obvious 

effect of lipolysis on the creation and maintenance of supersaturated 17β-estradiol is 

presented in Figure 4.23.  During lipolysis of E-5, the concentration of 17β-estradiol 

decreased by only 24% by 24 h. Similarly, only 10% of the drug precipitated by 6 h from 

the lipolysis of E-7 and concentration decreased by only about 30% by 24 h.  For E-14, 

90% of 17β-estradiol remained in the solution after 120 minutes.  By 240 minutes the 

concentration dropped to 60%.   The AUC0-240 min values (Table 4.6) in the presence of 

lipolysis conditions and in the presence of inactive enzyme were 

(3.23±0.12)×105ug·min·mL-1 and (3.12±0.09)×105ug·min·mL-1 respectively.  Student t-

test results indicate that the treatments had no effect on area under the concentration-time 

curve.  On the other hand a significant effect of lipolyis on the solubilization of 17β-

estradiol was observed at long exposure.  At 24 hours, only 28% of the drug remained in 

the solution during the lipolysis of E-14 whereas 61% of the drug remained in the 

solution when exposed to the inactive enzyme.  

 
Figure 4.23 The 17β-estradiol concentration during the in vitro lipolysis of E-5 (triangle), 

E-7 (square), and E-14 (diamond). The cross represents the equilibrium solubility of 

estradiol in the digested blank formulation. The circle with the dashed line is the drug 

concentration during the in vitro dispersion of E-14. 
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4.4.4.4. Nifedipine in PS80 formulations exposed to lipolytic conditions 
Three formulations of nifedipine were examined.  N-11 created an initial concentration of 

113±2 µg/mL in SIF buffer which was lower than the equilibrium solubility (156±3 

µg/mL in 1% w/v PS80 solution at 37°C). N-20 and N-35 gave concentrations at 

supersaturation ratios of 1.3 and 2.0, respectively. The experimental results suggested a 

rather complex relationship of lipolysis and nifedipine concentration (Figure 4.24).  The 

equilibrium solubility of nifedipine in the lipolytic product formed during the lipolysis of 

the blank formulation decreased by over 60%.  Despite this large drop in equilibrium 

solubility, during lipolysis of N-11, the concentration of nifedipine remained close to the 

initial concentration for up to 5 h.   This is the first observation in this work that a system 

initially presenting drug in a subsaturated condition became supersaturated due to the 

action of lipase enzyme.   The lipolysis of N-20 resulted in only 10% of drug loss in first 

120 min followed by a decrease of the drug concentration to 34% of the initial 

concentration by 300 min.  Figure 4.24 shows the N-20 system was supersatured for at 

least 300 minutes.  By 24 h, only 28% of the drug remained in solution.  Taken together, 

drug concentration in N-11 and N-20 systems appeared to resist the effects of lipase for at 

least 300 minutes.  In contrast, the concentration of nifedipine dropped markedly during 

the lipolysis of N-35. The drug concentration was decreased by 24% in the first 30 min. 

By 120 min, the drug concentration reached equilibrium solubility and the system was no 

longer supersaturated.  

As stated previously, the particles acting as nuclei in the enzyme preparation likely have 

a significant effect on the precipitation of the drug from high supersaturation. The effect 

of lipolyisis on the nifedipine solubilization was evident by the comparison of the 

concentration AUC0-180 min of N-35 in Figure 4.20 and Figure 4.24 (Table 4.6). The 

values of AUC-C0-180 min during the dispersion with no enzyme, with inactivated enzyme, 

and with active enzyme are (5.44±0.19)×105, (4.78±0.09)×105 and (2.50±0.10)×105 

µg·min·mL-1, respectively. The difference between the AUCinactivated enzyme and AUCactive 

enzyme is statistically significant (Table 4.6). These values suggested that the precipitation 

of nifedipine in N-35 was dominated by the lipolysis of formulation.  
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Figure 4.24 The nifedipine concentration during the in vitro lipolysis of N-11 (triangle), 

N-20 (diamond), and N-35 (square) formulations.  The cross represents the equilibrium 

solubility of nifedipine in the digested blank formulation.   

The role played by lipid assemblies (in the present study, mixed micelles of PS80 and 

oleic acid) in the maintenance of supersaturation is not clear.  In a complex LBDDS 

containing oil and surfactant, the existence of a continuum pathway from the digesting oil 

droplets to the newly-formed lipid aggregates has been suggested (Patton and Carey 1979; 

Patton, Vetter et al., 1985; Hernell, Staggers et al., 1990; Staggers, Hernell et al., 1990; 

MacGregor, Embleton et al., 1997). A schematic presentation of this pathway is given in 

Scheme 4.2. The concentration of lipolytic products such as mono- and di-glycerides and 

fatty acids increases at the surface of oil droplets as lipolysis proceeds. These products 

transiently form a liquid crystalline phase at the surface. Drug may also be incorporated 

in this surface phase.  Spontaneously, this phase erodes to form multilamellar vesicles 

which are transformed to unilamellar vesicles in the presence of bile salts. Eventually, 

these unilamllar vesicles form mixed micelle with bile salts. This series of lipid 

aggregates provide a continuous hydrophobic environment for poorly-water soluble drugs. 

Kaukonen et al. (Kaukonen, Boyd et al., 2004) has suggested that a hydrophobic drug is 

prevented from partitioning into the aqueous phase due to rather large lipid/water 
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partition coefficient.  If hydrophobic drug is “sequestered” in the variety of lipid 

assemblies present during lipolysis of LBDDS, the aqueous phase concentration may 

remain below the solubility limit.   

In the current investigated system, micelles were the only lipid assembly present before 

and after lipolysis of PS80 and the continuum pathway outlined in Scheme 4.2 does not 

exist. It has been suggested that residence time of a drug molecule in a micelle will be 

similar to that of a surfactant monomer, somewhere on the order of a few milliseconds 

(Muller, 1978; Kahlweit, 1982).  The relaxation time for the formation and dissolution of 

a PS80 micelle has been determined to be 8-10 seconds (Patist, Oh et al., 2001). 

Although no data exist in the literature, the kinetics of drug transferring between the 

digesting PS80 micelles and the mixed micelle of lipolytic products with BS/PC is likely 

to be rapid.  From a classical point of view, it might be expected that as PS80 is 

progressively hydrolyzed and the fraction of oleic acid in the micelle increases, the 

solubilization potential of these mixed micelles would decrease.  Since the micelles have 

a short life-time, the drug would rapidly be released into the media; precipitation would 

result.   This scenario of decreased equilibrium solubilization in products of lipolysis was 

indeed observed for 17β-estradiol (Figure 4.23) and nifedipine (Figure 4.24).  The 

classical view of micelle solubilization does not help in explaining why 17b-estradiol and 

nifedipine solutions could remain supersaturated for such a long time.  Instead of the 

classical view, suppose the micelles could become supersaturated with drug.  If the 

aqueous phase is supersaturated with drug, and the micelle-water partition coefficient 

remains unchanged (a significant assumption in this speculation), then the micelles also 

must be supersaturated.  Under this scenario, the intermicelle concentration of drug 

would be reduced compared to that of the more classical view of solubilization.  As a 

direct result of the micelles being supersaturated, the intermicelle concentration of drug 

would be in the metastable Zone 2 (Figure 4.10), rather than in the precipitation Zone 3.  

Of course, the concept of a supersaturated micelle is speculative and no data currently 

exists supporting this hypothesis.   
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Scheme 4.2  Schematic representation of the hydrophobic continuum pathway for drug 

during the digestion of a lipid. 

 

 

Scheme 4.3 Partitioning of a drug between a supersaturated micelle and a supersaturated 

aqueous solution. 

4.4.5. Extent of supersaturation during in vitro lipolysis 
The bioavailability of a poorly-water soluble drug is dependent on several factors, not the 

least of which is the concentration in solution at the site of absorption in the GI tract. 

Provided that other factors, such as first pass metabolism, have no effect on the 

bioavailability, the ability of a formulation to create and maintain the drug in a 

supersaturated state for an extended period of time has been hypothesized to improve the 

bioavailability.  Although a number of studies have demonstrated improved oral 

bioavailability of a poorly-water soluble drug by a supersaturation approach (Gao, 

Guyton et al., 2004; Guzmán, Tawa et al., 2007; Overhoff, McConville et al., 2008), there 

are limited data to allow one to correlate supersaturation profile in vitro with 

pharmacokinetics profile in vivo.  

The degree of supersaturation is quantified by the supersaturation ratio (SS) which is the 

ratio of drug concentration to the equilibrium solubility value. Eq. 4.2 can be applied by 

combining, at each time point, apparent solubility during in vitro lipolysis (Figures 4.21 
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and 4.23-4.24) with the equilibrium solubility in lipolytic products (Figure 4.16). As 

shown in Figures 4.25a-4.25c, the supersaturation ratios of progesterone, 17β-estradiol 

and nifedipine were shown to be sensitive to the extent of lipolysis. The P-20 and P-31 

created maximum degree of supersaturation at time zero and performed poorly in 

maintaining the supersaturated state. Except for the values at time zero, the SS values 

were less than or equal to 1. As a result, the concentration of progesterone in solution 

remained constant up to 24 h. On the other hand 17β-estradiol showed a totally different 

supersaturation profile during the in vitro lipolysis (Figure 4.25b). In general, the 

supersaturation ratio increased steadly over 120 min for the three 17β-estradiol-loaded 

formulations.  The degree of supersaturation was increased two-fold for E-7 and E-14 in 

the first two-hour period of the experiment.  In the case of E-5, 17β-estradiol was initially 

subsaturated.  However, after 30 min, 17β-estradiol became supersaturated due to 

decreased equilibrium solubility in the lipolytic products. In the case of nifedipine, the 

maximum degree of supersaturation occurred at 15 min in the lipolysis of N-35 giving the 

supersaturation ratio of 3.2. Over this value, the drug started to precipitate (Figure 4.25c). 

Other than that, the changes in supersaturation ratio during the lipolysis of N-11 and N-

20 were similar to those in the E-5 and E-7 of 17β-estradiol formulations. Initially, 

nifedipine was subsaturated during the lipolysis of N-11 but later increased to 1.5 by 120 

min.  Lipolysis of N-20 increased the supersaturation ratio 2.5-fold by 120 min.  

It has been suggested that solubilization in lipid aggregates may promote mass transfer of 

digested lipids and a poorly-water soluble drug through the unstirred water layer at the 

surface of enterocytes in the GI tract (Westergaard and Dietschy, 1976; Land, Li et al., 

2006). The passive transport of drug through intestinal membranes into blood circulation 

is driven by free solute concentration. Enhancement of oral absorption would be expected 

to result from supersaturation.  
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Figure 4.25a The supersaturation ratio during the in vitro lipolysis of progesterone 

formulation P-12 (triangle), P-20 (cross) and P-31 (diamond). The dashed line is 

supersaturation ratio equal to 1. 

 

Figure 4.25b The supersaturation ratio during the in vitro lipolysis of 17β-estradiol 

formulations E-5 (triangle), E-7 (cross) and E-14 (diamond). The dashed line is 

supersaturation ratio equal to 1. 
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Figure 4.25c The supersaturation ratio during the in vitro lipolysis of nifedipine 

formulations N-11 (triangle), N-20 (cross) and N-35 (diamond). The dashed line is  

supersaturation ratio equal to 1. 

Referring back to Figure 4.10, at fixed concentration of surfactant, the driving force for 

precipitation would increase as the initial drug concentration increases from Zone 1 to 

Zone 3. Figures 4.25a-4.25c show the extent of the supersaturation ratio was dependent 

upon the initial drug concentration prior to lipolysis. The calculated supersaturation ratios 

during in vitro lipolysis reflect the drug concentration in the solution for a given drug in a 

surfactant solution at fixed concentration (Figures 4.25a-4.25c).  As seen in the 

production of fatty acid from the lipolysis of PS80 (see Section 4.4.1), the composition of 

lipolytic products at predetermined time were comparable in the presence of progesterone, 

17β-estradiol and nifedipine and in the absence of the drug. In other words, the lipid 

compositions were the same for all formulations at each time of sampling. Therefore, all 

supersaturation ratios in the three formulations of each drug it may be possible to 

estimate a stability index for each drug during the lipolysis of PS80. Referring back to the 

supersaturation profiles during in vitro lipolysis (Figures 4.25b and 4.25c), the 

supersaturation ratio of 4.08 appears to be the upper limit for 17β-estradiol inducing rapid 

precipitation in a 2 h period of time. A supersaturation ratio of 3.21 appears to be the 

upper limit for nifedipine. Whenever the extent of supersaturation is over these limits, 
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17β-estradiol and nifedipine will precipitate rapidly. Compared to 17β-estradiol and 

nifedipine, the upper limit of rapid precipitation is far lower for progesterone (1.26). The 

maximum supersaturation ratio among the three formulations for each drug is plotted 

versus time (Figure 4.26). Since the solution concentration of PS80 was altered as 

function of time, the plot is actually a supersaturation ratio versus the concentration of 

PS80. As shown in Figure 4.29, the stability index of progesterone was the narrowest and 

17β-estradiol the widest. Guided by this stability index, the lipolysis of N-35 will exhibit 

poor relative stability of the supersaturated state because the supersaturation ratio is over 

the upper limit.  

 

Figure 4.26 The approximate stability index of progesterone, 17β-estradiol and nifedipine 

in supersaturated state during the lipolysis of formulations. WEST, WNIF and WProg are 

ranges of stability index for 17β-estradiol, nifedipine and progesterone, respectively. 

In an attempt to further quantify the supersaturation behavior of these formulations, the 

areas under the supersaturation-time curves in Figures 4.25a-4.25c (AUC-SS) for the first 

2 h were determined. SS equal to 1.0 was established as the baseline for the area 

determinations. The peak supersaturation ratio (SSmax), the area under the supersaturation 

ratio-versus-time curve, and the time of the maximum degree of supersaturation during 

the in vitro lipolysis of each formulation (tmax) are presented in Table 4.7. In addition, the 

area under the concentration–time curve (AUC-C) in Figures 4.21 and 4.23-4.24 was also 
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calculated and shown in the Table. The AUC-SS will be a descriptor that includes both 

the extent of supersaturation and the time which a drug stays in the supersaturated state. It 

will give a quantitative view of the capability of formulation to maintain a state of 

supersaturation during the lipolysis. As shown in Table 4.5, the E-14 performed best to 

maintain the supersuation followed by the N-20 during the in vitro lipolysis of 

formulation. 

A very good linear relationship between the AUC-SS and the AUC-C is demonstrated in 

Figure 4.27. The greater the extent of supersaturation, the higher drug concentration is 

over 2 h. Ignoring other possible factors, such as first pass metabolism, it may be 

hypothesized that increasing the AUC-SS would result in an increase in bioavailability.   

Currently, there are no data in the literature to test the hypothesis that the AUC-SS is a 

predictor of the bioavailability of a poorly-water soluble drug when administered in vivo 

by LBDDS. However, the substantial improvement in absorption of a poorly-water 

soluble drug has been related to the extent and stabilization of supersaturation (Raghavan, 

Kiepfer et al., 2001; Gao, Guyton et al., 2004; Vaughn, McConville et al., 2006; Miller, 

DiNunzio et al., 2008). The ultimate purpose of usage of supersaturation is to increase the 

free drug concentration at the site of absorption.  
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Table 4.7 The summary of maximum supersaturation ratio (SSmax), time at SSmax(tmax), 

area under the supersaturation curve and maximum concentration (Cmax), time at Cmax 

and area under the concentration curve 

  SS   Concentration  

 

 

Formulations 

SSmax 

 

in vitro 

AUC0-

120(min) 

tmax 

(min.) 

Cmax 

(µg.mL-1) 

in vitro AUC0-

120(µg.min.mL-1) 

tmax 

(min.) 

P-12  0 0 131±14 (1.4±0.1)×104 0 

P-20 1.2 0.6 0 202±15 (2.1±0.2)×104 0 

P-31 1.0 0.4 0 210±51 (1.9±0.04)×104 0 

E-5 1.5 29.2 120 57±2 (6.1±0.1)×103 0 

E-7 2.0 81.5 120 78±3 (8.4±0.3)×103 0 

E-14 4.1 300.1 120 162±1 (1.7±0.03)×104 0 

N-11 1.5 37.2 120 111±2 (1.2±0.03)×104 0 

N-20 2.8 162.0 120 203±16 (2.2±0.1)×104 0 

N-35 3.2 125.8 15 327±15 (2.0±0.1)×104 0 

 

 

Figure 4.27 The linear relationship of AUC-SS and AUC-C 
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4.5. Conclusion 
Supersaturated solutions for the three model drugs could be formed in PS80 dispersed in 

fasted-state buffer.  The ability to maintain a supersaturated state upon dispersion was 

drug-dependent. At a supersaturation ratio of 2, progesterone precipitated rapidly within 

5 min while 17β-estradiol and nifedipine were protected from precipitating for a longer 

period of time. When the supersaturation ratio is close to 1, precipitation was prevented 

by PS80.   

Comparison of AUC-C values in the absence of the enzyme and in the presence of the 

inactivated enzyme indicated that the particles in the enzyme preparation promoted 

progesterone and nifedipine precipitation at a supersaturation ratio of 2.  

Results from the digested blank PS80 showed that the equilibrium solubility of 17β-

estradiol and nifedipine was decreased with greater concentration of lipolytic products, 

while the equilibrium solubility of progesterone increased slightly.  As a direct result of 

the change in equilibrium solubility during lipolysis, supersaturated solutions were 

created and maintained. The values of AUC-C in the presence of the inactivate enzyme 

and the active enzyme indicated that the lipolysis of PS80 had no effect on the 

solubilzation of progesterone.  The extent of supersaturation of 17β-estradiol steadly 

increased for all three formulations over 120 min. The greatest supersaturation ratio was 

4.1.  For N-11 and N-20, the extent of supersaturation steadly increased over 120 min. On 

the other hand, for N-35, nifedipine supersaturation ratio showed a local maximum at 3.2. 

AUC-SS demonstrated that PS-80 formulaitons of 17β-estradiol were most successful in 

remaining at supersaturated state and formulations of progesterone the least successful. 

The results showed that lipolysis of the surfactant excipient in PS80 resulted in a 

supersaturated state for model poorly-water soluble compounds progesterone, 17β-

estradiol and nifedipine. The extent of the supersaturation was dependent upon the extent 

of hydrolysis of surfactant and was drug-dependent. 
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Chapter 5 

Solubilization of Poorly-water Soluble Drugs in Model Mixed Micellar Systems 

Composed of Selected Lipolytic Products of Polysorbate 80 

 

5.1. Summary 

The first aim of this chapter is to quantify the solubilization of progesterone, 17β-

estradiol and nifedipine in a series model mixed micelle systems composed of PS80 and 

OA. The model systems are chosen to simulate the solution composition during the in 

vitro lipolysis of PS80. The second aim of this chapter is to employ the molar 

solubilzation capability and the micelle-water partition coefficient (Km/w) of model mixed 

micelles to predict the total drug solubility during the in vitro lipolysis. The negative 

deviation of from ideal mixing indicated that the addition of OA to the PS80 micelles led 

to decreased solubilization capacity for 17β-estradiol and nifedipine. The micelle-water 

partition coefficients of the drug in model systems were used to calculate the total drug 

solubility as a function of the composition of PS80 and oleic acid. It appears that the 

calculated equilibrium solubility of nifedipine in the model mixed micellar solutions 

composed of lipolytic products is closer to the equilibrium solubility of nifedipine in the 

dispersed LBDDS under simulated intestinal conditions than in the case of 17β-estradiol. 

5.2. Introduction 
The ability of PS80 to create and maintain a drug in a supersaturated state as a function of 

time under simulated GI tract conditions was evaluated in Chapter 4.  In order to assess 

the degree of supersaturation, the equilibrium solubility in the digested blank formulation 

was determined. The results indicated that the equilibrium solubility of progesterone in 

lipolytic products remained constant whereas the equilibrium solubility of 17β-estradiol 

and nifedipine decreased as a function of lipolysis. In this chapter, the ability of these 

aggregates to solubilize the drug is probed. The digestion of sophisticated LBDDSs 

containing triglycerides and surfactants will generate various aggregates such as liquid 

crystal phase(s), lamellar phase(s), unilamellar vesicles and mixed micelles (Kossena, 
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Boyd et al., 2003; Kossena, Charman et al., 2004; Kossena, Charman et al., 2005; 

Fatouros, Deen et al., 2007; Fatouros, Bergenstahl et al., 2007). Kossena et al. studied the 

relative contribution of each phase to the overall solubilization in the sample by using 

model systems containing the lipolytic products of triglycerides in a BS/PC solution. A 

similar approach was also used to investigate the effect of dilution on the size distribution 

of aggregates and the solubilization capacity (Ilardia-Arana, Kristensen et al., 2006). 

However, these studies were limited to apparent solubilization in the whole system, but 

no information was available on the molecular details of solubilization in terms of 

individual assemblies and interactions of drug-aggregates.  

The effect on the solubilization of the alteration of lipid composition in solution due to 

lipolysis is not fully understood. This chapter represents a simplified approach to the 

question of effect of lipolysis on solubilization by focusing attention on mixed micelles 

of PS80 and oleic acid. Upon subjecting PS80 to lipolytic conditions, the only lipid 

byproduct is oleic acid.  Presumably, the polyoxylethylene head group does not 

participate in the formation of lipid aggregates of lipolytic products. By isolating 

attention to mixed micelles of PS80 and oleic acid, it will be easier to examine the 

temporal effects of solubilization of drug. We can then build upon this knowledge with 

more sophisticated formulations. 

We described here a series of model mixed micelles containing PS80 and oleic aicd at 

different molar ratios so as to mimic the various lipid aggregates that form from lipolysis.  

Model mixed micellar system of known components allows us to study the solubilization 

mechanism under well-defined conditions. We hypothesize that the equilibrium 

solubilization of drug under simulated intestinal conditions may be correlated with the 

equilibrium solubility of drug in these series model mixed micellar solutions.  In order to 

test the hypothesis, the solubilities of hydrophobic drugs in model mixed micellar 

systems were determined. The solubilization efficiencies of model systems were 

quantified by molar solubilization capacity and water-micelle partition coefficient. 

Solubilization of the drug in mixed micelle was then related to the solubilization in the 

individual surfactants, PS80 and OA, by the regular solution approximation employing 

the model of Treinor.  Eventually, the fitted micelle-water partitioning coefficient of 

drugs in mixed micelles of PS80 and OA could be used to calculate the total drug 
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solubility as a function of time of lipolysis. Such an approach will potentially help a 

formulator to understand and manipulate those formulation factors that affect the 

solubilization of the drug in the GI tract, especially in the creation and maintenance of the 

supersaturated state.  

5. 3. Materials and methods 
5.3.1. Materials 

Progesterone (Prog, purity ≥99%), Nifedipine (NIF, purity ≥98%), 17β-estradiol (EST, 

purity ≥ 98%), 1,2-diacyl-sn-glycero-3-phosphocholine (type XVI-E) from egg yolk (PC), 

Trisma® maleate, and sodium cholate hydrate (NaC) (purity ≥99%) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). High purity Polysorbate 80 (PS80) was a generous 

gift from Croda Inc. (Edison, NJ, USA). Oleic acid (OA) (purity ≥97%) was purchased 

from Fisher Scientific (Pittsburgh, PA, USA). All chemicals were used as received. 

Water for the buffer solution was from a Milli-Q water purification system. Hydrophilic 

PTFE filters with 0.2 µm pore size (13mm) were purchased from Advantec MFS Inc. 

(Japan).  

5.3.2. Calculation of the molar ratio of PS80 to oleic acid 
The in vitro lipolysis of PS80 with and without drug was carried out as described in 

Chapters 3 and 4. The PS80 in solution at the time of sampling was calculated as the 

difference between the initial amount of PS80 added and the amount of OA generated 

from PS80.  Since the PC in simulated intestinal fasted-state digestion buffer (SIFs buffer) 

was hydrolyzed to FA as well, the amount of OA from PS80 was calculated the 

difference between the total amount of FA found by titration and the amount of FA from 

PC determined separately (control). FA generated from PS80 was calculated by Eq. (5.1) 

      

Moles of OA generated from PS80 = Total FA titrated-FA from control   (5.1) 

 

The molar ratio of PS80 to OA at time of sampling was calculated by Eq. (5.2). 

Molar ratio =
Mole of PS80

OA generated from PS 80              (5.2) 
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In the case of lipolysis of drug-loaded formulations, the molar ratio was calculated for 

each formulation separately. After calculation of the molar ratio of PS80 to OA, the 

molar fraction of PS80 in the mixture of PS80 and OA is calculated by Eq. (5.3)  

            
Molar f raction of PS80 =

Mole of PS80
Mole of PS80+Mole of OA              (5.3)  

5.3.3. Preparation of model mixed micellar systems 
Molar ratios of 9/1, 8/2, 7/3, 6/4 and 5/5 were chosen to represent the PS80/OA during 

various periods of the in vitro lipolysis of formulation. The limit of 5/5 was chosen for 

two reasons: (1) about 50% of PS was hydrolyzed in the in vitro lipolysis under optimum 

conditions and 5/5 will represent the upper limit in the lipolytic products; (2) judged by 

cloudy appearance, the systems of OA > PS80 are no longer composed of simple micelles.  

Two series of solutions were prepared. To simplify the model system, tris maleate buffer 

(50 mM, ionic strength at 0.15, pH 7.5 at 37°C) was used in which bile salt/phospholipids 

were not included (T-series). To mimic the simulated intestinal conditions, 5 mM sodium 

cholate(NaC)/1.25 mM phospholipids was used to prepare the model mixed micellar 

systems as well (S-series). The two series of model systems are summarized in Table 5.1. 
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Table 5.1 The molar fraction of PS80 and molar ratio of PS80 to OA in the mixture of 

PS80 and OA prepared in tris maleate buffer (T-series) and SIFs buffer (5 mM NaC/1.25 

mM PC) (S-series) 

Tris maleate buffer or 

(SIFs buffer) 

Molar fraction of 

PS80 

Molar ratio of PS80 to 

oleic acid 

T-1(S-1) 1 1/0 

T-2(S-2) 0.9 9/1 

T-3(S-3) 0.8 8/2 

T-4(S-4) 0.7 7/3 

T-5(S-5) 0.6 6/4 

T-6(S-6) 0.5 5/5 

 

Stock solutions of each ratio of PS80 to OA were prepared. The exact amount of PS80 

and OA were weighed into a 20 mL scintillation borosilicate glass vial and then a specific 

volume of either tris maleate buffer or SIFs buffer was added to make up a total 

concentration of 30 mM surfactant. Prior to stirring overnight, the pH was adjusted to 

7.5±0.05 at 37°C. After overnight equilibration, the pH was checked to ensure a value at 

7.5±0.05. Solutions a range of total concentration were prepared by diluting the above 

thoroughly-mixed stock solution. All solutions were equilibrated for one to two days, and 

the pH was checked before and after equilibration.  

5.3.4. Determination of molar solubilization capacity of mixed micellar systems   

To evaluate the solubilization capacity, the equilibrium solubility of progesterone, 17β-

estradiol and nifedipine were determined in solutions prepared as in Section 5.3.3 at 

37±0.5°C.  Total surfactant concentrations of 0.5, 1, 2.5, 5, 15 and 30 mM at each molar 

ratio in T-series and S-series buffers were employed. The equilibrium solubility of model 

drugs in solutions of NaC/PC (fixed ratio of 4:1) with NaC concentrations of 0, 1, 2.5, 5, 

10, 20 mM in tris maleate buffer (pH 7.5± 0.02) were measured separately. In all 

solubility studies, an excess amount of drug was added to a 4 mL vial containing the 
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above media. The sample vials were purged by nitrogen gas, sealed and then rotated in a 

37±0.5°C oven. Aqueous samples were filtered through 0.2 µm PTFE membranes and 

diluted by isopropanol/water (1/1) to the appropriate concentration. All samples were 

analyzed by HPLC. Successive concentrations within ±5% indicated equilibrium 

solubility was achieved.  

Assuming that solubility in the bulk aqueous phase is independent of the presence of 

micelles, the total solubility of drug in a micellar solution has the following relationship 

(Alvarez-Núñez and Yalkowsky, 2000): 

                    Stotal = Sw + (Ctotal surfactant –CMC)*κ                     (5.4) 

where Stotal is the total solubility of drug in the micellar solution; Sw is the solubility of 

drug in the bulk aqueous phase; Ctotal surfactant is the total surfactant concentration; CMC is 

the critical micelle concentration; κ is defined as the solubilization capacity. When both 

the solubility of drug and the concentration of surfactant are in mole units, κ is in units of 

mole of drug solubilized per mole of micellar surfactant.  

When CTotal surfactant >>CMC, Eq. (5.4) becomes: 

                          Stotal = Sw + Ctotal surfactant *κ                              (5.5) 

Solubilization capacity is obtained from the slope of the curve when Stotal is plotted 

against Ctotal surfactant.  Experiment data were fitted to Eq. 5.5 by Prism software.  

5.3.5. Determination of the micelle-water partition coefficient (Km/w) in a mixed 

micellar system 

If the micelle is considered to be a pseudo phase, the efficiency of solubilization can be 

measured by the partition coefficient (Km/w) of drug between the micelle phase and the 

aqueous phase. Km/w is defined as the ratio of the molar fraction of drug in the micelle 

phase (Xm) to that in the aqueous phase (Xa).  In terms of molar solubilization capacity, 
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Xm =

κ

1+κ                          (5.6) 

where Xa = Sw*Vm.  Vm is the molar volume of water, 0.01817L/mole at 37°C. Thus,  

                                 
Km/w =

55.04κ

(1+κ)* Sw            (5.7) 

Once the molar solubilization capacity is determined, the micelle-water partition 

coefficient can be calculated by Eq. (5.7) (Alvarez-Núñez and Yalkowsky, 2000). 

5.3.6. Determination of the molar solubilization capacity and the micelle-water 

partition coefficient in sodium oleate 

The solubilization capacity and the micelle-water partition coefficient were estimated in 

sodium oleate solutions in a range of concentrations at ambient temperature. Normally, 

the solubilization capacity and the micelle-water partition coefficient in an individual 

surfactant can be determined as described in Sections 5.3.4 and 5.3.5.  However, 

determining the solubilization of drug in sodium oleate micelles presents with a challenge. 

At pH 7.5 OA is not completely ionized (pKa of ∼5).  Nonionized OA is poorly-water 

soluble while ionized OA acts as an anionic surfactant and can form micelles. In OA 

micelles, the pKa of the carboxylic group has been reported to be 10 (Kanicky and Shah, 

2003). In our hands, the apparent pKa of OA in the PS80 micelle solution was 

determined to be 7 in simulated intestinal conditions (pH 7.5, 37°C) (See Section 6.3.2). 

Under these conditions about 80% of the OA in the mixed micelle is ionized.  So as to 

form OA micelles of equivalent percent ionized, a pH of 10.5 was employed in the 

solubilization experiments.  Control experiments were carried out to validate that the 

drugs employed were not degraded in the high pH solution.  

The exact amount of sodium oleate was weighed into a 20 mL scintillation borosilicate 

glass vial and then a calculated volume of deionized water was added to make a total 

concentration of 30 mM. Solutions were rotated at ambient temperature for three days. A 

series of micellar solutions at 30, 15, 5, 2.5, 1 and 0.5 mM were prepared by diluting the 
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above thoroughly-mixed stock solution. The pH of all solutions was adjusted to 10.5 ±0.1. 

The solutions were then purged by nitrogen gas and sealed and rotated at room 

temperature. The pH was checked every three or four days due to the slow equilibrium 

between OA and sodium oleate and adjusted as necessary (Small, 1986). The equilibrium 

was achieved as indicated by a constant pH of 10.5 ±0.1 from two consecutive 

measurements. An excess amount of drug was added to a 4 mL vial containing the above 

media. The sample vials were purged by nitrogen gas, sealed and then rotated in ambient 

temperature for a week. Aqueous samples were filtered through 0.2 µm PTFE 

membranes and diluted by 0.01M HCl in isopropanol to appropriate concentrations. All 

samples were analyzed by HPLC.   

The molar solubilization capacity and micelle-water partition coefficient were obtained as 

described in Sections 5.3.4 and 5.3.5.  

5.3.7. Calculation of total drug solubility in a model micellar system 

The total solubility of drug in the mixed micellar system is presented in Eq. (5.4) and Eq. 

(5.5). Mathematical manipulation of Eq. (5.7) gives  

                      

Sw *Km/wκ =
(55.04-Sw*Km/w)                                       (5.8) 

Then, Eq. (5.4) becomes  

          
Stotal = Sw +

Sw *Km/w*(Ctotal surfactant - CMC)

(55.04-Sw*Km/w)        (5.9) 

When CTotal surfactant >>CMC, Eq. (5.9) becomes: 

          
Stotal = Sw +

Sw *Km/w*Ctotal surfactant

(55.04-Sw*Km/w)                            (5.10)  

Where Sw, Ctotal surfactant, CMC, Km/w and κ have the same meanings as previously defined.  



120 
 

Eq. (5.9) can be used to predict the total solubility of drug at the time of sampling during 

the in vitro lipolysis. Eq. (5.10) was used to predict the total drug solubility in all mixed 

micelle systems.  

5.4. Results and Discussion 

5.4.1. Solubilization capacity (κ) as a function of the molar fraction of PS80 in mixed 

micellar systems 

In the lipolysis experiments the composition of PS80 and OA in the formulation is altered 

as a function of time. The effect of alteration of PS80/OAcomposition on the 

solubilization of progesterone, 17β-estradiol and nifedipine was evaluated by the molar 

solubilization capacity.  

5.4.1.1. κ for progesterone 
The solubilization of progesterone in T-1 to T-6 is shown in Figure 5.1. As expected, at 

each molar ratio the solubility of progesterone increased linearly over the range of total 

surfactant concentration (PS80 plus OA) above the CMC. Generally, the solubilization 

behavior is attributed to the partition of the drug within micelles. The linearity suggested 

that the properties of micelles did not change markedly in the concentration range 

employed.  The molar solubilization capacities of mixed micelles were obtained from the 

data fitted by linear regression. The results are given in Table 5.2.  As the molar fraction 

of PS80 decreased from 1 (T-1) to 0.5(T-6), the molar solubilization capacities were 

relatively constant.  
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Figure 5.1 The solubilization of progesterone in PS80/OA mixed micelles with the molar 

fraction of PS80 at 1(diamond), 0.9 (triangle), 0.8 (cross), 0.6 (circle) and 0.5 (star) at 

37±0.5°C.  Micellar solutions were prepared in tris maleate buffer (T-series). 

Table 5.2 The fitted molar solubilization capacity (κ, mole of drug/mole of micellar 

surfactant) of mixed micellar systems for progesterone prepared in tris maleate buffer and 

SIF buffer 

 

Tris maleate buffer 

(T-series) 

SIFs buffer 

(S-series) 

Molar  fraction 

of PS80 fitted κ 95% CI fitted κ 95% CI 

1 0.048 0.001 0.050 0.002 

0.9 0.045 0.001 0.054 0.001 

0.8 0.045 0.000 

  0.7 

  

0.049 0.001 

0.6 0.041 0.001 

  0.5 0.044 0.002 0.052 0.002 
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A second series of model micellar systems were prepared in SIFs buffer (S-1 to S-6) to 

mimic the composition presented during the in vitro lipolysis closely. As shown in Figure 

5.2, the solubilization of progesterone increased linearly as the total surfactant 

concentration (PS80 plus OA) in all compositions. Similar trends were observed where 

the molar solubilization capacities were kept constant in all composition solutions studied 

(Table 5.2). Compared to values obtained in systems prepared in a tris maleate buffer, the 

impact of the presence of NaC/PC on solubilization was all positive. The difference may 

be attributed to the presence of mixed micelles associated with NaC/PC.  

 

Figure 5.2 The solubilization of progesterone in PS80/OA mixed micelles with a molar 

fraction of PS80 at 1(triangle), 0.9 (diamond), 0.7 (cross), and 0.5 (square) at 37±0.5°C. 

Micellar solutions were prepared in SIFs buffer (S-series). 

To probe the effect of NaC/PC, the molar solubilization capacities of mixtures of these 

two surfactants were determined separately. Surprisingly, a nonlinear solubilization of 

progesterone was observed over the range of concentration (Figure 5.3). The break point 

was in the mixture of NaC/PC containing 5 mM NaC, the same concentration employed 

in the preparation of S-series solution and in vitro lipolysis. The slope was 0.01 when the 

concentration was below 5 mM whereas the slope increased to 0.017 when the NaC 

concentration was over 5 mM. The nonlinearity suggested that the structure and 

properties of aggregates of NaC and PC may have changed over the range of 
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concentration.  It has been well accepted that the state of aggregation of bile salt/PC is a 

function of both the total lipid concentration and and the molar ratio of bile salt to PC 

(Schurtenberger, Mazer et al., 1985; Almog, Kushnir et al., 1986; Vinson, 1989; Almog, 

Litman et al., 1990; Walter, Vinson et al., 1991; Coello, Meijide et al., 1996). Generally, 

two structure models of mixed micelle of bile salt/PC have been proposed in the literature, 

namely, the Small model and the mixed disk model (Small, 1967; Mazer, Benedek et al., 

1980). The common property of these two models is that the micelles are oblate elipsoids 

such that PC forms a bilayer core and bile salt is located around the perimeter. In addition, 

the mixed micelles are in equilibrium with the bile salt monomer, bile salt simple 

micelles, and PC vesicles (Scheme 5.1). Typically, the aggregates are micelles when the 

effective molar ratio of bile salt/PC is greater than the critical value of 0.4. At high 

concentration, such as 20 mM NaC/PC (molar ratio of 4/1), mixed micelles of low 

hydrodynamic radii are the only type of aggregates present. Upon dilution of NaC/PC 

with a buffer, bile salt monomers migrate from mixed micelles to the intermicelle region 

resulting in a decrease of effective molar ratio NaC/PC in the mixed micelles. 

Consequently, with dilution the mixed micelles grow to larger hydrodynamic radii and 

elongate.  With further dilution, vesicles coexisting with the mixed micelles are formed 

(Mazer, Benedek et al., 1980; Egelhaaf and Schurtenberger, 2002; Pedersen, Egelhaaf et 

al., 2002).    

Within each series the molar solubilization capacity of progesterone in mixed micelle of 

PS80 and OA was independent on the composition (Table 5.2). This observation is in a 

good agreement with results obtained in the digested blank formulation where the 

equilibrium solubility of progesterone remained constant during the in vitro lipolysis of 

PS80 (Section 4.4.4).  The difference in solubilization behavior of progesterone between 

the S-series and T-series may be ascribed to the presence of NaC/PC in the S-series. The 

molar solubilization capacity of a mixture of NaC/PC was found to be 0.01 mole of 

drug/mole of micellar surfactant (slope of Figure 5.3 at 5 mM bile salt).  The difference 

in solubilization capacity between the S-series and T-series was also 0.01 moles 

progesterone/mole surfactant.  It is concluded that the difference between the S-series and 

T-series was due to the presence of the NaC/PS micelles in the S-series.  
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Figure 5.3 The solubilization of progesterone in a mixture of NaC and phospholipids 

(fixed ratio at 4:1) at 37 °C (error bars are within the symbol). The dashed line is the 

linear-regression fitting of all data from three replicates (slope = (1.44±0.06)× 10-2, 

R2=0.98). The solid lines represent the linear-regression of data at concentrations less 

than and greater than 5 mM (slope below 5 mM = (0.84±0.05)×10-2, R2=0.99; slope 

above 5 mM = (1.67±0.02)×10-2, R2=0.97). The slopes of the two segments were 

significantly different as indicted by the F-test (P<0.001). 
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Small model

Mixed disk model

+

Bile salt micelles Vesicles

Bile salt monomer

Phospholipid Bile salt

 

Scheme 5.1 A schematic presentation of the equilibrium between the mixed micelles of 

bile salt/phospholipids and bile salt monomer, simple micelles of bile salt and vesicles 

5.4.1.2. κ for 17β-estradiol  

The solubilization behavior of 17β-estradiol was determined in mixed micelles in T-

series and S-series buffers.  Figures 5.4 and 5.5 show that the solubility of 17β-estradiol 

increases with increasing total surfactant concentration in all compositions and in both T-

series and S-series. The molar solubilization capacities, obtained from the slope of the 

curve fitted by linear regression, are listed in Table 5.3. Within 95% confidence, the 

molar solubilization capacities determined in T-1 and S-1 were identical, suggesting that 

the contribution of 5 mM NaC/PC to the total solubilization of drug in the model mixed 

micellar system was not significant. The molar solubilization capacity for 17β-estradiol 

decreased by 34% when the molar fraction of PS80 dropped to 50% in T-6 (S-6) mixture. 

This is consistent with the results obtained in the digested blank formulation where the 

equilibrium solubility in the formed lipolytic products decreased during in vitro lipolysis 

(Section 4.4.4).  
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Figure 5.4 The solubilization of 17β-estradiol in PS80/OA mixed micelles with molar 

fraction of PS80 at 1 (diamond), 0.9 (square) and 0.5 (triangle) at 37±0.5°C. Micellar 

solutions were prepared in tris maleate buffer (T-series). 

 

Figure 5.5 The solubilization of 17β-estradiol in PS80/OA mixed micelles with molar 

fraction of PS80 at 1 (diamond), 0.9 (square), 0.8 (triangle), 0.7 (cross) and 0.5 (star) at 

37±0.5°C.  The micellar solutions were prepared in SIFs buffer (S-series). 
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Table 5.3 The fitted molar solubilization capacities (κ, mole of drug /mole of micellar 

surfactant) of mixed micellar systems for 17β-estradiol prepared in tris maleate buffer 

and SIFs buffer 

 

Tris maleate buffer 

(T-series) 

SIFs buffer 

(S-series) 

Molar fraction 

of PS80 fitted κ 95% CI fitted κ 95% CI 

1 0.032 0.002 0.031 0.002 

0.9 0.030 0.0001 0.031 0.001 

0.8 

  

0.024 0.001 

0.7 

  

0.024 0.001 

0.5 0.021 0.0001 0.020 0.001 

 

A separate experiment was conducted to determine the solubilization capacity of NaC/PC 

(fixed ratio at 4:1) in order to evaluate the contribution of NaC/PC in the SIF buffer to the 

total solubilization of 17β-estradiol.  An obvious nonlinearity was again evident, as 

shown in Figure 5.6.  A break point in the figure was observed between 2.5 mM and 5 

mM of NaC.  The slope was 0.005 in the concentration region below 5 mM of NaC and 

0.003 in the region above 10 mM of NaC. Ilardia-Arana et al., reported a nonlinear 

solubilization of 17β-estradiol in sodium glycocholate in the concentration range from 2 

mM to 30 mM (Ilardia-Arana, Kristensen et al., 2006). Authors attributed the nonlinearity 

to the formation of bile salt micelles with increasing concentration. However, these 

authors concluded thatsolubilization of 17β-estradiol was linearly related to the 

concentration of sodium glycocholate/phospholipid.  Despite the nonlinear dependence of 

solubilization on NaC/PCin the present work, the solubilization of 17β-estradiol was 

linearly related to PS80/oleic acid concentration in the SIFs buffer at all molar ratios 

tested. Moreover, the presence of NaC/PC in the S-series has little effect on the molar 

solubilization capacity giving identical values at each molar ratio of PS80 to oleic acid as 

that in T-series. It is concluded that NaC/PC mixed micelles had little effect on the 

solubilization in the S-series results. 
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Figure 5.6 The solubility of 17β-estradiol in mixture of NaC and phospholipids (fixed 

ratio at 4:1) at 37°C (the error bars are smaller than the symbols). The dashed line is the 

linear-regression fitting of all data from three replicates (slope = (4.11±0.15)× 10-3, 

R2=0.98). The solid lines are linear-regressions of data at concentrations below 2.5 mM 

(slope1= (4.71±0.15)× 10-3, R2=0.99) and at concentrations above 5 mM (slope2 = 

(3.23±0.33)× 10-3, R2=0.93).  Slopes of the two lines were significantly different as 

indicted by the F-test (P<0.02). 

5.4.1.3. κ for nifedipine 
The results of solubility studies of nifedipine are shown in Figure 5.7 and Figure 5.8. As 

expected, the solubility of nifedipine increased within the range of total surfactant 

concentration above the CMC. In both series of buffers, the molar solubilization capacity 

for nifedipine decreased by approximately one half as the molar fraction of PS80 reduced 

from 1 to 0.5 (Table 5.4). This behavior was in stark contrast to that of progesterone, but 

somewhat similar to that of estradiol (Table 5.2).  In comparing the results of the T-series 

and S-series in Table 5.4, it is evident that the presence of NaC/PC depressed the 

solubilization of nifedipine in the mixture of PS80/OA. The extent of depression on the 

molar solubilization capacity reduced with increasing the molar fraction of oleic acid in 

the mixture. Further, the difference of molar solubilization capacity between T-series and 

S-series was 0.006 mole of drug/mole of micellar surfactant at a molar ratio of 9/1 and 
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0.003 at a molar ratio of 1/1. The exact reason for these differences is not clear. The 

dramatic decrease of the molar solubilization capacity in model systems composed of 

increasing amounts of fatty acid was in agreement with the results obtained in the 

digested blank formulation.  

 

Figure 5.7 The solubilization of nifedipine in PS80/OA mixed micelles with molar 

fraction of PS80 at 1(cross), 0.9 (diamond), and 0.5 (triangle) at 37±0.5°C. Micellar 

solutions were prepared in tris maleate buffer (T-series). 
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Figure 5.8 The solubilization of nifedipine in PS80/OA mixed micelles with molar 

fraction of PS80 at 1(cross), 0.9 (diamond), 0.8 (circle), 0.7 (star) and 0.5 (triangle) at 

37±0.5°C. The micellar solutions were prepared in SIFs buffer (S-series). 

Table 5.4 The fitted molar solubilization capacity (κ, mole of drug / mole of micellar 

surfactant) of mixed micellar systems for nifedipine prepared in tris maleate buffer and 

SIF buffer 

 

Tris maleate buffer 

(T-series) 

SIF buffer 

(S-series) 

Molar  fraction 

of PS80 fitted κ 95% CI fitted κ 95% CI 

1 0.060 0.001 0.054 0.001 

0.9 0.054 0.002 0.048 0.0001 

0.8 

  

0.039 0.0004 

0.7 

  

0.036 0.0004 

0.5 0.031 0.000 0.028 0.001 
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The molar solubilization capacity of NaC/PC was determined in order to evaluate the 

contribution of NaC/PC to the total solubilization in the presence of PS80 and OA. 

Unlike the results of progesterone and 17β-estradiol, no obvious nonlinearities were 

observed in the solubilization of nifedipine in NaC/PC solution (Figure 5.9).  The molar 

solubilization capacity of the mixture of NaC/PC (4/1) for nifedipine (0.008 mole of 

drug/mole of micellar surfactant) was smaller than progesterone (0.01 mole of drug/mole 

of micellar surfactant), but greater than 17β-estradiol (0.003 mole of drug/mole of 

micellar surfactant). 

 

Figure 5. 9 The solubilization of nifedipine in mixture of NaC/PC (fixed ratio at 4:1) at 

37°C (error bars are smaller than the symbols). The dashed line is the linear-regression 

fitting of all data from three replicates (slope = (8.41±0.20)× 10-3, R2=0.99). The solid 

lines are linear regressions of data with a presumed breakpoint at 5 mM.  For 

concnetrations than 5 mM slope = (8.86±0.39)× 10-3, R2=0.99; for concnetrations greater 

than 5 mM slope = (8.37±0.40)× 10-3, R2=0.98.  Slopes of the two segments were not 

significantly different as indicted by the results of the F-test (P=0.43).  

 5.4.1.4  Comparison of solubilization results for the three model drugs  

In this section, the solubilization results for the model solutes will be discussed.  The 

focus of this section will first be on the effect of PS80/OA content on nifedipine 
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solubilization, followed by discussion of the solubilization differences observed in S-

series versus T-series buffers.   

The data in Table 5.4 shows that the solubilities of nifedipine in both SIF and Tris-

maleate buffers decrease markedly as the PS80/OA ratio drops.  A few possible 

mechanisms may be responsible for such dramatic changes in solubility. The first 

possible mechanism would arise from preferential solubilization of the drug in the corona 

formed by polyoxyethylene chains in a PS80 micelle. If nifedipine were to be located to a 

significant extent in the POE-corona, all other factors being equal, then solubilization 

would be expected to diminish in mixed micelles with a reduced molar fraction of PS80. 

In order to estimate the influence of the POE chain on the solubilization, solubilites of 

nifedipine were determined in 1% and 10% of PEG-1000 which has approximately the 

same molecular weight as POE chains on PS80. The values of nifedipine solubility in 10% 

and 1% (w/v) PEG-1000 were (1.08±0.01)×10-1 mM and (2.29±0.03)×10-2 mM, 

respectively. The solubility of nifedipine in 1% of PEG-1000 was identical to the aqueous 

solubility under the same conditions. The solubility in 10% PEG-1000 was enhanced 

approximately 5-fold compared to that in 1% for nifedipine. The results with PEG-1000 

support that the conclusion that nifedipine might be located in the corona and that the 

decreased number of PEO chains in a PS80/OA micelle would result in diminished 

solubilization.  The chemistry of the putative interaction of nifedipine with PS80-

containing micelles will be covered in Chapter 6. 

A second possible mechanism to explain reduced solubilization would be a change in size 

of the micelle with the reduced molar fraction of PS80.  For example, an increase of the 

micellar aggregation number and size was found in the mixing of nonionic surfactant and 

anionic surfactant such as Triton X-100 and  C11COONa (Dubin, Principi et al., 1989). 

Furthermore, the Nagarajan thermodynamic theory for mixed micelle formation also 

predicts an increase of aggregation number in mixed micelles compared to simple 

micelles (Nagarajan, 1985).  If nifedipine is solubilized at the interface between the 

hydrophobic tail and the hydrophilic POE chain, the total surface area of the mixed 

micelle will have significant impact on the solubilization capability. Characterization of 

mixed micelles indicated that the size remained constant in spite of the change of molar 
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fraction of PS80 in SIF buffer (Chapter 6).  It can be concluded that changes in the size of 

mixed micelles do not account for changes in solubilization capacity with PS80 content.  

A third possible mechanism to explain reduced solubilization with a reduced mole 

fraction of PS80 would involve electrostatic repulsion of the drug and ionized oleic acid. 

If the micelle-solubilized drug was of similar charge, then electrostatic repulsion with 

ionic surfactant such as sodium oleate would result in reduced solubilization (Borges, 

Borissevitch et al., 1995; Chakraborty, Shukla et al., 2009). Further, it would be expected 

that the effect of electrostatic repulsion on solubilization would be greater with high mole 

ratio of ionized oleic acid in the micelle. In the present case, electrostatic repulsion 

should not be a significant issue as nifedipine is nonionized at pH 7.5. In fact, the NH 

group on nifedipine may act as a hydrogen bonding donor. The increase in charge density 

on the micelle surface would be expected to favor the formation of hydrogen bonding 

between the ionized carboxylic acid group and the drug. Thus, the solubilization might be 

actively facilitated by hydrogen bonding, not the opposite.  

Overall, preferential localization in the PEO-containing micelle corona seems the most 

likely explaination for the solubilization behavior of nifedipine in mixed micelles of 

PS80/OA. 

For all three model solutes, the solubilities in the S-series (SIF) were not equal to those 

observed in the T-series (maleate buffer).  At present, the reasons for the observed 

differences in the solubilization capacities between the S-series and T-series are not clear, 

but must be related to the presence of NaC/PC.   Several possible modes of aggregation 

would occur in a mixture of PS80 and OA in the presence of NaC/PC and could account 

for the observed effects.  In the simplest of models, two independent populations of 

mixed micelles would co-exist, namely, PS80/OA mixed micelles and NaC/PC mixed 

micelles (Scheme 5.2A).  Solubilization of drug would occur independently in both types 

of micelles.  Applied to the current work, only PS80/OA micelles would be present in the 

T-series while in the S-series, both PS80/OA and NaC/PC micelles would be presumed to 

co-exist.  In the independent population scenario, the solubilization capacities for all 

model drugs would be expected to be greater in S-series compared to T-series since in the 

S-series there are more lipid assemblies available to solubilize model drugs.  
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The solubilization results of 17β-estradiol and nifedipine are not in agreement with the 

independent population hypothesis.  The results listed in Table 5.3 shows that there is no 

difference in the solubilization between T-series and S-series for 17β-estradiol.  The 

results listed in Table 5.4 indicate that the solubilization capacity for nifedipine was 

depressed in the presence of NaC/PC.  It is clear that two independent populations are not 

present when all four surfactants are present in the S-series. 

It is possible to envision several mixed modes of assembly in the presence of PS80, OA, 

NaC and PC, where micelles might be composed of three or four of the surfacatnts in 

different ratios.  Perhaps the simplest mixed mode of aggregation is formation of a single 

micelle type containing all surfactants PS80/OA/NaC/PC (Scheme 5.2B).  The exact 

structure of such a complex assembly is not known, and Scheme 5.2B is simply intended 

to illustrate one possible example. In the GI tract, micelles containing fatty acid, 

monoglyceride, phopholipids and bile salt are arranged in a cylinder form with bile acid 

located between the polar heads of lipids such that the hydrophilic surface faces the 

aqueous phase (Hofmann, 1999). Replacing the monoglyceride with PS80 may result in 

the similar arrangement with the hydrophobic surface of NaC in contact with the POE 

chains and the hydrophilic surface of NaC exposed to aqueous phase.  Certainly, it would 

be expected that the phase behavior of such a system would be at least as complex as that 

of the fatty acid, monoglyceride, phopholipids and bile salt system (Hofmann, 1999).  

Simple predictions about solubilization behavior of such a complex micelle are not yet 

possible. 
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+

PS80/OA NaC/PC

PS80/OA/PC/NaC

A

B

PS80 OA PC NaC  

Scheme 5.2  Possible lipid assemblies of PS80 and OA in the presence of NaC/PC. A. 

Two independent populations of mixed micelles, PS80/OA and NaC/PC. B. One 

population of mixed micelle containing all four surfactants PS80/OA/NaC/PC. 

To further illustrate the relationship between the molar solubilization capacity and 

composition in SIF buffer, the normalized molar solubilization capacity (κ*) for each 

PS80/OA ratio was calculated by Eq. 5.11 

κ* = κ for PS80/OA   (5.11) 
        κ for PS80  

 

As seen in Table 5.5, the normalized molar solubilization capacity of progesterone was 

independent of the molar fraction of PS80.  In the cases of nifedipine and 17β-estradiol, 

the normalized molar solubilization capacities of mixed micelle decreased with the 

decreasing molar fraction of PS80 with the greatest effect being noted for 17β-estradiol. 
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Figure 5.10 is a plot of the molar solubilization capacity for the three model solutes as a 

function of mole fraction of PS80. The normalized molar solubilization capacities for 

nifedipine correlated very well with the molar fraction of PS80 in micelles. The 

correlation strongly suggested that solubilization of nifedipine is closely related to the 

proportion of PS80. On the other hand, the correlation between the normalized molar 

solubilization capacities and the PS80 concentration indicated that the solubilization of 

17β-estradiol was less dependent upon the molar fraction of PS80. The solubilization of 

progesterone was independent of the composition of PS80 in the micelles.  

Table 5.5 The normalized molar solubilization capacity (κ*) in SIF buffer for 

progesterone, 17β-estradiol and nifedipine in model micellar systems composed of 

PS80/OA at 37°C 

 Progesterone Nifedipine 17β-Estradiol 

Molar fraction 

of PS80 
κ κ* κ κ* κ κ* 

1 0.050 1.00 0.054 1.00 0.031 1.00 

0.9 0.054 1.07 0.048 0.88 0.031 0.98 

0.8   0.039 0.73 0.024 0.77 

0.7 0.049 0.99 0.036 0.67 0.024 0.76 

0.5 0.052 1.04 0.028 0.51 0.020 0.63 
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Figure 5.10 Correlation of the molar fraction of PS80 in micelles with the ratio of κ for 

progesterone (diamond, R2 = 0.868), 17β-estradiol (cross, R2 = 0.8805) and nifedipine 

(triangle, R2 = 0.97). 

5.4.1.5. Mixing effect of PS80 and OA on the ideal and real solubilization capacities  
In mixed surfactants, the molar solubilization capacity can be estimated for the results of 

single surfactant solutions by Eq. (5.12) assuming the ideal mixing (Mohamed and 

Mahfoodh, 2006): 

                                   κideal = X1 κ1 + X2 κ2                         (5.12) 

where X1 and X2 are the molar fractions of PS80 and sodium oleate in mixture; κ1 and 

κ2 are the molar solubilization capacity for the drug in PS80 and sodium oleate solutions, 

respectively. The κ1 was determined at pH 7.5, 37°C to be 0.05 mole of drug/mole of 

PS80 for progesterone (Figure 5.1), 0.03 mole of drug/mole PS80 for 17β-estradiol 

(Figure 5.4) and 0.06 mole of drug/mole of PS80 for nifedipine (Figure 5.7).  The values 

of κ2 (OA) were determined at pH 10.5, 25°C.  OA forms a large vesicles coexisting with 

dispersed nonlamellar structures at pH 7.5 (Edwards, Silvander et al., 1995). Micelles are 

not formed at pH 7.5. To obtain sodium oleate micelles, the pH of 10.5 was employed. 

The pKa of carboxylic acid in the sodium oleate micelle was determined to be 10, giving 

the degree of ionization of OA in micelles to be 0.76 which was the same as that in the 

presence of PS80 at pH 7.5 where the pKa of OA in mixed micelle is 7. The 
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solubilization results are shown in Figures 5.11a, 5.11b and 5.11c. As can be seen, the 

solubility of all model drugs increased linearly over the range of sodium oleate 

concentration above the CMC. The apparent CMC of sodium oleate from the 

solubilization of progesterone and nifedipine was about 2.5 mM. The molar solubilization 

capacities of sodium oleate (κ2) were 0.21 and 0.03 for progesterone and nifedipine, 

respectively. On the other hand, the solubilization of 17β-estradiol increased the apparent 

CMC to about 5 mM. The increase of CMC may be attributed to the ionization of the 

drug. 17β-estradiol is un-ionized at pH 7.5, whereas the 3-phenolic group has a pKa of 

10.71(Lewis, 1979)  and will be partially ionized at pH 10.5.  Electrostatic repulsion 

between the ionized drug and surfactant may be responsible for inhibiting micellization 

and thus increasing the CMC. Both the unionized and ionized drug can be solubilized in 

micelles with the equilibrium between the unionized and ionized form as shown in 

Scheme 5.3.  

 

Scheme 5.3 The equilibrium between ionized and unionzed 17β-estradiol in aqueous 

phase and micelle phase 

Therefore, the apparent solubility of 17β-estradiol in sodium oleate at pH 10.5 would be a 

function of the solubility of free un-ionized and ionized drug in aqueous phase and un-

ionized and ionized drug in micelle phase combined (Eq. 5.13); 

Stotal = Si + Su + Si-m +Su-m                  (5.13a) 

Si = Su×10pH-pKa   (5.13b) 
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where the Si and Su are solubilities of the free ionized and un-ionized drug in aqueous 

phase, respectively, and are related by Eq. 5.13b.  Si-m and Su-m are solubilites of the 

micelle-bounded ionized and un-ionized drug, respectively. If Si-m is considered to be 

small due to electrostatic repulsion between the anionic micelle and the anionic drug, Eq. 

(5.13a) becomes  

Stotal = Su×10pH-pKa + Su +Su-m               (5.14) 

The solubility of 17β-estradiol in the micelle will be  

Su-m = Stotal – (Su×10pH-pKa + Su)             (5.15) 

Su was determined to be 6×10-3 mM at 25±0.5°C which is close to the value of 

(8.9±0.6)×10-3 mM determined by others (Shareef, Angove et al., 2006). The molar 

solubilization capacity of sodium oleate for unionized 17β-estradiol was found to be was 

0.04 mole/mole surfactant (slope in Figure 5.11b).  
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Figure 5.11a Solubilization of progesterone by sodium oleate at 25±2°C at pH 10.5±0.1  

 

Figure 5.11b Solubilization of un-ionized and ionized 17β-estradiol (triangle) and 

solubilization of unionized 17β-estradiol (cross) by sodium oleate at 25±2°C at pH 

10.5±0.1 
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Figure 5.11c Solubilization of nifedipine by sodium oleate at 25±2°C at pH 10.5±0.1 

As indicated above, pH=10 at 25 oC conditions were employed in the determination of κ2 

for sodium oleate while pH=7.5 at 37 oC was used for κ1 of PS80.   The validity of 

employing widely different temperatues and pH values in Eq. 5.12 will be governed by a 

number of factors. The first factor is the temperature-dependence of CMC of the sodium 

oleate. An increase in temperature will enhance the molecular movement in the surfactant 

solution.  As a result, a higher concentration of surfactant is required to maintain the 

aggregated state.  The influence of temperature on the CMC of sodium oleate appears 

unresolved in the literature.  CMC values ranging from 0.5 mM to 2.7 mM have been  

reported for sodium oleate in the temperature range of 25°C to 30°C (Tamamushi, Shirai 

et al., 1958; Drobosyuk, Borodulina et al., 1982; Akhter, 1997).  Hildebrand et al. have 

suggested that sodium oleate exhibits two critical aggregation concentrations with a weak 

temperature dependence (Hildebrand, Garidel et al., 2003).  These authors report that the 

first critical aggregation concentration is 0.9 mM at 25°C and 1.1 mM at 35°C whereas 

the second CMC is 2.4 mM at 25°C and 2.5 mM at 35°C.    

The second factor to influence κ2 is size and shape of the sodium oleate micelle. Small-

angle X-ray scattering studies indicated that the size and shape of sodium oleate micelles 

are independent of the concentration in the range of 0.05-0.2 g/g solution (approximately 

0.16 to 0.65M) at 27°C (Reiss-Husson and Luzzati, 1964). Studies employing proton 
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longitudinal magnetic relaxation and self-diffusion measurements at 25°C also concluded 

the micelle shape is constant above 5 mM (Mahieu, Canet et al., 1991).  On the other 

hand, the hydrodynamic radius of the sodium oleate micelle as been reporte to be 50 nm 

at 25°C and 40 nm at 37°C (Hildebrand, Garidel et al., 2003). All these studies seem to 

suggest that the size of sodium oleate micelles employed in the present study will not 

change significantly in the 25°C to 37°C temperature range.  For this, it is concluded that 

the values of κ2 measured at 25°C are suitable to be used to estimate κideal in Eq. (5.12) at 

37°C. 

The comparisons between ideal solubilization capacities (κideal) of the drug, as expressed 

by Eq. 5.12, and the experimental solubilization capacities (κexp) of the drug are given in 

Figures 5.12a, 5.12b, and 5.12c. The results indicated that the κexp values were obviously 

less than those of κideal at all the solution compositions. In order to more fully quantify 

the mixing effect of PS80 /OA mixed surfactants on the solubilization of progesterone, 

17β-estradiol and nifedipine, the deviation ratio (R) between κexp and κideal can be 

calculated as in Eq. (5.16) and plotted as function of molar fraction of PS80 in the model 

system (Figure 5.13). 

κexp
κideal

R =
                              (5.16) 

When R is greater than 1, the mixing effect on the solubilization is positive and the 

positive deviation of κ from ideal mixture will be observed. When R is less than 1, a 

negative deviation of κ from ideal mixture will be observed. As shown in Figure 5.13, the 

values of R were less than 1 at all mixing compositions for all model drugs, which 

suggested that the mixing of PS80 and OA had a negative effect on the solubilization of 

drugs.  It is not possible to judge the global maximum negative deviation from ideality 

due to the lack of experimental data at PS80 molar fraction ranging from 0.1-0.4. 

Regardless of lack of data in the range 0.1-0.4, the rank-order of deviation ratios is 

progesterone > 17β-estradiol > nifedipine. 
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Figure 5.12a. Experimental and ideal molar solubilization capacities for progesterone in 

PS80/OA systems.              

 

Figure 5.12b. Experimental and ideal molar solubilization capacities for 17β-estradiol in 

PS80/OA systems              
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Figure 5.12c Experimental and ideal molar solubilization capacities for nifedipine in 

PS80/OA systems                 

 

Figure 5.13 The deviation ratios for solubilization of progesterone (cross), 17β-estradiol 

(square) and nifedipine (triangle) in PS80/OA systems 

The molecular mechanism by which negative deviations from ideality resulted in Figures 

5.12 and 5.13 are not known with any certainity, but several possibilities exist. The first 

factor is the compactness of the POE chains. In the absence of OA, the packing of the 

POE chains in the outer shell of PS80 are appreciably compressed to a smaller volume 
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than required for the undistorted coil (Schick, Eirich et al., 1962; Meguro, Akasu et al., 

1976). Consequently, less water is trapped in the outer shell formed by the compact POE 

chains of PS80. Such compact POE chains, with less water, may provide a more 

receptive environment for solubilization of hydrophobic drug molecules.  By increasing 

the molar fraction of OA in the mixed micelle, the packing of the POE chains in the outer 

shell becomes less compact due to the decrease in number of POE chains. Water content 

may increase in the formed mixed micelles due to a shallow domain in the POE chains 

and/or hydration at the ionized oleic acid head group. The higher water content forms a 

less favorable environment for solubilization of poorly-water soluble drug. 

A second factor that may be responsible for negative deviation of ideality in PS80/OA 

mixed micelle solubilization is related to molecular packing. The increase in the molar 

fraction of anionic OA would be expected to increase the distance of separation of PS80 

molecules and thereby reduce the steric self-repulsions of the PEO-containing 

headgroups.  As a consequence, interactions between the OA and PS80 are expected to be 

less repulsive than PS80-PS80 the chains may be more densly packed. 

It is likely that headgroup hydration and molecular packing exert significant effects, 

depending upon the expected loci of solubilization.  According to logP and polar surface 

area values, progesterone is considered a non-polar compound, 17β-estradiol is semipolar 

and nifedipine is the most polar of the models. The strongly non-polar nature of 

progesterone suggests a locus of solubilization along the surfactant hydrocarbon chains, 

probably close to the headgroup.  NMR investigation of drug locus in PS80 micelles 

suggests that 17β-estradiol and nifedipine are also solubilized at the interface with some 

greater fraction in the POE chains (Chapter 6). Therefore, the effect of compactness and 

hydration of PEO will modulate the solubilization of 17β-estradiol and nifedipine. 
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5.4.2. Micelle-water partition coefficient (Km/w) as a function of molar fraction of 

PS80 in the model systems 

The molar solubilization capacity is a good tool to use to quantify the efficiency of 

surfactant to solubilize a solute, especially when comparing the capability of different 

surfactants to solubilize a single solute. However, solubilization capacity only reflects the 

solubility in micellar phase, but does not consider the solubility of solute in aqueous 

phase. An alternative approach to quantify the efficiency of solubilization is the micelle-

water partition coefficient (Km) which represents the distribution of a solute between the 

micellar phase and aqueous phase. Therefore, the solubilization of different solutes can 

be compared based on thermodynamic grounds.  The application of Km/w requires that the 

micelle be considered a separate phase. 

5.4.2.1. Experimental micelle-water partition coefficient 
The micelle-water partition coefficients of drugs are calculated by Eq. (5.6) and listed in 

Table 5.7. In general, the tendency of a drug to partition into the micelle phase was 

greatest in PS80 micelles. The increase of the molar fraction of OA did not favor 

nifedipine or 17β-estrodiol partitioning into the micelle phase.  The Km/w for 

progesterone was insensitive to solution composition. In order to illustrate the relation 

between the partitioning behavior of a model drug and a molar fraction of PS80, the Km/w 

is plotted versus molar fraction of PS80 (Figure 5.14).  

Table 5.6 The micelle-water partition coefficients of progesterone, 17β-estradiol and 

nifedipine in the model mixed micellar systems (±95% CI) 

Molar fraction 

of PS80 Progesterone Estradiol Nifedipine 

1 (7.9±0.3)×104 (2.4±0.2)×105 (1.1±0.02)×105 

0.9 (8.5±0.2) ×104 (2.3±0.1)×105 (1.0±0.002)×105 

0.8 

 

(1.9±0.1)×105 (8.3±0.1)×104 

0.7 (7.8±0.2) ×104 (1.8±0.1)×105 (7.7±0.1)×104 

0.5 (8.2±0.3)×104 (1.5±0.1)×105 (5.9±0.2)×104 
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Figure 5.14 Micelle–water partition coefficients of progesterone (cross, R2 =0.0016), 

17β-estradiol (square, R2 =0.9098) and nifedipine (triangle, R2 =0.9757) as a function of 

molar fraction of PS80 in the model systems at 37°C 

Generally, a large octanol-water partition coefficient (Ko/w) of drug implies greaqer 

hydrophobic nature. Typically, increasing the hydrophobicity of a drug increases the 

driving force for micelle solubilization. A good linear relationship between log Ko/w 

values of a series of drugs and logKm/w values in PS80 micelles has been observed 

(Alvarez-Núñez and Yalkowsky, 2000).  The logKm/w values for each drug in mixed 

surfactant at PS80 molar fractions of 1, 0.9, 0.7 and 0.5 are plotted against log Ko/w 

(Figure 5.15). Linearity was not observed. According to the rank order of log Ko/w, the 

values of logKw/m of nifedipine at all the composition solutions were higher than 

expected. The higher than expected values of logKm/w might arise in situations in which 

solute is distributed between two different sites in the micelle, one hydrophobic (micelle 

core) and the other less so (micelle palisades or PEO corona). This subject of drug 

localization in a PS80 micelle will be explored in detail in Chapter 6. 
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Figure 5.15 The correlation of logKo/w and log Km/w at molar fractions of PS80 of 1 

(diamond), 0.9 (square), 0.7 (triangle) and 0.5 (cross) 

 5.4.2.2. Fitting of the Treiner model of micelle-water partition coefficient to data for 

the model solutes 

Treiner et al. suggested that the partition coefficient of a neutral organic molecule in a 

mixed binary micellar system is related to the component simple micellar solutions as 

described in Eq. (5.17)  (Treiner, Vaution et al., 1985; Treiner, Khodja et al., 1987; 

Treiner, Nortz et al., 1988; Treiner, Nortz et al., 1990). 

lnK mic(1,2) = X1 lnK mic1 + (1 − X 1 ) lnK mic2 + BX 1 (1 −X 1 )  (5.17) 

where K mic(1,2), K mic1, and K mic2 are micelle-water partition coefficients in mixed and 

simple micelles of 1 and 2, respectively; X1 is the molar fraction of surfactant 1 in mixed  

micelle; B is an empirical parameter incorporating surfactant-solute and surfactant-

surfactant interactions. When B equals 0, partitioning of the drug upon mixing of two 

surfactants is ideal. When B is greater than 0, the mixing of two surfactants leads to 

greater solubilization efficiency due to favorable interactions. When B is less than 0, the 

mixing of two surfactants leads to decreased solubilization efficiency due to unfavorable 

interactions.  
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Eq (5.17) was fitted to the experimental values of Km/w listed in Table 5.6. The results are 

presented in Figures 5.16a, 5.16b and 5.16c. The solid line in these figures represents the 

relationship of Km/w values to the molar fraction of PS80 according to Eq. (5.17) with the 

fitted B parameters. The equation fits the experiment results reasonably well. In tune with 

the deviation ratios, the addition of OA to the PS80 micelle solution led to a negative 

effect on the solubilization of each drugs suggested by a negative deviation from ideal 

mixing. The fitted B coefficients were -2.08±1.01 for progesterone, -1.76±0.65 for 17β-

estradiol and -1.35±0.35 for nifedipine, respectively. The negative values of B indicated 

that the formation of mixed micelle of PS80 and OA was not favorable to the micellar 

solubilization of all poorly-water soluble drugs tested.  Other studies of mixtures of 

neutral and charged surfactants have also shown decreases in solublization of neutral 

solutes.  For example, the B parameter was found to be -2.1 in solubilization of 

heptabarbital in the mixture of C12Na and C12E23.  In mixture of C12Na + C12Cl where 

the interactions between surfactants are strong, the B was fitted to be -8.8 by Eq. (5.17) 

(Treiner, Nortz et al., 1990).  As discussed in the variations of deviation ratios for poorly 

soluble drugs in model systems, the formation of mixed micelles is favorable when the 

interactions between surfactants are stronger than in simple micelles. Consequently, the 

partitioning of drug to the micellar phase is possibly impeded (negative value for B) due 

to the more compact packing of surfactants in mixed micelles. The extent of such 

depression on solubilization would then be determined by the locus of the solubilized 

drug in micelles. 
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Figure 5.16a Micelle-water partition coefficients (Km/w) for progesterone in a mixed 

micelles of PS80 and OA in SIF buffer. The solid line represents the calculated Km/w 

values fitted using Eq. (5.17). 

 

Figure 5.16b Micelle-water partition coefficients (Km/w) for 17β-estradiol in a mixed 

micelles of PS80 and OA in SIF buffer. The solid line represents the calculated Km/w 

values fitted using Eq. (5.17). 
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Figure 5.16c Micelle-water partition coefficientss (Km/w) for nifedipine in a mixed 

micelle of PS80 and OA in SIF buffer. The solid line represents the calculated Km/w 

values fitted using Eq. (5.17). 

Table 5.7 Fitting parameters for progesterone, 17β-estradiol and nifedipine 

 Progesterone 17β-estradiol Nifedipine 

K2 B K2 B K2 B 

Fitted value 12.56 -2.08 12.55 -1.76 11.15 -1.35 

95% CI 0.31 1.01 0.23 0.65 0.13 0.35 

R2 0.99 0.99 0.99 

 

5.4.3. Predicted total drug solubility in SIF solution as function a time 
At several points in this study the importance of the extent of supersaturation on the 

mechanism of action of oral LBDDSs has been stressed. The extent of supersaturation 

has been defined in this work according to Eq. (4.2). In the current chapter, work has 

focused on the denominator of Eq. (4.2), namely, equilibrium solubility, as a function of 

micelle composition. In the current section, the application of Km/w for the prediction of 

drug solubility in a blank digested formulation is explored. The predicted total 

equilibrium solubility of a drug in varying ratios of OA/PS80 in SIF was calculated by Eq. 

(5.9) and Eq. (5.17) and presented as a function of lipolysis of time in a blank digested 
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formulation. All calculated values are compared with the experimental equilibrium 

solubility in the digested formulation (listed in Section 4.4.3). The results are presented in 

Figures 5.17a, 5.17b and 5.17c. In statistics, the residual sum of squares (RSS) is a 

measure of the discrepancy between the experimental data and an estimation model. The 

smaller the RSS, the better the fit of the model to the data. The values of RSS between 

the calculated equilibrium solubility in model solutions and equilibrium solubility in 

actual lipolytic products are 0.27, 0.39 and 0.50 for nifedipine, 17β-estradiol and 

progesterone, respectively. The calculated total equilibrium solubility of nifedipine in the 

series of model mixed micellar solutions appears to be closest to the equilibrium 

solubility of nifedipine in the dispersed PS80 under simulated intestinal conditions.  The 

largest discrepancy between the values in the digested blank formulation and calculated 

values was observed for progesterone.  

The exact reason why the OA/PS80 model systems show limited success in predicting the 

equilibrium solubility of the three drugs in lipolytic products is not known.  It should be 

noted here that the OA/PS80 systems include NaC/PC from the SIFs buffer. The 

concentration of NaC/PC remains constant in all the molar ratios of PS80 to OA. The 

lipolytic products of PC, lysoPC and fatty acid, (Section 3.4.2.1) are not included in the 

OA/PS80 model system. This means that the lipid aggregates in the model systems may 

not exactly reflect those appearing during in vitro lipolysis. The effect of NaC/PC on the 

solubilization was evident by comparing the calculated total drug concentration in a 

series of mixed micelles of PS80 and OA in trisma buffer (no NaC/PC) with the results 

obtained from a series of mixed micelles of PS80 and OA in SIF buffer. As shown in 

Figure 5.17c, the calculated total nifedipine concentration in a series of mixed micelles of 

PS80 and OA in trisma buffer (no NaC/PC) is higher than that calculated in a series of 

mixed micelles of PS80 and OA in SIF buffer solution (containing NaC/PC).  On the 

other hand, the presence of NaC/PC has little effect on the solubilization of 17b-estradiol 

(Figure 5.17b).  If the influence of NaC/PC and all lipolytic products on the solubilization 

is included in the OA/PC model systems, the accuracy of fitting of Eq. (5.17) might be 

improved. 
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Figure 5.17a Comparison of the experimental equilibrium concentration of progeserone 

in a digested blank formulation (solid line), calculated progesterone concentration in 

model systems composed of PS80 and OA in SIF and B= -2.08 (dotted line) and 

calculated progesterone concentration in model systems composed of PS80 and OA in 

trisma buffer and B=-2.68 (dashed line) 
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Figure 5.17b Comparison of the experimental equilibrium 17β-estradiol concentration in 

a digested blank formulation (solid line), calculated 17β-estradiol concentration in model 

system composed of PS80 and OA in SIF at a different molar ratios aand B= -1.76 

(dotted line) and calculated 17β-estradiol concentration in model systems composed of 

PS80 and OA in trisma buffer and B=-1.76 (long dashed line) 
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Figure 5.17c Comparison of the experimental equilibrium nifedipine concentration in a 

digested blank formulation (solid line), calculated nifedipine concentration in model 

system composed of PS80 and OA in SIF and B= -1.35 (dotted line) and calculated 

nifedipine concentration in model systems composed of PS80 and OA in trisma buffer 

and B=-1.30 (dashed line) 

5.5. Conclusion  
The solubilization of model drugs in a series of model mixed micelles of PS80 with OA 

is drug-dependent. The molar solubilization capacity of model mixed micelles composed 

of PS80 and OA from molar ratios of 9/1 to 1/1 decreased for 17β-estradiol and 

nifedipine while remaining constant for progesterone. The negative deviation from ideal 

mixing indicated that the addition of OA to the PS80 micelles led to less solubilization of 

model poorly-water soluble drugs. The equilibrium solubilization of nifedipine in PS80 

under simulated intestinal conditions was predicted most successfully by fitted micelle-

water partition coefficients of the drug in the series of model mixed micelles. However, 

model mixed micellar solutions are far less successful in predicting the solubilization of 

estradiol and progesterone. The results demonstrated that it may be possible to correlate 

the equilibrium solubilization of nifedipine in PS80 under simulated intestinal conditions 

with the equilibrium solubility of drug in these series model mixed micellar solutions by 

accounting for the solubilization of some of the lipid aggregates generated during 

lipolysis. 
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Chapter 6 

Characterization of Model Mixed Micellar Systems and Studies on Inter-molecular 

Interactions between Micelles and Drugs 

 

6.1. Summary 
In this chapter, the model mixed micellar systems composed of selected lipolytic 

products were characterized in terms of the ionization state of OA in mixed micelles, the 

size of mixed micelles, and population of aggregates. The values of pKa of OA in mixed 

micelles were determined by potentiometric titration in a PS80 micelle solution. The size 

and population of model mixed micelles were determined by the pulsed-gradient spin-

echo NMR (PGSE-NMR) and dynamic light scattering (DLS) methods. The results 

showed that the ionization of OA in mixed micelles and the size of mixed micelles were 

independent of composition.  In the absence of bile salt/phospholipids, only one type of 

mixed micelle PS80/OA was found by both PGSE-NMR and DLS. In the presence of bile 

salt/phospholipids, model mixed micellar systems were characterized by DLS.  Peak 

overlap prohibited the study of PS80/OA in the presence of bile salts/phospholipid by 

NMR. From the DLS results, it was concluded that one population of mixed micelles 

exists in mixtures of PS80/OA/bile salt/phospholipids.  

NMR methods were applied to the study of solute localization in PS80 micelles.  Proton 

chemical shifts of PS80 were monitored by 1HNMR in the presence of model poorly-

water soluble drug to infer the possible inter-molecular interactions between micelles and 

drugs. Prominent changes of chemical shifts on surfactant protons located at the interface 

of hydrocarbon core and hydrophilic corona formed by polyoxyethylene chain suggested 

that 17-β estradiol and nifedipine were solubilized in this region. Strong interactions 

between nifedipine and PS80 were further evident by Fourier transform infrared 

spectroscopy (FTIR). Finally, the loci of drug solubilized in the micelles were proposed.  



157 
 

6.2. Introduction 
It has been established that various structures, such as liquid crystal, lamellar phase, 

unilamellar vesicles and mixed micelles, are formed during the in vivo digestion of 

LBDDSs (Kossena, Boyd et al., 2003; Kossena, Charman et al., 2004; Kossena, Charman 

et al., 2005; Fatouros, Bergenstahl et al., 2007). Formation of each type of aggregates is 

dependent upon the nature of the lipids used in the delivery system. The capability of 

aggregates to solubilizing poorly-water soluble drug is not only determined by the nature 

of the aggregates, but also by nature of the drug. Compared to numerous solubilization 

studies in simple bile salt micelles and bile salt/phospholipids mixed micelles (Wiedmann 

and Kamel, 2002), little information is available on the solubilization of drug in the 

formed various aggregates during the lipolysis of a LBDDS.  

In Chapter 5, model mixed micellar systems containing selected lipolytic products that 

mimic the progress of formation of aggregates were developed. By following the 

production of fatty acid, the molar ratio of PS80 to OA can be calculated as a function of 

time (Appendix 2). A series of solutions with physical stable compositions were prepared 

to represent the compositions at the times of sampling during the in vitro lipolysis of a 

formulation. Subsequently, the solubilization capacity of model systems for progesterone, 

17β-estradiol and nifedipine was studied. The rationale behind this approach is that the 

model mixed micellar system allows examination of the solubilization mechanism of a 

system with physical stable compositions. The nature of these aggregates will be 

evaluated by PGSE-NMR and DLS methods in this chapter. To further understand the 

solubilization behavior of drugs in model systems and eventually in vitro lipolysis of 

PS80, the locus of the drug solubilized in the micelles will be explored by 1HNMR and 

FTIR.   

6. 3. Materials and methods 
6.3.1. Materials 

Progesterone (purity ≥99%), nifedipine (purity ≥98%), 17β-estradiol (purity ≥ 98%), 1,2-

diacyl-sn-glycero-3-phosphocholine (type XVI-E) from egg yolk (PC), Trisma® maleate, 

sodium cholate hydrate (NaC, purity ≥99%), deuterium oxide (99.98 atom %±0.01 atom % 

D) and sodium deuteroxide (40wt. % in D2O, 99% atom% D) were purchased from 

Sigma-Aldrich (St. Louis, MO, USA). Polysorbate 80 (PS80) was a generous gift from 
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Croda Inc. (Edison, NJ, USA). Oleic acid (OA, purity ≥97%) was purchased from Fisher 

Scientific (Pittsburgh, PA, USA). All chemicals were used as received. Water for buffer 

solutions was from a Milli-Q water purification system. Hydrophilic PTFE filters (13mm, 

0.2 µm pore size) were purchased from Advantec MFS Inc. (Japan).  

6.3.2. Determination of the apparent pKa of micellar oleic acid 
6.3.2.1. pH probe characterization  
Potentiometric titration has been used in the literature to determine the apparent pKa of 

weak acids in micellar solutions (Feinstein and Rosano, 1969; Tanaka, Nakashima et al., 

1995; da Silva, Bogren et al., 2002; Kanicky and Shah, 2003).  However, during the 

studies outlined below, it was observed that the glass electrode exhibited a sluggish 

response in micellar solution.  Concerns were raised about the accuracy of the pH 

measured by this approach.  In order to validate the accuracy and response, the pH 

electrode was characterized with respect to response curve, response time and drift.  

Figure 6.1 shows the response curves of a glass electrode in pure water, 0.15M NaCl 

solution, and aqueous solutions of PS80 as a function of surfactant concentration. The 

curves were obtained by measuring the electrode potential upon the addition of small 

amounts of 0.1N HCl to aqueous solutions. According to the Nernst equation, the ideal 

slope of electrical potential-proton concentration curve is 61.6mV at 37°C.  Except in the 

case of 30 mM PS80, the linearity of the response curve in the presence of PS80 was 

excellent; slopes of the curve in the presence of PS80 are comparable with the values 

measured in the absence of surfactants and the theoretical values. The results indicated 

the glass electrode could follow the pH change accurately up to surfactant concentrations 

of 10 mM. The accuracy and precision of pH measurements in the micellar solution were 

further demonstrated by comparing potentials of a 10 mM phosphate buffer in the 

absence and presence of 10 mM PS80 at pH 4.6 and 7.5 at 37°C. The measured potentials 

of the phosphate buffer at pH4.6 in the absence and presence of PS80 are 132.5±0.3 mV 

and 134.2±0.7 mV, respectively. The measured potentials of the phosphate buffer at 

pH7.5 in the absence and presence of PS80 are -23.5±0.3 mVand -23.1±0.1mV, 

respectively.  
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The glass electrode to pH change was further characterized by the response time and drift. 

Response time was the duration necessary for the electrode to detect a pH change upon 

rapidly adding 30 µL of 0.9M HCl to 30 mL of a selected solution with an initial HCl 

concentration of 0.1 mM. The results are shown in Table 6.1. The response time in the 

PS80 micellar solution was comparable to the value reported by Gerakis et al., (Gerakis, 

Koupparis et al., 1993).  The pH drift rate in the 10 mM tris maleate buffer in the absence 

and presence of 10 mM PS80 were measured. Compared to the buffer solution without 

surfactant, the drift rate of the glass electrode was higher in the micellar solution (Table 

6.2).  

In summary, the glass electrode was suitable for pH titration of PS80 in spite of a 

relatively sluggish response. Thus, in the titration of OA in a mixed micellar solution, 

longer equilibration time was employed. The pH electrode was calibrated by standard 

solutions at pH 2, 7 and 10 in order to cover the titration range used in the experiments. 

 

Figure 6.1 Response curve of an electrode in pure water (open circle, E= 

425.18+60.19logC, R=0.996), 0.15M NaCl solution (open square, E= 421.29+60.29logC, 

R=0.996 ), 1 mM PS80 (open triangle, E= 426.15+61.03logC, R=0.996), 10 mM PS80 

(cross, E= 440.67+64.78logC, R=0.996) and 30 mM PS80 (star, E= 466.15+77.16logC, 

R=0.996) in 0.15M NaCl solution at 37°C 
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Table 6.1 Response time of a pH electrode and ∆E at infinite time in pure water and an 

aqueous solution of PS80 at different concentrations at 37°C 

Solutions Time (s) ∆E at infinit time 

(mV) 

H2O w/NaCl 11±1 60.3±1.1 

10 mM PS80 w/NaCl 10±1 62.1±0.5 

30 mM PS80 w/NaCl 11±2 81.8±2.7 

 

Table 6.2 The drift of glass electrode in 5 min. at 37°C 

   

Initial 

E(mV) 

Final 

E(mV) 

Drift(mV/5 

min) 

10 mM Tris 

buffer 

 

-29.4 

 

-28.5 

 

-0.18 

 10 mM PS80 in 10 

mM Tris buffer -26.8 

 

-24.7 

 

-0.42 

  

6.3.2.2. Titration of oleic acid in mixed micelles 
A total 10 mM of PS80 and OA at a molar ratio 9-to-1 or 1-to-1 was prepared in 0.15M 

NaCl. The solution was stirred overnight to ensure the formation of mixed micelles. A 30 

mL portion of this solution was titrated manually with 0.1N HCl or 0.25N NaOH at 37 

±1°C. At first, the pH of the solution was adjusted to about 10.3 by 1N NaOH and then 

titrated by 0.1N HCl down to ~3.2. In each ratio, the experiments were repeated three 

times.  The apparent pKa of each solution was obtained by fitting the titration data with 

the Eq. (6.1)  

[H+] +
B0Vb

(V0 + Va + Vb) = Kw
[H+] +

A0Va
(V0 + Va + Vb) + KaC0V0

([H+]+Ka)(V0 + Va + Vb)  (6.1) 

where Ka is the apparent dissociation constant of OA in the micellar solution; B0 and A0 

are molar concentrations of NaOH and HCl, respectively, in titrant solutions; V0, Va and 

Vb  are  the initial sample volumes, volumes of HCl and NaOH titrant added, 
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respectively; Kw is the ion product of water (3.14 × 10-14 at 37°C) and [H+] is the molar 

concentration of the proton which is calculated from the measured pH.  

6.3.3. NMR sample preparation 
The micellar solutions composed of PS80 and OA at molar ratios 9/1, 8/2 and 6/4 were 

prepared as outlined in Section 5.3.3. Deuterium oxide and sodium deuteroxide were 

used in forming the solutions.  Instead of a 50 mM tris maleate buffer, a 50 mM 

phosphate buffer in D2O was prepared to avoid the interference of the characteristic 

chemical shift of polyoxylethyene (POE) protons at ~3.7 ppm with tris maleate. In 

addition, bile salt and phospholipids were not included in the buffer solution as in 

simulated fasted-state digestion buffer (SIF buffer) because the chemical shifts of NaC 

and PC overlapped with the hydrocarbon chain of surfactant in the range of 0.9ppm to 

4ppm.  

Exact weighed portions of PS80 and OA at different molar ratio were dissolved in 

phosphate buffer. TSP-d4 (3-(Trimethylsilyl) propionic - 2, 2, 3, 3-d4 acid sodium salt) at 

a concentration of 0.1% (w/v) was chosen as the internal standard. All samples were 

rotated at room temperature overnight to ensure the formation of mixed micelles. The 

ionization constant in H2O and D2O has a relationship of pD= pH +0.44 (Krezel and Bal, 

2004). The pH was adjusted to 7.94±0.05 at 37°C accordingly, before and after 

equilibration.   

6.3.4. Pulsed-gradient spin-echo nuclear magnetic resonance (PGSE-NMR) 
Diffusion coefficient measurements were performed on a Varian 400MHz spectrometer 

at 37±0.1°C with gradient amplifier unit and a Highland, Performa Π probe equipped 

with a z-gradient coil, providing a z-gradient strength (g). The self diffusion coefficients 

were determined using a pulsed-gradient stimulated-spin echo sequence (Scheme 6.1). Δ 

is the self diffusion time between two gradients in the pulse sequence. The length of the 

gradient pulse (g1 and g2) is δ.  Typically, values of Δ and δ for all experiments were 

100ms and 7ms, respectively. Experiments were carried out by varying g from 2 to 38 

Gcm-1 in 15 steps and keeping all other timing parameters constant. The self-diffusion 

coefficient (D) was calculated by the diffusion software package incorporated in the 

instrument. Thin-walled (3mm) glass NMR tubes were used to reduce the possibility of 
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convection causing the peak distortion at high temperature. The sample volume was fixed 

at 0.2 mL for all samples.  

p1 p2 pw

d1 d0 d2 d5 d3 d4

τ

t1 t2∆

g1=δ g2=δ

AQ

 

Scheme 6.1 Pulse sequence for pulsed-gradient stimulated spin-echo NMR 

In the stimulated-echo sequence, the variables τ, Δ, t1 and t2 are calculated from the 

pulse sequence variable as follows: 

 τ = (p1)/2 +d0+g1+d2+pw/2 

 Δ = g1+d2+p2+d5+g2+pw+d3 

 t1=p1/2+d0  

 t2 = d4 

To obtain absolute values for the self-diffusion coefficient (D), the field gradient strength 

was calibrated from measurements on pure water as a reference at 37±0.1°C. The 

diffusion coefficient measured on the reference H2O sample is exclusively for H2O, and 

multiple species in the deuterium oxide such as H2O, D2O and HDO are avoided. Spin-

lattice relaxation time (T1) is considered as a standard for the choice of d1 in the 

diffusion coefficient measurement. Generally, the d1 should be 5 times the value of T1 to 

insure the signal recovers 95% of its initial value after being flipped into the magnetic 

transverse plane.  The measured self-diffusion coefficient of pure water during the NMR 

experiment was 3.02e-05 cm2/s with an experimental error less than 1%.  The results 

were consistent with the literature value of 3.037e-5 at 37°C (Holz, Heil et al., 2000). The 

calibration was carried out before and after each experimental period.   
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All chemical shifts were referred to the 0.1% (w/v) internal standard TSP-d4 (3-

(Trimethylsilyl) propionic - 2, 2, 3, 3-d4 acid sodium salt) at zero. The assignments of 

chemical shifts of PS80 and a mixture of PS80 and oleic acid (molar ratio = 1:1) in buffer 

are given in Figures 6.2 and 6.3.  As shown in these figures, the highest intensity peak at 

3.7ppm was identified as a characteristic chemical shift of ethylene oxide protons. It is 

important to note that this peak is intense and relatively broad due to overlapping of all 

branches of polyoxyethylene protons on PS80 and possible contamination by free 

polyoxyethylene. Similarly, the peaks at 1.296ppm and 1.327ppm, which represented 

ethylene proton on the hydrocarbon chain, exhibited poor resolution.  

Theoretically, the diffusion coefficient of a molecule may be determined by a resolved 

peak with a defined chemical shift. As recommended, the signal of interest was 

attenuated by 90% within the selected gradient strength. Consequently, the signal-to-

noise ratio is significantly increased by the high gradient strength, and accuracy of 

measured diffusion coefficient will be affected. Thus, the attenuation of peak from 

polyoxyethylene protons was chosen to fit the Stejskal-Tanner equation because of high 

intensity compared to all other peaks. The representative Stejskal-Tanner exponential plot 

and signal attenuation is shown in Figure 6.4. Selection of polyoxyethylene protons also 

alleviated difficulties in determination of diffusion coefficient of mixed micelles because 

of the identity of a hydrocarbon chain of PS80 and OA resulting in overlapping chemical 

shifts. The only exception is the α-proton on the OA. Conjugation of fatty acid to the 

polysorbitan resulted in a downshift of an α-proton from 2.2ppm to 2.3ppm. In a micellar 

solution, the observed chemical shift is the population-averaged value of a monomer and 

micelles due to the fast exchange.  The very low CMC of PS80 results in over 99% of 

molecules in micelles. The chemical shift of a monomer is considered negligible.  
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Figure 6.2   1HNMR spectrum of PS80 in D2O buffer solution 
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Figure 6.3 1HNMR spectrum of PS80/OA (1/1) in D2O buffer solution 
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Figure 6.4 The Stejskal-Tanner exponential plot. (The insert is attenuated signals from 

polyoxyethylene protons) 

6.3.5. Spin-lattice relaxation time (T1) measurement 
T1 can be measured by various techniques such as inversion recovery, progressive 

saturation.  In the present study T1 served as a means of estimating the require d1 in the 

pulse sequence for diffusivity determination. T1 was determined by the inversion 

recovery method at 400MHz on a Varian spectrometer. The pulse sequence of inversion 

recovery is shown in Scheme 6.2. This method is a non-selective experiment in which all 

peaks are inverted and measured simultaneously. The sequence is repeated for a series of 

arrayed d2. The intensity of peaks in a series of spectra is plotted against arrayed d2 to 

give the T1. Proton chemical shift was referred to the TSP-d4 assigned as zero. 
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p1=180° pw=90°

d1 AQd2

 

Scheme 6.2  Pulse sequence of inversion recovery for measurement of T1 

A PS80 micelle solution and PS80/OA (1:1) mixed micelle solution at total concentration 

of 30 mM in deuterium phosphate buffer (pD 7.9±0.05) were prepared as in Section 6.3.3. 

To 1 mL of each solution was added an excess amount of progesterone and nifedipine. 

Nifedipine samples were protected from light. All samples were rotated in 25˚C for a 

week. Before performing the NMR experiment, all samples were filtered through a 

0.2µm PTFE filter. The volume of 0.5 mL of the sample was loaded in a 5mm NMR tube. 

Experiments were carried out at 37±0.1˚C.   

6.3.6. Measurement of chemical shifts of PS80 in the presence of model drugs 

The change of proton chemical shifts on PS80 in the presence of nifedipine and 17β-

estradiol was measured by 1HNMR on a Varian 400 MHz spectrometer at 37 ±0.1°C. All 

solutions were prepared as in Section 6.3.3. Spectra were recorded for 30 mM of PS80 

solution and 30 mM of PS80 solubilized with the drug. The difference between chemical 

shifts in the sample without the drug and the sample saturated with the drug are attributed 

to the presence of the drug.  

The drug-saturated sample was prepared by adding excess amounts of model drugs to 30 

mM of PS80 and rotated four days at room temperature. After equilibrium, the sample 

was filtered through a 0.2 µm PTFE membrane, and 0.5 mL of the filtrated was 

transferred to a 5mm NMR tube. All chemical shifts are referred to TSP (3-

(Trimethylsilyl) propionic-2,2,3,3-d4 acid sodium salt) at 0 ppm. The concentration of 

TSP is 0.1 % w/v.  

6.3.7. Dynamic light scattering (DLS) 
The particle size was measured by the dynamic light scattering method (Delsa™Nano C 

particle analyzer, Beckman Coulter®, Inc). Solutions composed of PS80 and OA at 
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different molar ratios in SIF buffer were prepared and equilibrated in 37±1 °C water bath 

overnight. The pH of all solutions was adjusted to 7.5±0.02 at 37°C. The temperature of 

scattering cells was controlled at 37±0.1°C. The PMMA disposable cuvette (Plastibrand®, 

Germany) was rinsed with Milli-Q water filtered through a 0.1 µm membrane. Prior to 

measurement, the solution was filtered through a 0.45 μm PVDF membrane 

(Acrodisc®LC 13 mm syringe filter) to a cuvette. The sample was equilibrated in the cell 

for 20 mins before scanning.   

The incident light through the scanning cell can be scattered by aggregates. Due to 

Brownian motion of aggregates, the intensity of scattered light will fluctuate around a 

mean value. The time dependence of this fluctuation is related to the translational 

diffusion of aggregates. Therefore, the size of aggregates can be calculated by the Stokes-

Einstein equation Eq. (6.2) 

       D =  kT
6πηr

                                     (6.2) 

where k is Boltzmann’s constant, T is 310K and viscosity of the medium (η) (taken as 

pure water) is 6.918×10-4 kg/(m·s). 

A logarithm scale decay time (digital correlator) is used to determine the autocorrelation 

function of scattered light intensity with the time domain method. The autocorrelation 

function is given by Eq. (6.3): 

g(1)(𝜏) = 𝐵� (A𝑖)exp (−Γ𝑖τ))𝑖       (6.3) 

B is a constant dependent upon instrumental parameters such as the aperture size. The 

100 µm detection aperture was set in the experiments due to the low concentration of 

some samples. Ai is the relative intensity of light scattered by a particle with decay 

constant Γ and is related to relative amount of such particles by Eq. (6.4).  

           Γ = 𝐷𝑞2                                    (6.4) 

Γ is proportional to the diffusion coefficient and q is the magnitude of the scattering 

vector (=4πnsin(θ/2)/λ)  which is determined by the refractive index of medium, the 

scattering angle(θ) and the wavelength of the light(λ).  The refractive index employed 

was that of water, 1.3313. The scattering angle was 165° in all experiments. Data was 

analyzed by a non-negatively constrained least squares (NNLS) algorithm.  
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Since g(τ) is proportional to the relative scattering from each species, it contains 

information on the statistical measurements of  distribution of diffusion coefficient. 

 The fraction of total light intensity scattered by each species is given by Eq. (6.5) 

fi = CiMiPi
Σ CiMiPi

                           (6.5) 

where Ci is the concentration of the species, Mi is the molecular weight of the species and 

Pi is the form factor for light scattering. The mean diffusion coefficient of all species is 

the sum of fi weighted diffusion coefficients of each species.  

D = Σ fi Di                        (6.6) 

The variance (µ2) of the distribution of the diffusion coefficient by cumulants analysis is 

given by  

µ2 = (D2 -D2) q4                  (6.7) 

and is a quantitative characterization of solution polydispersity (Koppel, 1972). 

Polydispersity = µ2/Γ2             (6.8) 

                                     Polydisperisty index = (Γ-Γ)2 /Γ2            (6.9) 

In general, the 0.05-0.08 of polydispersity index indicates a monodispersed solution and 

0.08-0.7 is a mid-range of polydispersed solution.  

6.3.8. Fourier transform infrared (FTIR) 

FTIR was used to monitor the change of νC-O on the polyoxylethlene chain and νC=O 

on PS80 in the presence of model drugs. Infrared spectra were recorded on the BIO-RAD 

FTS3000MX spectrometer with Merlin version 2.3.7 software.  The recording range was 

from 700 cm-1 to 4000 cm-1 with an effective resolution of 4 cm-1 and 128 scans. The 

attenuated total reflectance (ATR) method is used where the liquid sample has very good 

contact with the zinc selenide (ZnSe) crystal which has a high refractive index (2.403 @ 

10.6 Mm).  

Exact weighed portion of PS80 was dissolved in D2O and the excess amount of drug was 

added to the micellar solution at ambient temperature. Samples were taken at 3, 24, 48, 

72 h and filtered through a 0.2 µm PTFE membrane directly into the IR cell. Since 
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samples were taken on different days, the spectrum of PS80 in the absence of drug 

prepared at the same time was recorded at 3 h, 24 h, 48 h, and 72 h. 

To perform spectral subtraction, spectra of solvent, surfactant in solvent and surfactant 

with drug in solvent were recorded. The bands from a solvent such as D2O were 

subtracted from the spectrum of the sample of PS80 and PS80 with the drug. The final 

spectra analysis was made between the subtracted spectra. Experiments were carried out 

at ambient temperature. 

6.4. Results and discussion 
6.4.1. Characteristics of model systems critical for drug solubilization  
The extent of solubilization of surfactant aggregates is determined by numerous factors, 

such as nature of the surfactant, nature of the drug, temperature, pH, ionic strength, etc. 

In this section, the focus will be on characterizing the properties of PS80, OA and 

PS80/OA assemblies with respect to size, extent of ionization and locus of solubilization 

of model solute.  The characteristics of self-assembled aggregates of OA are dependent 

on the ionization state.  In genrals, non-ionized fatty acids often assemble into vesicles 

while ionized fatty acids tend to form micelles. Vesicles are bilayer aggregates, are larger 

than micelles, and offer loci for drug solubilization that are markedly different than those 

offered by micelles.  

6.4.1.1. Ionization of oleic acid in micellar solution 
The pKa of monomeric OA is approximately 5, a value similar to other carboxylic acids. 

Non-ionized OA is poorly-water soluble while ionized OA acts as an anionic surfactant 

and can form micelles. In oleate micelles, the pKa of the carboxylic group has been 

determined to be about 10 (Kanicky and Shah, 2003).  Determination of the apparent pKa 

of OA in the mixed micelle will allow an estimation of the extent to which the acid is 

ionized at pH 7.5. Moreover, it might be possible to determine if different populations of 

PS80/OA mixed micelles co-exist in solution. 

The apparent pKa was obtained by fitting Eq. (6.1) to the titration data. The results are 

shown in Figures 6.5 and 6.6. The model agreed well with experimental data for the 1:1 

ratio of PS80/OA, but was less successful for the 9:1 ratio data. The fitted Ka, fitting 

parameters and calculated apparent pKa values of oleic acid in micelle solutions are 
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summarized in Table 6.3. Two proton dissociations were observed in Figures 6.5 and 6.6. 

According to the mathmethical model of titration, one is the proton dissociation of OA 

and another is the proton dissociation of water. The apparent pKa of OA in the micelle of 

PS80 is 7.1.  Accordingly, at pH = 7.5, approximately 80% of OA would be ionized and 

act as an anionic surfactant in the presence of PS80.  There is not significant difference 

between, the values of apparent pKa of OA in the micelle systems of PS80/OA 9/1 and 

1/1 (p = 0.05).  The value of the apparent pKa of OA in PS80/OA mixed micelle is 

similar to that reported for other fatty acid/nonionic surfactant systems. da Silva et al. 

showed experimentally and theoretically that the pKa of lauric acid in an n-

dodecyloctaoxyethylene-glycomonoether(C12E8) micelle was approximately 6.6 (da Silva, 

Bogren et al., 2002).  The pKa of tetradecanoic acid in a sugar-derived surfactant was 

found to be 6.3 (Whiddon, Bunton et al., 2002).   

Regardless of the fatty acid chain length, an ionized fatty acid is located at the micellar 

interface (da Silva, Bogren et al., 2002).  Shown in Scheme 6.3, are two possible 

arrangements of carboxylic acid head group at the interface of a mixed micelle. One 

arrangement has the carboxylic acid head group separated by the PS80 molecules (A for 

9:1 ratio, B for 1:1 ratio). In another case, surfactants are clustered (C for 9:1 ratio, D for 

1:1 ratio). In the cases of C and D, the ionized carboxylic acid head group will stabilize 

the proton of an adjacent unionized carboxylic acid. Consequently, it is more difficult to 

remove proton by the free hydroxide ions in the bulk solution. As a result, the measured 

pKa of the fatty acid will shift to a higher values (Kanicky and Shah 2003).  The steric 

self-repulsion of the PS80 head group and the charge repulsion of the ionized OA may 

disfavor the arrangements of C and D compared with the arrangements of A and B.  
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Figure 6.5 Titration curves of ionized form of OA in a mixed micelle of PS80/OA (9/1) at 

37 °C (n=3). Symbols are experimental data and solid lines are the calculated values by 

fitting the data to Eq. (6.1). 
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Figure 6.6 Titration curves of ionized form of OA in mixed micelle of PS80/OA (1/1) at 

37 °C (n=3). Symbols are experimental data and solid lines are the calculated values by 

fitting the data to Eq. (6.1). 

Table 6.3 The fitted Ka, fitting parameters and calucated apparent pKa of OA in the 

mixed micelle solutions composed of PS80/OA at molar ratios of 9/1 and 1/1 (n=3).  

PS80/OA Fitted Ka 95% CI R2 pKa AVE SD 

9/1-1 8.7E-08 4.4E-08 0.99 7.06 7.06 0.01 

9/1-2 8.9E-08 3.1E-08 0.99 7.05 

  9/1-3 8.7E-08 3.6E-08 0.99 7.06 

  1/1-1 7.1E-08 4.6E-09 0.99 7.15 7.11 0.04 

1/1-2 7.5E-08 4.6E-09 0.99 7.12 

  1/1-3 8.6E-08 4.6E-09 0.99 7.07 
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Scheme 6.3 Possible arrangements of PS80 and OA in mixed micelles. A and C, 

PS80/OA (9/1); B and D, PS80/OA(1/1) 

6.4.1.2. Size and population of lipid aggregates in mixtures of PS80 and oleic acid 
Small-angle neutron scattering, time-resolved fluorescence quenching, static or dynamic 

light scattering and nuclear magnetic resonance (NMR) have been employed to 

characterize the size of lipid aggregates directly or indirectly (Schurtenberger, Mazer et 

al., 1983; Brown, Pu et al., 1988; Söderman, Stilbs et al., 2004; Valentini, Vaccaro et al., 

2004; Waters, Leharne et al., 2007; Kätzel, Vorbau et al., 2008). Among these, NMR 

self-diffusion coefficient measurement is a popular method due to high chemical 

selectivity, non-invasiveness, and broad range of accessible diffusion coefficients. 

Compared to other methods, NMR provides molecular information. However, the 

application of the Stejskal-Tanner equation requires signal intensity from a well-resolved 

peak. In the case of multiple component systems, where signals are overlapped, 

appreciation of NMR techniques becomes problematic.  In the present work, overlapping 

peak signals precluded the inclusion of NaC/PC in NMR studies.  As a complimentary 

method, the dynamic light scattering method was used to characterize complex systems, 

without regard to the presence of NaC/PC.   
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6.4.1.2.1. Pulsed-gradient spin-echo nuclear magnetic resonance (PGSE-NMR) 

studies. 

When a paired magnetic pulsed gradient is applied to a sample, self-diffusion of 

molecules results in signal attenuation. Assuming the chemical shifts are resolved, the 

diffusion coefficient of a molecule could be determined by the Stejskal-Tanner equation. 

(Stejskal and Tanner, 1965). 

𝑆(𝑞) = 𝑆(0)𝑒−𝐷𝑏(𝑞)             (6.10) 

Here b = (γGδ)2 (∆-δ/3) and D is the diffusion coefficient. 

The diffusion coefficients of PS80/OA assemblies in the absence of NaC/PC were 

determined. Since the surfactant monomer exchanges very rapidly with the micellar 

surfactant, on the time scale of 100 ms, the measured apparent diffusion coefficient is the 

population average of the specific diffusion coefficients of the monomer and micelle. In 

all cases, the apparent diffusion coefficient decreased with increasing total surfactant 

concentration (Figure 6.7). This trend had been noticed in the literature and in our 

laboratory (Amidon, Higuchi et al., 1982; Kossena, Boyd et al., 2003; Wiedmann, Liang 

et al., 2004; Apperley, Forster et al., 2005; Lafitte, Thuresson et al., 2007; Feng, 2009).  

The concentration of 0.1 mM was below the CMC of PS80 (0.22 mM) and sodium oleate 

(1.1 and 2.5 mM) (Hildebrand, Garidel et al., 2003). At such low concentrations, the 

diffusing species is assumed to be the monomer of PS80 or OA.  At very low 

concentration, only the chemical shifts of polyoxyethylene (POE) and hydrocarbon chain 

of OA were detected and signal-to-noise ratio suffered.  Consequently, the variation in 

the diffusion coefficient was greater at such low concentration in comparison with those 

at concentrations above the CMC.   

The effect of surfactant concentration and compositions on the apparent diffusion 

coefficient of mixed micelles can be explained by the interactions between micelles. As 

the micelle concentration increases, each micelle must avoid an increasing number of 

micelles resulting in a decrease in the apparent diffusion coefficient. On the other hand, it 

has been proposed that high charge repulsion forces between the micelles increase the 

diffusion coefficient (Pisárcik, Devínsky et al., 1996). The apparent diffusion coefficient 

of PS80/OA micelles would likely be the balance of these two interactions.  
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NMR studies of PS80 micelles in the presence of progesterone were conducted as a 

function of surfactant concentration to assess if solubilization of drug would influence the 

diffusion coefficient. The signal from polyoxyethylene group at 3.7 ppm was used to 

determine the diffusion coefficient of PS80 micelles saturated with progesterone. The use 

of polyoxyethylene chemical shift had been proved valid in our laboratory and in the 

literature (Spernath, Yaghmur et al., 2003; Balakrishnan, Rege et al., 2004; Apperley, 

Forster et al., 2005; Feng, 2009).   As shown in Figure 6.7, the solubilization of 

progesterone did not change the self-diffusion coefficient of PS80 micelles significantly.  

Similar results have been reported by others (Apperley, Forster et al., 2005; Feng, 2009).  

The hydrodynamic radii of aggregates can be calculated by the Stokes-Einstein equation 

Eq. (6.2) assuming that micelles are spherical. The validity of the assumption is 

challenged in the case of polymeric surfactant. Recently, the small angle x-ray scattering 

revealed that PS80 forms core-shell cylindrical micelles at a concentration of 38 mM 

(pH7.2, ionic strength 2.44 mM) (Aizawa, 2009). Concentrations of a prepared sample in 

the present study were equal or less than 30 mM (pH 7.5, ionic strength 150 mM). 
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Figure 6.7 The apparent diffusion coefficients of PS80 micelles (diamond) and mixed 

micelles of PS80/OA at molar ratio 8/2 (cross), 6/4 (triangle) and progesterone-saturated 

micelle of PS80 (circle) at 37±0.1 °C.  

When the molecule is either within one compartment or within two compartments 

exchanging very rapidly on the time scale of NMR method, the expected signal 

attenuation is linear with the increase of gradient strength. On the contrary, if a molecule 

resides in more than two compartments with significantly different diffusivities, a 

biexponential Stejskal-Tanner plot will be observed.  In all studies, excellent fitting of a 

single-exponential Stejskal-Tanner equation was observed (Figure 6.4).  

Several possible populations of mixed micelles are consistent with the observed fit of the 

Stejskal-Tanner equation to the NMR data.  The most obvious possibility is that only one 

population of lipid aggregates exists in the mixture of PS80 and OA.  In other words, the 

ratio of PS80/OA in the micelle is identical to the ratio of total concentrations in solution.  

A second possibility to explain the excellent fit of the Stejskal-Tanner equation would be 

two or more populations of mixed micelles of similar size co-exist in solution. For 

example, it could be envisioned that mixed micelles rich in PS80 could co-exist with 

mixed micelles rich in OA.  A third possibility is that several aggregates of different sizes 

co-exist in solution, with one assembly dominating the population. Shick and Manning 

have reported that mixing ratio of anionic and non-ioninc surfactants had no effect on the 
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compositions of mixed micelles as determined by electrophoresis and conductivity 

measurements (Schick and Manning, 1966).  

An interaction parameter (β) has been used to quantify the stability of mixed micelles 

Treiner, Nortz et al., 1990). A value of β <0 indicates a synergistic interaction between 

the two surfactants that promotes the formation of the mixed micelle. A survey of 

literature indicated that β is always less than zero when mixing an ionic surfactant with a 

non-ionic surfactant (Table 6.4). While parameter β is distinct from the parameter B 

(Section 5.4.2.2), Treiner et al. showed a strong correlation between the two (Treiner, 

Nortz et al., 1990).   Nishikido proposed that attractive ion-dipole interactions between 

the anionic carboxylic group and polyoxyethylene groups facilitate mixed micelle 

formation (Nishikido, 1977).  Further, they proposed that the interactions are enhanced 

by the formation of hydrophobic interactions between the hydrocarbon chains. This effect 

would seem especially true in the mixture of PS80 and OA since both surfactants have 

the same long hydrocarbon chain.  

In order to obtain the size of the micelle, the two-state distribution model was used to fit 

apparent diffusivity data (Wiedmann and Kamel, 2002). This model assumes that 

surfactant is located both in bulk solution and associated as micelles. If the exchange 

between two states is fast, the measured diffusion coefficient is the population average of 

specific diffusion coefficients of a monomer and a micelle Eq. (6.11).   

 

                                      Dobs = fmonDmon + fmicDmic             (6.11) 

 

Dobs is the observed diffusion coefficient of the micellar solution; fmon, fmic are molar 

fractions of surfactant as monomer and as micelle, respectively; Dmon,Dmic are diffusion 

coefficients of monomer and the micelle, respectively. 
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Table 6.4 Interaction parameter (β) of mixing ionic surfactant and nonionic surfactant in 

the literature 

 

The fractions of surfactant present as monomer and in the micelle can be expressed in 

terms of the CMC by the following equations: 

                                               fmon = CMC/[surf]total                    (6.12) 

                                               fmic = 1- CMC/[surf]total,                 (6.13) 

Substituting Eq. (6.12) and Eq. (6.13) into Eq. (6.11) 

                         Dobs = {CMC/[surf]total}Dmon + {1- CMC/[surf]total}Dmic  (6.14) 

                  Dobs [surf]total = [surf]totalDmic +CMC(Dmon- Dmic)      (6.15) 

 

Ionic 

surfactant 

Nonionic surfactant β Ref 

Sodium 

oleate 

C12E6 -2.7 a 

 C14E6 -3.0  

SDS C8E6 -3.1 b 

 C10E4   

 C12E8 -4  

 C12E23 -2.6 c 

 C14E23   

 DM -4- -3.25 d 

 Brij 35 -4.82-1.95 e 

 Brij 97 -5.54- -

7.40 

 

AOT C12E6 -4.2 f 

a. Theander and Pugh 2003 
b. (Rosen 1989) 
c. (Treiner, Vaution et al. 1985) 
d. (Zhang, Zhang et al. 2004) 
e. (Glenn, van Bommel et al. 2005) 
f. (Moroi, Akisada et al. 1977) 
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Eq. (6.15) shows that a plot of Dobs [surf]total as a function of [surf]total should be linear 

with a slope of Dmic and intercept of CMC(Dmon- Dmic).  Figures 6.8-6.10 show the results 

of plotting data for PS80, PS80/OA (8/2), and PS80/OA (6/4) according to Eq. (6.15).   

The model was in excellent agreement with the data. Table 6.5 summarizes the diffusion 

coefficients, calculated hydrodynamic radi and R2 values from 3 replicates in each case. 

Within the standard deviation, the diffusion coefficients of a PS80 micelle and mixed 

micelles of PS80/OA at molar ratios 8/2 and 6/4 were identical, suggesting that the size 

was independent of the composition.  The diffusion coefficient of the PS80 micelle was 

close to the literature value of 3.5 x10-7 cm2/s (Lafitte, Thuresson et al., 2007). The 

hydrodynamic radius calculated by the Stoke-Einstein equation was consistent with the 

value of 9.1±2.2 nm measured by fluorescence methods (Croy and Kwon, 2005). 
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Figure 6.8 Plot of Dobs*[Surf]total as a function of total concentration of PS80.  

 
Figure 6.9 Plot of Dobs*[Surf]total as a function of total surfactant concentration of 

PS80/OA (8/2). 
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Figure 6.10 Plot of Dobs*[Surf]total as a function of total surfactant concentration of 

PS80/OA (6/4). 

Table 6.5 Diffusion coefficients and hydrodynamic radii of lipid aggregates in the PS80 

solution and mixture of PS80 and OA at different molar ratios 

Molar ratio of 

PS80 to oleic 

acid 

Diffusion 

coefficient 

(m2/s)±SD 

hydrodynamic 

radius  

 (nm)±SD 

R2 

1/0 3.6e-11±2.2e-12 9.3±0.6 0.998 

8/2 3.8e-11±5.3e-13 8.9±0.1 0.998 

6/4 3.9e-11±1.4e-12 8.7±0.3 0.999 

 

6.4.1.2.2. Dynamic light scattering (DLS) method 
To corroborate the results obtained by NMR technique, the hydrodynamic radii of PS80 

micelles at concentrations of 76 mM, 7.6 mM and 3.8 mM were measured by DLS. The 

hydrodynamic radii and polydispersity index are summarized in Table 6.6. Due to rather 

large variations in experimental results there was no statistical difference between the 

average sizes at each concentration. The hydrodynamic radius of simple PS80 micelle in 

tris maleate buffer was found to be 15.4±2.3 nm, a value greater than that determined by 

PGSE-NMR (Table 6.5). A significant difference between values measured by DLS and 
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NMR was also evident in other micellar solutions composed of PS80 and OA at different 

molar ratios (Figure 6.11).  The polydispersity index in DLS between 0.05 and 0.08 

indicated that the micelle population was monodispersed. This is consistent with 

observations by the NMR method.  

Table 6.6 Hydrodynamic radii of PS80 micelles in tris maleate buffer and polydispersity 

index at 37°C (Average ± SD, n=3) 

PS80 Conc. 

(mM) 

hydrodynamic radius (nm) Polydispersity Index 

3.8 14.4±1.4 0.09±0.05 

7.6 18.1±3.5 0.07±0.02 

76 13.8±4.2 0.07±0.01 

 

 

Figure 6.11 The hydrodynamic radii of micelles measured by DLS method (triangle) and 

PGSE-NMR method (diamond) at different molar fraction of PS80.  

Additional DLS measurements of micelles of PS80 in the presence of 5 mM NaC/1.25 

mM PC were conducted. Within the standard variation, the hydrodynamic radii of lipid 

aggregates were not significantly different, giving the average value of 11.3±1.0 nm 
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(Table 6.7). Occasionally, minor populations with radii less than 3 nm or more than 300 

nm appeared. A polydispersity index less than 0.08 and a high percentage of intensity 

(>70%) of a population an average radius of 11.3±1.0 nm  in solutions at concentrations 

of 7.6 mM and 5.7 mM suggested only one major aggregate. However, the polydispersity 

of the radius increased at concentrations of 3.8 mM and 1.9 mM. Occasionally, a 

population of large aggregates was observed. The hydrodynamic radii of PS80/oleic acid 

at molar ratio of 9/1 and 1/1 in 5 mM NaC/PC solution are given in Table 6.8 and 6.9. 

Within the standard deviation, the PS80 micelle radii in solution concentrations rangeing 

from 30 mM to 1.9 mM of PS80 were unchanged. The averaged values were 10.5±1.6 for 

9/1 ratio solution and 12.0±1.2 for 1/1 ratio solution, respectively. This is in agreement 

with the results obtained by NMR, in which the size was independent of the composition.  

Table 6.7 Hydrodynamic radii of PS80 micelle in SIF buffer and polydispersity index at 

37°C as measured by DLS (Average ± SD, n=3) 

Conc. (mM) Hydrodynamic Radius Polydispersity Index 

1.9 12.07±2.63 0.08±0.06 

3.8 11.82±3.66 0.06±0.04 

5.7 11.52±3.35 0.04±0.03 

7.6 9.81±2.38 0.03±0.02 
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Table 6.8 Hydrodynamic radii of mixed micelles of PS80/OA at a molar ratio of 9/1 in 

SIFs buffer and polydispersity index at 37°C as measured by DLS(Average ± SD, n=3) 

Conc. (mM) Hydrodynamic Radius Polydispersity Index 

1.9 13.90±4.69 0.03±0.02 

3.8 11.28±4.00 0.02±0.01 

5.7 11.99±2.75 0.02±0.02 

7.6 12.29±4.59 0.02±0.01 

30 10.59±0.84 0.03±0.02 

 

Table 6.9 Hydrodynamic radii of mixed micelles of PS80/OA at a molar ratio of 1/1 in 

SIF buffer and polydispersity index at 37°C as measured by DLS (Average ±SD, n=3) 

Conc. (mM) Hydrodynamic Radius Polydispersity Index 

1.9 13.31±4.79 0.01±0.01 

3.8 10.37±3.47 0.02±0.01 

5.7 10.30±4.30 0.02±0.01 

7.6 9.70±0.98 0.02±0.01 

30 9.06±1.82 0.02±0.01 

 

Numerous studies have been done to characterize the size and structures of aggregates of 

bile salt and phospholipids. The hydrodynamic radii ranging from 2 nm to 20 nm were 

reported in the mixed micelles phase (Mazer, Benedek et al., 1980; Mueller 1981; 

Schurtenberger, Mazer et al., 1985). Structures characterized by small angle x-ray, QELS, 

DLS and cryo-TEM included small spheroidal mixed micelles at high concentrations of 

bile salt, mixed disk or disk shape mixed mcielles and flexible cylindrical mixed micelles 

(Mazer, Benedek et al., 1980; Mueller, 1981; Walter, Vinson et al., 1991). Such diversity 

is determined by the molar ratio of bile salt to phospholipids and the type of bile salt. On 
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the other hand, very little information is available regarding the size and structure of 

mixed aggregates of lipolytic products with bile salt and phospholipids.  Hjelm et al. 

characterized a mixture system composed of cholyglycine, phospholipids, oleate/oleic 

acid and monoolein by small angle neutron scattering (Hjelm, Schteingart et al., 1999). 

The study revealed that globular mixed micelles with repulsive electrostatic interactions 

were formed. In addition, the mixed micelles were similar in size and shape to those of 

bile salts with phospholipids, bile salts with oleate/oleic acid, or bile salts with monoolein. 

This is in agreement with the results assessed by the DLS method (Ilardia-Arana, 

Kristensen et al., 2006).  

In summary, the assumption applied in Chapter 5 which only one major type of PS80/OA 

mixed micelle existed in the absence and presence of bile salt/phospholipids appears to 

be valid. The size of PS80/OA micelles was independent of the composition and close to 

that of the PS80 micelles.  

6.4.2 Inter-molecular interactions between model drugs and mixed micelles 
Solubilization studies reported in Chapter 5 indicated that the molar solubilzation 

capacities of PS80/OA mixed micelles decreased for 17β-estradiol and nifedipine while 

remaining relatively constant for progesterone with increasing OA. It is anticipated that 

studies on the solubilization locus of drug in the micelles will improve the understanding 

of the mechanism of solubilization of poorly-water soluble drugs during the lipolysis of 

PS80, and provide a prediction tool for formulation design. 

 

For non-polymer surfactant, drugs may be solubilized in the hydrocarbon core, at the 

interface between the core and the hydrophilic head group or adsorbed on the surface of 

micelles.  For non-ionic surfactant having a polyoxyethylene chain, additional loci of 

solubilization may exist. Drugs can be solubilized in the non-polar hydrocarbon core 

region (zone 1 on Scheme 6.4), at the interface of a hydrophilic head group and 

hydrophobic core (zone 2 on Scheme 6.4), or in the polar corona region formed by a 

polymeric hydrophilic segment (zone 3 on Scheme 6.4). The locus of solubilization in the 

micelles is determined by the molecular properties of both the drug and the surfactant.   



187 
 

1
2

3 Corona
Interface
Core

 
Scheme 6.4  Possible loci of poorly-water soluble drugs in the micelles of PS80 and 

mixed micelles of PS80/OA. 

A variety of methods have been used to probe the interactions between solutes and 

micelles, such as fluorescence spectroscopy, UV spectroscopy, and NMR spectroscopy 

(Yoshida and Moroi, 2000).  Among them, NMR spectroscopy is a reliable, direct, and 

highly differentiating method used to assess the interactions between solutes and micelles 

(Luan, Song et al., 2009).  2D-NMR such as ROSEY is a powerful tool to directly 

identify the interactions between a drug and a surfactant when located within 5Å. In the 

case of weak chemical signals, interactions between solutes and micelles can also be 

inferred by other NMR techniques such as relaxation times (rotational and translational) 

and 1H and 13C chemical shifts.  

In the following sections, 1H-NMR chemical shifts and Fourier-transform infrared 

spectroscopy (FTIR) will be employed to probe the characteristics of the solubilization 

loci of model drugs in PS80 micelles. 1H-NMR chemical shifts was chosen as this 

method was the only one capable of detecting putative interactions in the concentration 

range employed. FTIR was chosen to probe both the C-O stretch of the PEO chain and 

the C=O stretch of the ester in PS80 in the presence of model solutes. 

6.4.2.1 1H chemical shifts of PS80  
An NMR signal is produced when the nuclei spin is immersed in an external magnetic 

field. A secondary magnetic field produced by electrons surrounding the nuclei spin in 

covalent compounds exists in response to the external magnetic field. It is opposed to the 

stronger external magnetic field and shields the nuclei from the applied field. Compared 

to the δ-bond electrons, electrons in the aromatic π orbital, such as benzene, induce much 

stronger secondary fields resulting in shielding or deshielding of the NMR signal 
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dependent upon the location of nuclei in the induced magnetic field (Scheme 6.5). This 

phenomenon is reflected in the change of chemical shifts in the NMR spectrum. The 

largest change in chemical shift of protons of surfactant molecules corresponds to those 

in closest contact to solute molecules. By this feature, the relative changes 

in proton chemical shifts on PS80 were obtained by comparing the NMR spectra of PS80 

in the absence and in the presence of drugs. 

 
Scheme 6.5 Secondary magnetic field induced by π-electrons on the benzene ring. 

6.4.2.1.1. 1H chemical shifts on PS80 in the presence of progesterone 
Spectra of 30 mM PS80 solution and 30 mM of PS80 saturated with progesterone were 

recorded. The relative change of chemical shifts of PS80 in the presence of progesterone 

is shown in Figure 6.15. Typically, errors in the chemical shifts measured by NMR are on 

the order of 0.002 ppm (Bernardez, 2008). As expected, the presence of progesterone did 

not result in a change of chemical shifts on PS80 since there is no induced magnetic field. 

The location of solubilized progesterone can only be inferred from the results of 

solubilization so far. As suggested by the NMR, as the ratio of OA increased the 

aggregation number increased and the number of micelles decreased.  
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Figure 6.12 1H chemical shifts on PS80 in the presence of progesterone 

6.4.2.1.2. 1H chemical shifts on PS80 in the presence of 17β-estradiol 

An aromatic ring is present in the structure of 17β-estradiol. The proton chemical shifts 

of PS80 around the aromatic ring could potentially be influenced by the induced 

magnetic field. As shown in Figure 6.13, the largest relative changes of 0.003 ppm and 

0.005 ppm were observed for the α and β protons on the fatty acid hydrocarbon tail of 

PS80. Upon formation of micelles, these two protons are located at the interface between 

the lipophilic hydrocarbon core and the hydrophilic POE corona. Unlike the 

solubilization of progesterone, the NMR results strongly suggest that 17β-estradiol is 

solubilized at the interface. Since the solubilization is a dynamic process, the drug is not 

locked in one place. The characteristic time scale of the drug translocating within the 

micelle is faster than that of NMR. Therefore, the observed chemical shift of the 

surfactant is a population average of all possible locationsof the drug.  
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Figure 6.13 1H chemical shifts on PS80 in the presence of 17β-estradiol 

6.4.2.1.3. 1H chemical shifts on PS80 in the presence of  nifedipine 
As shown in Figure 6.14, upon solubilization of nifedipine, prominent changes of 0.006 

ppm, 0.007 ppm and 0.006 ppm on PS80 were observed on the protons at the A, B and C 

positions, respectively. These protons are located at the interface region of the micelle as 

well as at the outer portion of the core. The results indicated that nifedipine may be 

solubilized both at the interface and hydrophobic regions.  

The relative changes of proton chemical shifts on PS80 in the presence of nifedipine were 

greater than those of in the presence of 17β-estradiol. Generally, the change of proton 

chemical shifts in the presence of an aromatic ring is dependent upon the amount of 

solubilized drug. The molar solubilization capacities of PS80 for nifedipine and 17β-

estradiol are 0.0538 and 0.0313, respectively. Thus, it is not surprising to see a greater 

effect by nifedipine. 
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Figure 6.14  1H chemical shifts on PS80 in the presence of nifedipine 

6.4.2.1.4. Conclusions of 1H-NMR chemical shifts experiments 

The interactions of drugs with micelles were probed in the molecular level by the NMR 

technique. The change of chemical shifts on surfactant in the presence of drugs inferred 

that major site of solubilization for 17β-estradiol was at the interface, whil for nifedipine 

both the interface of the hydrocarbon core appear to be sites of solubilization. At this 

point, we may only speculate that the solubilization loci may remain the same in the 

mixed micelle of PS80/OA.  Should this be the case, the decrease in solubilization 

capacities observed in PS80/OA (molar ratio 1/1) mixed micelles would be due to the 

reduced total interfacial area.  

6.4.2.2 Stretching vibration of C-O of POE chain and C=O of ester on PS80 
The putative interactions of PS80 with either progesterone or nifedipine were explored by 

Fourier-transform infrared spectroscopy (FTIR). Potentially, the NH on the nifedipine is 

a hydrogen-bond donor and oxygen is an hydrogen-bond acceptor. As well, the terminal 
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OH on PS80 is a potential hydrogen-bond donor and oxygen on POE chains are potential 

hydrogen-bond acceptors. When forming a hydrogen-bond between the drug and PS80, 

the IR absorption of (C=O)ν, (N-H)ν, (O-H)ν, and (C-O)ν would shift to different 

frequencies compared to the drug and surfactant alone.  Dyer et al. showed that the 

frequency shift of a carbonyl group provided information about the location of drug in the 

micelle (Dyer, Lei et al., 2008).  Unfortunately, in our case the frequency of (C=O)ν 

stretching of the drug was not identifiable either in neat PS80 or in the aqueous solution.  

Under these conditions, the drug concentration was too low compared to PS80, and the 

absorption frequency was overwhelmed by that of (C=O)ν of the surfactant. Therefore, 

we focused our attention on the shifts of (C=O)ν and (C-O)ν frequencies associated with 

the surfactant. The spectrum of neat PS80 is given in Figure 6.15. The (C-O)ν frequency 

shift of the polyoxylethyene (POE) group induced by the solubilization of progesterone 

and nifedipine in neat PS80 is shown in Table 6.10. Solubilization of nifedipine caused a 

significant shift in (C-O)ν frequency. On the contrary, a shift in (C-O)ν frequency was not 

observed in the solubilization of progesterone. These results indicate that nifedipine has a 

strong interaction with the polyoxyethylene while the progesterone does not show such 

strong interaction.  

 

Figure 6.15  FTIR spectrum of neat PS80 
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Table 6.10 Absorption frequencies of (C-O)ν on a polyoxylethyene (POE) group in the 

absence and presence of progesterone and nifedipine 

Sample C-OνPOE (cm-1 ) 

Neat PS80 1099.499 

PS80+ Progesterone 1099.423 

Neat PS80 1099.541 

PS80+Nifedipine 1095.813 

 

To further investigate the possible location of drugs in the micelles, the changes of 

(C=O)ν and (C-O)ν in 30 mM of PS80 prepared in D2O with saturated progesterone and 

nifedipine were monitored at 3, 24, 48 and 72 h. The D2O vibration and stretching band 

appeared at 2469.6cm-1 and 1204.7cm-1. The latter is close to the (C-O)ν at ∼1091cm-1on 

the POE. The possible effect on this band needs to be considered when the spectral 

subtraction method is employed. The relative frequency changes of (C-O)ν and 

(C=O)ν between the control and the sample were plotted as a function of time (Figure 

6.16). Clearly, the blue shift of (C-O)ν and red shift of (C=O)ν exhibited a maximia at 24 

h. The blue shift of (C-O)ν can be attributed to the increased electron density at the C-O 

bond as a result of a formation of an hydrogen-bond. Generally, the hydrogen bonding is 

weaker for deuterium than for hydrogen atoms (McDougall and Long, 1962). 

Consequently, with the replacement of hydrogen by deuterium as a function of time, the 

interactions between nifedipine with a POE chain become weaker at 72 h as shown in 

Figure 6.16.  

A shift in (C=O)ν frequency due to hydrogen bonding is independent of whether the 

bonding is inter- or intramolecular. In general, (C=O)ν frequency will shift to a lower 

frequency with the formation of the hydrogen-bond and the extent to which the shift takes 

place will depend upon the degree of hydrogen bonding.  As seen in Figure 6.16, the 
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extent of the shift was small in the aqueous solution. Thus, it is not clear that any 

observed shift is attributed to the formation of the hydrogen-bond involving any C=O 

group.  We can only hypothesize that there are a variety of possibilities to form the 

hydrogen bonding between the nifedipine and surfactant. Such change was not observed 

in the sample of progesterone. 

 

Figure 6.16 Relative change of  absorption of C-O on a POE chain and C=O on PS80 in a 

PS80 solution prepared in the D2O saturated with nifedipine at 3 h, 24 h, 48 h and 72 h 

6.4.3. Summary of solubilization of model drugs in the micelles and the proposed 

location 

The locus of drug solubilized in micelles determined by many factors, including the 

polarity and structure of the solute. The physical properties of model drugs and molar 

solubilization capacity of PS80 micelles and PS80/OA (1/1) mixed micelles are given in 

Table 6.11.  
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Table 6.11 The physical properties and molar solubilization capacity of PS80 and 

PS80/oleic acid (1/1) for progesterone, 17β-estradiol and nifedipine 

Compound logP(exp.) Molar 

Volume a 

Polar 

surface 

area b 

Molar 

solubilization 

capacity in 

PS80 

Molar 

solubilization 

capacity in 

PS80/OA(1/1) 

Progesterone 4.14 441 34.1 0.05 0.05 

17β-estradiol 4.20 385 40.5 0.03 0.02 

Nifedipine 3.63 418 110 0.05 0.03 

a  Calculated from the crystal data obtained from the Cambridge Structure Database 

     b From Scifinder. Calculated using Advanced Chemistry Development (ACD/Labs) 

Software V11.02. 

With respect to the polarity, the rank order of logP and polar surface area is nifedipine > 

17β-estradiol > progesterone. Progesterone is considered to be a non-polar compound, 

17β-estradiol is semipolar and nifedipine is most polar. El Eini and Barry have shown 

that the polyoxyethylene surfactants formed heavily-hydrated micelles (El Eini, Barry et 

al., 1973; El Eini, Barry et al., 1976). The number of water molecules varied from 5.2 per 

ethylene oxide unit for C16OE17 to 10.5 for C16OE63 (El Eini, Barry et al., 1976). Most of 

this water is associated the outer part of polyoxyethylene chain, with very little closer to 

the hydrocarbon core due to the crowding of polyoxyethylene chain. Therefore, micelles 

formed by a polyoxyethylene surfactant like PS80 offer a wide range of polarity for 

solubilization of various drugs with different polarity. A likely site for non-polar 

progesterone would be close to the hydrocarbon core.  This was supported by the 

solubilization of progesterone in mixed micelles of PS80/OA where the molar 

solubilization capacity was insensitive to the molar fraction of OA. Of course, this 

assumes that the size of micelles was not changed with increasing the OA content. 

Additional support for the localization of progesterone close to the hydrocarbon core was 

provided studies of the solubilization of hydrocortisone, dexamethasone, testosterone and 

progesterone by the long-chain polyoxyethylene ether nonionic surfactants (El Eini, 
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Barry et al., 1976).  These authors observed that the molar solubilization capacities 

increased as the polyoxyethylene chain length increased.  By calculating thermodynamic 

parameters for solubilization, less polar steroids, testosterone and progesterone, were 

thought to be solubilized in the region close to hydrocarbon core.   

In the present study, the locus of the semipolar drug, 17β-estradiol, and the most polar 

drug, nifedipine, is likely at the interface. This was evident by the change of NMR 

chemical shifts on PS80 protons which are located at the interface. In addition, the molar 

solubilization capacity decreased with increasing molar ratio of OA in the mixed micelles 

(Table 6.11) suggesting that the solubilization of 17β-estradiol and nifedipine is less 

controlled by the hydrocarbon core but more dependent upon the chemical environment 

of the surface of the micelles.  

The proposed loci of solubilization are shown in Schemes 6.6a and 6.6b.  With the flat 

conformation and the non-polar function group, progesterone is most easily solubilized in 

the region close to the hydrocarbon core. The observed molar solubilization capacities for 

progesterone possibly reflected the constant core volume in spite of changing the molar 

ratio of PS80 to OA. The solubilization of nifedipine and 17β-estradiol at the interface 

close to the corona is favored due to the more polar property and the possible formation 

of hydrogen bonding between the polyoxylethlyene chain and the drug.  As a result, the 

insertion of molecules between the head groups is less favored in the mixed micelles with 

a high content of OA. The linear relationship between the molar solubilization capacity of 

the PS80/OA mixed micelle with the molar fraction of PS80 (Figure 5.10) indicated the 

solubilization of nifedipine is strongly related to the content of PS80 and  suggested 

considerable amount of nifedine is solubilized in the corona. Such a linear relationship 

was not observed on 17β-estradiol indicating that a less significant amount of drug 

solubilized in the corona area compared to that solubilized at interface.  
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Scheme 6.6b Possible loci of drugs in the PS80/OA (1/1) mixed micelles 

6.5. Conclusions 
The apparent pKa of OA in the micellar solution of PS80 was determined to be 7.1 and 

independent of the composition. Ionized OA acted as an anionic surfactant and formed 

mixed micelles with PS80. The size of mixed micelles was independent of the 

composition giving a similar value to PS80 micelles. One type of mixed micelles was 

confirmed by PGSE-NMR and DLS methods in the absence of bile salt/phospolipid. 

However, the presence of bile salt/phospholipids rendered the identification of a single 

micelle structure difficult. Together with solubilization determination, it is suggested that 

only one type of PS80/OA micelle exists. Other aggregates may exist at such low content 

that the contribution to the total solubilization was negligible. Prominent changes of 

NMR chemical shifts on protons which are located on the interface of the hydrocarbon 

tail and the hydrophilic corona formed by the polyoxyethylene chain suggested that 17-β 
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estradiol and nifedipine were solubilized on the interface of micelles. Strong interactions 

between nifedipine and PS80 were further evident by Fourier transform infrared 

spectroscopy (FTIR) indicating that considerable amount of nifedipine is also solubilized 

in the corona area. The different solubilization behavior of three model drugs may result 

from the different loci in micelles.  
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Chapter 7  

Conclusions and Future Studies 

In summary, the following experimental results have been observed: 

1) The dynamic in vitro lipolysis model was sensitive to different ester-containing 

substrates under the optimal conditions. The variation of the extent of lipolysis as a 

measured production of fatty acid was within the acceptable range in-a-day and day-

to-day. The dynamic in vitro lipolysis model is a suitable method to study the 

mechanism of the drug solubilization during the lipolysis of model LBDDSs. 

2) We hypothesized that the lipolysis of PS80 in the model LBDDS results in a 

supersaturated state for model poorly-water soluble compounds. A supersaturated 

state for model poorly-water soluble drugs resulted from the lipolysis of PS80. 

Progesterone showed the least stability in a supersaturated state while 17β-estradiol 

showed the most stability in a supersaturated state. 

3) As hypothesized, the extent of the supersaturation decreased for progesterone and 

increased for 17β-estradiol while reaching a maximum for nifedipine within 2 hrs as 

the lipolysis of PS80 progressed. The extent of the supersaturation of model drugs 

was dependent upon the initial drug concentration and the extent of the hydrolysis of 

formulation. 

4) The equilibrium solubilization capacity decreased for 17β-estradiol and nifedipine 

while it remained constant for progesterone as a molar fraction of PS80 reduced in the 

model mixed micellar solutions composed of selected lipolytic products. This was in 

tune with the experimental results obtained in the lipolytic products produced during 

the in vitro lipolysis of a blank formulation.  

5) Our second hypothesis was that it is possible to correlate the equilibrium 

solubilization of model drugs formulated in PS80 under simulated intestinal 

conditions by accounting for the solubilization behavior in lipid aggregates generated 

during lipolysis. The equilibrium solubilization of nifedipine in the dispersed model 
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LBDDS under simulated intestinal conditions was predicted successfully by the 

model mixed micellar solutions composed of lipolytic products. However, model 

mixed micellar solutions were only moderately successful in predicting the extent of 

solubilization of 17β-estradiol and least successful in predicting the extent 

solubilization of progesterone.  

6) The characterization of model mixed micelles composed of selected lipolytic products 

by NMR, DLS and acid-base titration showed that the size of mixed micelles and 

ionization of micellar oleic acid are independent of the composition of PS80 and OA. 

Independence of size and ionization of anionic surfactant indicated that the different 

solubilization behavior of drugs resulted from the different loci of solubilization in 

the micelles which were further supported by change of surfactant chemical shifts in 

the presence of drugs, nefidepine and 17β-estradiol. 

The overall goal of the current dissertation is to provide a better understanding of the 

capability of lipoidal components in a model LBDDS formulation to create and maintain 

a drug in a supersaturated state in simulated GI conditions as well as those factors that 

affect drugs in a supersaturated state.  Possible future studies are as follows:    

I. The capability to create and maintain drugs in a supersaturated state in simulated GI 

tract conditions could be further evaluated on other ester-containing surfactants such 

as Cremophor RH40, Cremophor EL and TPGS. The ultimate goal is to quantify the 

relationship between the properties of lipoidal components and capability to create 

and maintain drugs in a supersaturated state in the GI tract conditions and provide 

guidance for excipients selection.   

II. With the selected lipoidal excipients, the relationship between the properties of drugs 

and capability to be maintained in a supersaturated state in simulated GI tract 

conditions could be further quantified by the methodologies used in this dissertation. 

This may facilitate the formulation development for a new API.   

III. We could build upon this knowledge with more sophisticated formulations including 

lipoidal excipients other than surfactants. Eventually, in vivo performance of LBDDSs 

could be predicted reliably by the in vitro performance in simulated GI tract conditions.  



201 
 

By probing the physicochemical mechanism of solubilization of poorly-water soluble 

drugs in the GI tract when administered by LBDDSs, a better understanding of 

interactions between poorly-water soluble drugs and digestible excipients under 

conditions in the GI tract will emerge.  
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APPENDIX 

 

Appendix 1.  Studies with nifedipine 

A1.1. Solid characterization of nifedipine collected in determination of equilibrium 

solubility  

Nifedipine was used as received in all solubility studies.  An excess amount of nifedipine 

was added to the tris maleate buffer (pH 7.5) and rotated for two weeks in a 37±0.5°C 

incubator. The remaining solid was collected, dried by nitrogen and then dried in a 

vacuum chamber at ambient temperature overnight.  Samples were characterized by 

differential scanning calorimetry (DSC). Two commercial standards (NIF-std1 and NIF-

std2) and two independent collected samples (NIF-sample 1 and sample 2) were weighed 

into individual aluminum DSC pans and encapsulated.  Nitrogen at a flow rate of 60 

mL/min was used as the purge gas. The temperature of each sample was decreased to -

15°C at 20°C/min and equilibrated at this temperature for 15 min. The temperature was 

then increased to 350°C at 5°C/min. 

A1.2. Stability assay for nifidipine 
A1.2.1. Stability when exposed to natural light  
Three groups of samples, four samples in each of group, were prepared. A nifedipine 

solution was prepared by adding 100 µL of stock solution in acetonitrile to a 9.9 mL tri 

maleate buffer (pH 7.88 at room temperature and pH 7.50 at 37 ºC). The solution was 

divided into 12 individual HPLC vials, eight of which were amber glass vials and four 

were clear glass vials. The amber glass vials were also wrapped in aluminum foil. Four 

vials were stored at room temperature and four vials at 37 ºC. Four samples in clear glass 

vials were exposed to natural light at room temperature. Samples from each group were 

taken at times 0 h, 2 h, 19 h, and 24 h and kept at -20ºC. All samples were analyzed by 

the validated method. The stability was assessed by the area of the 7.8 min peak.  
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A1.2.2. Stability in the presence of enzyme 
To test if the ester functional groups of nifedipine can be hydrolyzed by components of 

the enzyme preparation, the following experiments were conducted. The enzyme solution 

was prepared according to the standard protocol (Section 3.3.4). The pH of tris-maleate 

buffer was adjusted to 7.5 at 37±0.5 ºC. To 14.85 mL of buffer was added 150 µL of 

stock solution in acetonitrile to make a total volume of 15 mL. The final acetonitrile was 

1% v/v. The solution was incubated about 3 min at 37 ºC and distributed into six 

individual amber vials, 2 mL each. These six vials were categorized into three groups. 

One vial in the 1st group (G1) was taken as time zero and contained no enzyme 

preparation. One vial in the 2nd group (G2) was taken as the control by adding inactivated 

enzyme (see Section 4.3.4). The third group included four vials (G3-1, -2, -3, -4) to 

which were added active enzyme preparation at the concentration of 0.08 mL enzyme 

solution/total solution. All samples were incubated in a 37±1ºC water bath. Samples were 

taken at 1 h, 2 h, 4 h and 24 h. To achieve the same initial concentration in each vial, 160 

µL of buffer was added to G1, 160 µL of inactivated enzyme solution was added to G2 

and 160uL of active enzyme solution was added to the G3 vials. At the appropriate time 

each sample was filtered and diluted with an equal volume of acetonitrile. All samples 

were analyzed by HPLC. The stability was assessed by the area of the peak eluting at 7.8 

min. 

A1.3. Results and Discussion 
 A1.3.1. Stability of drug 
The photosensitivity of nifedipine has been reported in detail (Schmid, Perry et al., 1988; 

Logan and Patrick, 1990; Grundy, Kherani et al., 1994). Under our laboratory conditions, 

the photosensitivity of nifedipine was re-examined, especially under exposure to natural 

light. Nifedipine has two ester functional groups as shown in Figure 4.1.  Since esters are 

the primary target of pancreatic lipase, one stability concern might be that the nifedipine 

could be hydrolyzed by this or other enzymes in the preparation. Moreover, the ester 

bond is often more susceptible to hydrolysis under base conditions. Thus, the chemical 

stability of nifedipine in the absence and presence of an enzyme preparation and upon 

exposure to natural light were evaluated in the tris maleate buffer (pH7.5) at ambient 

temperature and at 37±0.5ºC.  
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A1.3.1.1. Stability as exposed to natural light 
In the chromatogram, a peak eluting at 6.68 min increased while the peak of nifedipine 

eluting at 7.67 min decreased (Figure A1.1) indicating that nifedipine was degraded by 

expose to natural light. Due to the photosensitivity, all further experiments with 

nifedipine were carried out under low light conditions. The area under the peak eluting at 

7.8 min is plotted as a function of time (Figure A1.2). When sample solutions were 

protected from natural light, the 7.8 min peak remained relatively constant up to 24 h at 

ambient temperature and at 37±0.5°C. However, a dramatic decrease of peak area was 

observed as the sample solutions were exposed to natural light. After 19 h of exposure to 

natural light, only 7% of nifedipine was detected in the solution.  

 

Figure A1.1 HPLC chromatograms of nifedipine exposed to natural light at 2 h and 19 h 

at ambient temperature 

 

 

2hour 

19hour 

6.68 

7.67 

6.68 7.67 
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Figure A1.2 The area of the nifedipine peak under ambient temperature (diamond) and 

37±0.5°C (square) protected from exposure to natural light, and upon exposure to natural 

light at ambient temperature (triangle) 

A1.3.1.2. Stability in the presence of enzyme 
For comparison purposes, two control samples (G1 and G2) were prepared and 

chratogram peak areas were determined. Sample G1 included nifedipine in a tris maleate 

buffer and sample G2 was prepared in the presence of an inactivated enzyme. As shown 

in Table A1.1, within an RSD of 1%, peak areas in all groups were identical indicating 

that there was no degradation of nifedipine in the presence of an enzyme preparation and 

in solution at pH 7.5 at 37°C. In addition, measurement of the peak area in the presence 

of an inactivated enzyme indicated nifedipine did not bind to the enzyme protein.  
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Table A1.1 The stability of nifedipine in the presence or absence of pancreatic enzyme 

Time(h) Sample Retention time(min.) Peak Area 

 

with no enzyme preparation 

 

 

G1 7.63 

 

545.34 

 

with inactive enzyme preparation 

 

G2 7.64 

 

551.19 

 

with active enzyme 

  1 G3-1 7.67 

 

549.14 

2 G3-2 7.65 

 

546.69 

4 G3-3 7.66 

 

559.14 

24 G3-4 7.65   558.00 

 

A1.3.1.3. Polymorphic form of nifedipine 
The excess solid material collected from the solubility samples prepared in tris maleate 

buffer (pH7.5) was characterized by DSC. The DSC trace of collected samples was 

identical to that of the original commercial material used for solubility analysis (Sigma-

Aldrich, St. Louis, MO, USA). The DSC plots are shown in Figures A1.3a and A1.3b. 

The melting point of collected samples (∼173°C) was the same as that of the starting 

material (commercial) and consistent with the reported melting point of the most stable 

polymorph (Grooff, De Villiers et al., 2007). 

Three polymorphic forms (I, II and III)  had been reported for nifedipine (Burger and 

Koller, 1996). The DSC results confirm that the commercial nifedipine is form I (most 

stable). Tiggle, et al. have reported the crystal structure of form I (Triggle, Shefter et al., 

1980). Four 1,4-dioxane solvates and a dihydrate  form have also been reported. The 

melting point dihydrate form is 165°C and its solubility (3.01±0.56 µg/ mL) in water is 

lower than that of the form I at 30°C (Caira, Robbertse et al., 2003). The hydrate form 

arises from a 1,4-dioxane solvate in water. It is not formed in the mixture of organic 
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solvent with water such as dioxane: water, methanol: water and ethanol: water. Caira, et 

al. found that the hydrated form is not stable and converted to the stable form I very 

rapidly. Conclusively, there was no new polymorph appearing during the incubation for 

equilibrium solubility.    

 

 

Figure A1.3a DSC plot of commercial nifedipine 
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Figure A1.3b DSC plot of collected solid material from the determination of aqueous 

solubility of nifedipine in tris maleate buffer at 37°C (pH7.5) 

Appendix 2. Surfactant composition during the lipolysis of formulations 
The lipolytic products of PS80 are PEG (20) sorbitan and oleate (Scheme 4.1). The PEG 

(20) sorbitan is water soluble and is assumed not to be a component of any lipid 

aggregates. Fatty acid and PS80 are amphiphilic species able to form aggregates when the 

concentration exceeds that of the critical micellar concentration. During lipolysis, a mole 

of PS80 will release l mole of fatty acid and thus the total molar concentration of PS80 

plus fatty acid was maintained constant. The calculated fatty acid released from PS80 and 

molar ratios of PS80 to fatty acid in the period of 120 min are listed in Tables A2.1- A2.4. 

Due to the viscosity of the formulation, the amount of formulation added was calculated 

by subtracting the weight of the transfer pipette before and after addition of the 

formulation to SIFs buffer from the total weighed formulation. Therefore, it is impossible 

to give the exact same initial concentration of PS80 for each repetition. The protocol was 

strictly followed to reduce the variation of the initial concentration to a minimum. The 

variation of weight of formulation was 5% within progesterone-loaded formulations, 4% 

within nifedipine-loaded formulation and 2% within 17β-estradiol-loaded formulation, 

respectively. To truly reflect the alteration of composition, the molar ratio of PS80 to 
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fatty acid was calculated. The molar ratio of PS80 to fatty acid is related not only to the 

released fatty acid but also to the initial concentration of PS80.  During the lipolysis of 

the blank PS80, the molar ratio changed from 11.42±0.30 at 5 min to 0.73±0.09 at 120 

min (Table 5.2). Generally, the greater variations on the molar ratio were observed in the 

first 10 min across all the formulations tested. The values from the lipolysis of drug-

loaded formulations were higher than those in the lipolysis of the blank formulation at 5 

min and 10 min. Within drug-loaded formulations, the molar ratios in the lipolysis of E-

14 mg/g were 23.13±2.41 µmol and 9.37±0.74 at 5 min and 10 min, respectively. The 

values were significantly higher than those in the lipolysis of E-5 mg/g and E-7 mg/g. 

Also, a relatively high value was seen in the lipolysis of N-11 mg/g at 5 min.  The molar 

ratios at 15 min, 30 min, 60 min and 120 min were unchanged in all cases.   

 

Table A2.1 Fatty acid (FA) released from PS80 and molar ratio of PS80 to fatty acid 

released from PS80 during the lipolysis of blank formulation 

Time(min.) 

FA from PS80 

(µmol±SD) 

 

Molar ratio of PS80/FA 

from PS80 

5 

 

14.93±0.36 

 

11.42±0.30 

10 

 

28.57±1.28 

 

5.50±0.29 

15 

 

40.30±1.53 

 

3.60±0.18 

30 

 

68.50±2.73 

 

1.71±0.11 

60 

 

95.02±3.96 

 

0.95±0.08 

120 

 

107.58±5.25 

 

0.73±0.09 
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Table A2.2 Fatty acid (FA) released from PS80 and molar ratios of PS80 to fatty acid 

released from PS80 during the lipolysis of progesterone-loaded formulations 

FA from PS80 (µmol±SD) 

Time 

(min) P-12 P-20 P-31 

5 14.93±0.59 12.57±2.31 12.94±2.12 

10 25.07±1.65 23.94±1.55 22.79±1.95 

15 35.27±2.65 34.70±2.60 31.26±3.19 

30 61.10±6.10 60.57±4.13 55.3±3.35 

60 92.33±6.62 90.65±5.36 88.65±3.24 

120 108.08±2.01 107.68±6.80 106.12±7.06 

    Molar ratio of PS80/FA from PS80 

5 11.61±0.64 14.72±2.06 14.59±2.99 

10 6.53±0.66 7.13±0.17 7.72±0.94 

15 4.36±0.57 4.61±0.26 5.37±0.77 

30 2.11±0.40 2.21±0.16 2.58±0.24 

60 1.05±0.9 1.15±0.05 1.23±0.03 

120 0.74±0.07 0.81±0.02 0.86±0.12 
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Table A2.3 Fatty acid (FA) released from PS80 and molar ratios of PS80 to fatty acid 

released from PS80 during the lipolysis of 17β-estradiol-loaded formulations 

FA from PS80 (µmol±SD) 

Time (min) E-5 E-7 E-14 

5 12.58±1.34 12.44±1.99 8.40±0.89 

10 23.63±3.54 23.56±1.67 19.48±1.37 

15 29.75±0.92 34.32±0.96 29.84±1.71 

30 61.10±10.61 61.61±1.31 55.40±3.69 

60 99.60±12.09 97.62±2.43 90.95±6.09 

120 121.60±11.67 117.02±3.96 112.45±5.78 

    Molar ratio of PS80/FA from PS80 

5 15.29±1.65 15.81±2.32 23.13±2.41 

10 7.72±1.26 7.78±0.57 9.37±0.74 

15 5.85±0.25 5.01±0.11 5.76±0.34 

30 2.39±0.57 2.35±0.08 2.64±0.22 

60 1.06±0.24 1.11±0.03 1.22±0.13 

120 0.68±0.15 0.76±0.03 0.79±0.08 
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Table A2.4 Fatty acid (FA) released from PS80 and molar ratio of PS80 to fatty acid 

released from PS80 during the lipolysis of nifedipine-loaded formulations 

FA from PS80 (µmol±SD) 

Time (min) N-11 N-20 N-35 

5 6.11±1.80 10.80±2.29 13.31±1.65 

10 20.22±3.20 26.17±4.52 20.96±4.31 

15 33.74±2.90 40.44±6.20 30.26±3.85 

30 65.18±3.50 71.04±7.50 59.49±2.70 

60 97.10±3.68 96.15±4.26 96.43±1.79 

120 111.63±2.30 108.13±1.35 115.93±1.15 

    Molar ratio of PS80/FA from PS80 

5 31.83±8.92 16.98±4.24 14.36±1.54 

10 8.57±1.60 6.32±1.25 8.93±1.87 

15 4.67±0.60 3.72±0.77 5.76±0.68 

30 1.92±0.22 1.66±0.29 2.42±0.26 

60 0.96±0.11 0.96±0.08 1.10±0.11 

120 0.70±0.07 0.74±0.03 0.75±0.08 

 

Based on the data in Tables A2.1 to A2.4 is feasible to prepare series of model systems to 

represent the composition of lipolytic products in the time course of lipolysis. The major 

fatty acid released from the PS80 is oleic acid. Therefore, the molar PS80/OA were 

chosen as 9/1, 8/2, 7/3, 6/4, 5/5 where the molar fractions of PS80 in the mixture were 0.9, 

0.8, 0.7, 0.6 and 0.5. The range of molar ratios covered the composition from about 5 min 

to 120 min of in vitro lipolysis. The mixtures with known composition were prepared for 

future solubilization studies.  
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Appendix 3. Calculation of aggregation number, total micelle surface area and total 

micelle core volume  

Theoretically, the volume of a spherical micelle (V) can be calculated by Eq. (A3.1) 

V = f1V1 + f2V2                                    (A3.1) 

Where the f1 and f2 are molar fractions of PS80 and OA in the mixture; V1 and V2 are 

molecular volumes of PS80 and OA, which are taken as 2004 and 514 A3, respectively 

(Croy and Kwon, 2005).   The aggregation number is calculated by Eq. (A3.2) 

Nagg =
4πr3

3V                                              ( A3.2) 

Where r is the radius of micelles measured by PGSE-NMR (Figure A3.1).  

rcore

rmicelle

 

Figure A3.1 The schematic presentation of radius of hydrophobic core (rcore) and radius 

of micelle (rmicelle) 

One mole of surfactant solution contains of 6.02×1023 surfactant molecules. Thus, the 

micelle number is  

                                       
Nmicelle =

6.02 x1023

Nagg                                  (A3.3)  

By knowing the micelle number of 1 mole of surfactant solution, the total interface 

surface area (Atotal) and total core volume of micelle (Vtotal) will be calculated by Eq. 

(A3.4) and Eq. (A3.5).  

                                    Atotal = Acore x Nmicelle                                       (A3.4) 
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                                     Vtotal = Vcore x Nmicelle                                      (A3.5) 

Where Acore is the interface surface area/micelle and Vcore is the core volume of 

hydrophobic tail/micelle, calculated by Eq. (A3.6) and Eq. (A3.7) (Stokes and Fennell 

Evans, 1997)  

                                     Vcore = (27.4 + 26.9n) x Nagg                              (A3.6) 

                                     Acore = 4π (1.5+1.265n)2 x Nagg                         (A3.7) 

where n is the carbon number of hydrophobic tail.  
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