Year of Publication


Degree Name

Doctor of Philosophy (PhD)

Document Type

Doctoral Dissertation




Biosystems and Agricultural Engineering

First Advisor

Dr. Michael Montross


The temperature and moisture content of biomass feedstocks both play a critical role in minimizing storage and transportation costs, achieving effective bioconversion, and developing relevant postharvest quality models. Hence, this study characterizes the heat and mass transfer occurring within baled switchgrass through the development of a mathematical model describing the relevant thermal and physical properties of this specific substrate. This mathematical model accounts for the effect of internal heat generation and temperature-induced free convection within the material in order to improve prediction accuracy. Inclusion of these terms is considered novel in terms of similar biomass models.

Two disparate length scales, characterizing both the overall bale structure (global domain) and the individual stems (local domain), are considered with different physical processes occurring on each scale. Material and fluid properties were based on the results of hydraulic conductivity experiments, moisture measurements and thermal analyses that were performed using the constant head method, TDR-based sensors and dual thermal probes, respectively. The unique contributions made by each of these components are also discussed in terms of their particular application within various storage and bioconversion operations.

Model validation was performed with rectangular bales of switchgrass (102 x 46 x 36 cm3) stored in an environmental chamber with and without partial insulation to control directional heat transfer. Bale temperatures generally exhibited the same trend as ambient air; although initial periods of microbial growth and heat generation were observed. Moisture content uniformly declined during storage, thereby contributing to minimal heat generation in the latter phases of storage.

The mathematical model agreed closely with experimental data for low moisture content levels in terms of describing the temperature and moisture distribution within the material. The inclusion of internal heat generation was found to be necessary for improving the prediction accuracy of the model; particularly in the initial stage of storage. However, the effects of natural convection exhibited minimal contribution to the heat transfer as conduction was observed as the predominate mechanism occurring throughout storage. The results of this study and the newly developed model are expected to enable the maintenance of baled biomass quality during storage and/or high-solids bioconversion.

Digital Object Identifier (DOI)