Year of Publication

2015

Degree Name

Master of Science in Biosystems and Agricultural Engineering (MSBiosyAgE)

Document Type

Master's Thesis

College

Agriculture; Engineering

Department

Biosystems and Agricultural Engineering

First Advisor

Dr. Michael Montross

Abstract

Lignocellulosic biomass pretreatment is a fundamental step in the production of renewable fuels and chemicals. It is responsible for the disruption and removal of lignin and hemicellulose from the lignocellulosic matrix, improving the enzymatic hydrolysis of cellulose. Alkaline pretreatment has been shown to be successful on agricultural residues and dedicated energy crops. The objective of this study was to evaluate the pretreatment of switchgrass, wheat straw, corn stover, and miscanthus using calcium hydroxide, potassium hydroxide, and sodium hydroxide at the same hydroxyl concentration, 60% moisture content, and two temperatures for seven days. Enzymatic hydrolysis was also performed and the glucose produced measured. The composition of cellulose, hemicellulose, and lignin before and after pretreatment were quantified according to the standard procedures developed by the NREL for biomass. The hydrolysis was performed at 50°C and 150 rpm. The enzyme loading was 60 FPU/g cellulose. Overall, calcium hydroxide pretreatment resulted in the lowest delignification and structural carbohydrates after pretreatment, as well as lowest glucose yield; In addition to having a higher cost and carbon dioxide emission then sodium and potassium hydroxides. Sodium hydroxide and potassium hydroxide had similar performance in terms of composition changes due to pretreatment and glucose yield after enzymatic hydrolysis.

Share

COinS